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On the Graph of Divisibility of an Integral
Domain

Jason Greene Boynton and Jim Coykendall

Abstract. It iswell known that the factorization properties of a domain are re�ected in the structure
of its group of divisibility. _emain theme of this paper is to introduce a topological/graph-theoretic
point of view to the current understanding of factorization in integral domains. We also show that
connectednessproperties in the graph and topological space give rise to a generalization of atomicity.

1 Introduction

Let D be an integral domain with ûeld of fractions K . _en the group of divisibility
G(D) isdeûned tobe thepartiallyordered additive groupofprincipal fractional ideals
with aD ≤ bD if and only if aD ⊇ bD. If K× is the multiplicative group of K and if
U(D) is the group of units ofD, thenG(D) is order isomorphic to the quotient group
K×/U(D) with the ordering aU(D) ≤ bU(D) if and only if ba ∈ D. As is customary,
we view G(D) as an additive group.

It is well known that the factorization properties of a domain are re�ected in the
structure of its group of divisibility. For example, an integral domain is a unique fac-
torization domain if and only if its group of divisibility is a direct sum of copies of
Z equipped with the usual product order. It is also true that the group of divisibility
re�ects more than just factorization properties of a domain. Indeed, it is not hard to
check that a domain is a valuation domain if and only if its group of divisibility is to-
tally ordered. We refer the interested reader to [6] for an excellent survey ofmaterial
regarding the group of divisibility.

In 1968, Cohn introduced the notion of an atomic integral domain in [4]. _ese
are the domains in which every nonzero nonunit admits a ûnite factorization into
irreducible elements. For several years, it was believed that atomicity in an integral
domain was equivalent to the ascending chain condition on principal ideals (ACCP).
However, in 1974, A. Grams demonstrated that an atomic domain need not satisfy
ACCP [5]. Gramswas able to understand the subtle diòerence between atomicity and
ACCP using the group of divisibility. Ten years later, Zaks added two more examples
of an atomic domainwithoutACCP [7]. However, examples of atomic domainswith-
out ACCP are still relatively scarce.

_e main theme of this work is to introduce a topological/graph-theoretic point
of view to the current understanding of factorization in integral domains. _at is, we
ûnd a graphical representation of the group of divisibility in order to detect various
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well-studied factorization properties of an integral domain. _is paper is organized
as follows. In Section 2, we recall a topological structure that is naturally associated
with a partially ordered set. In addition, we make the relevant graph-theoretic def-
initions needed in the sequel. In Section 3, we introduce the graph of divisibility of
an integral domain and show that this graph detects the standard factorization prop-
erties studied in [1]. In Section 4, we examine the connectedness properties of the
graph of divisibility using some elementary topology. In Section 5, we will see that a
connected graph of divisibility gives rise to a generalized atomicity. We also provide
some examples in order to illustrate these notions.

2 Some Definitions and Background

In this section, we make some relevant deûnitions from graph theory and topology
that will be used throughout. We refer the reader to [2] for a survey of known results
about the Alexandrov topology.

Deûnition 2.1 Let (X , τ) be a topological space with neighborhood base U(x) =
{U ∈ τ ∶ x ∈ U}.
(i) (X , τ) is called anAlexandrov space if arbitrary intersections of open sets remain

open.
(ii) For every x in anAlexandrov space X,we set M(x) = ⋂U∈U(x)U . _e set M(x)

is called theminimal open set containing x .

_eorem 2.2 Let (X , τ) be an Alexandrov space.
(i) _e collection of minimal open sets N = {M(x) ∶ x ∈ X} is a basis for the space

(X , τ).
(ii) (X , τ) is a T0 space if and only ifM(x) = M(y)⇒ x = y.
(iii) (X , τ) is (path and chain) connected if and only if for any pair of points a, b ∈ X,

there exists a ûnite set of points {a = x0 , x1 , . . . , xn = b} such that N(x i−1) ∩
N(x i) /= ∅, i ≤ n.

In some sense, a T0 Alexandrov space is the most natural topological structure
induced by a partially ordered set. Indeed, if (X , ≤) is any partially ordered set, then
the sets of the form M(a) = {x ∈ X ∶ x ≤ a} constitute a basis for a T0 Alexandrov
space (X , τ). Conversely, if (X , τ) is a T0 Alexandrov space, we can deûne a relation
≤ on X given by a ≤ b if and only if a ∈ M(b). More precisely, we have the following
result found in [2].

_eorem 2.3 _ere is an isomorphism between the category of T0 Alexandrov spaces
with continuous maps and the category of partially ordered sets with order preserving
set maps.

Now, let (X , τ) be any T0 Alexandrov spacewithminimal neighborhood baseM =

{M(a) ∶ a ∈ X}. One can construct a directed acyclic graph G(V,E) determined by
the space (X , τ). _e set V of vertices is taken to be the underlying set X. Deûne an
edge a → b if and only if M(a) ⊊ M(b) and there is no minimal base element M(c)
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properly between M(a) andM(b). _e resulting construction is a simple (no parallel
edges) directed acyclic graph (SDAG). We now make the graphical representation of
the previous constructions precise.

Deûnition 2.4 Let (X , ≤) be any partially ordered set and deûne intervals

(−∞, b] = {x ∈ X ∶ x ≤ b} and [a, b] = {x ∈ X ∶ a ≤ x ≤ b}.

(i) We write (X , τ(≤)) to denote the the Alexandrov topology generated by the
minimal neighborhood baseM = {M(a) ∶ a ∈ X}, where M(a) = (−∞, a].

(ii) Wewrite G(X ,E(≤)) to denote the directed acyclic graphwhose vertices are the
elements of X and edges a → b if and only if a < b and [a, b] = {a, b}.

Deûnition 2.5 Let V be a nonempty set.
(i) A ûnite directed path is a sequence of edges {e1 , e2 , . . . , en} ⊂ E, where e i =

(v i−1 , v i) for each i ∈ {1, 2, . . . , n}. A ûnite directed path in G(V,E) is also de-
noted by

v0 Ð→ v1 Ð→ v2 Ð→ ⋅ ⋅ ⋅Ð→ vn .

A directed graph is said to be acyclic if there does not exist a path

{e1 , e2 , . . . , en} ⊂ E

such that v0 = vn .
(ii) A ûnite weak path is a sequence of ordered pairs {e1 , e2 , . . . , en} ⊂ V×V, where

e i = (v i−1 , v i) and either (v i−1 , v i) or (v i , v i−1) ∈ E. A ûnite directed path in
G(V,E) is also denoted by

v0 ←→ v1 ←→ ⋅ ⋅ ⋅←→ vn .

(iii) A directed graph G(V,E) is said to be weakly connected if for every pair of ver-
tices v ,w ∈ V there exists a ûniteweak path {e1 , e2 , . . . , en} such that v0 = v and
vn = w .

3 The Graph of Divisibility

In this section, we introduce the graph of divisibility of an integral domain. We will
see that this graph gives a picture of the group of divisibility and can be used to detect
certain factorization properties of a domain. Although this graph does not detect all
divisibility relations, it does detect enough of the divisibility relation to clearly dif-
ferentiate atomicity and ACCP (for example). For the remainder of this article, we
denote the set of irreducible elements (atoms) of D by Irr(D), and the set of atomic
elements (expressible as a ûnite product of atoms) is denoted by F(D).

Deûnition 3.1 Let D be any integral domain with ûeld of fractions K and let K×

denote its multiplicative group.
(i) We write G(D) to denote the group of divisibility K×/U(D) written additively.

We write G(D)+ to denote the positive elements of G(D).

https://doi.org/10.4153/CMB-2014-065-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-065-0


452 J. G. Boynton and J. Coykendall

(ii) We write P(D) to denote the group of nonzero principal fractional ideals of D
partially ordered by inclusion. We write P(D)+ to denote the nonzero nonunit
principal integral ideals of D.

Recall that the ordering in (G(D), ≤) is given by a ≤ b if and only if ba ∈ D. It read-
ily follows that 0 ≤ a if and only if a ∈ D. It is easy to check that there exists a reverse
order group isomorphism G(D) → P(D) given by a ↦ aD. With Deûnition 2.1 in
hand, we deûne a partial ordering on the set P(D) and consider the structure of the
associated topological space and directed acyclic graph. _e following lemma is the
basis for the remainder of our investigations.

Lemma 3.2 Deûne a relation ≺ on P given by a ≺ b if and only if ab ∈ F(D).
(i) (P(D), ⪯) is a partially ordered set.
(ii) (P(D), τ(⪯)) is a T0 Alexandrov space with neighborhood base given by the col-

lection M(a) = {x ∈ P ∶ x
a ∈ F(D)}.

(iii) G(P(D),E(⪯)) is a directed acyclic graph with directed edges a → b if and only
if ab ∈ Irr(D).

Proof (i) It is never the case that a ≺ a, since a
a is a unit and hence is not a product

of atoms. Similarly, it is impossible that both a ≺ b and a ⪰ b can occur. Finally, if
a ≺ b and b ≺ c, then a

b ∈ F(D) and b
c ∈ F(D). Since the set F(D) is multiplicatively

closed, we have that ab ⋅
b
c =

a
c ∈ F(D) so that a ≺ c.

(ii) Follows immediately from (i) and the deûnition of ≺ .
(iii) If a → b, then a ≺ b and [a, b] = {a, b}. It follows that ab = π1 ⋅ ⋅ ⋅ πn , where

each π i ∈ Irr(D). In other words, [a, b] = {a, π1 ⋅ ⋅ ⋅ πn−1a, . . . , π1a, b} and the con-
dition [a, b] = {a, b} forces b = π1a. _erefore, ab ∈ Irr(D) as needed. Conversely,
if ab = π ∈ Irr(D), then it is certainly true that a ≺ b, and it suõces to check that
[a, b] = {a, b}. But if a ≺ x ≺ b, then a

x = π1 ⋅ ⋅ ⋅ πn and x
b = σ1 ⋅ ⋅ ⋅ σm , where each

π i , σ i ∈ Irr(D). _en π = π1 ⋅ ⋅ ⋅ πnσ1 ⋅ ⋅ ⋅ σm forcing (without loss of generality) π = π1
and the remaining irreducible factors are units. It follows that x = b as needed.

With Lemma 3.2 in hand, wemake the deûnition central to our study.

Deûnition 3.3 We call G(P(D),E(⪯)) the graph of divisibility of D. Wemight also
refer to the subgraph G(P(D)+ ,E(⪯)) as the graph of divisibility.

We illustrate this deûnition with a few easy examples.

Example 3.4 (i) Let D be a one-dimensional Noetherian valuation domain. It
is well known that D is a PID with a unique nonzero prime ideal. So the the ele-
ments of P(D)+ can be enumerated by the positive integers. We write P(D)+ =

{π, π2 , π3 , . . . },where π is a chosen generator of the uniquemaximal ideal. _e graph
of divisibility G(P(D),E(⪯)) is the following (branchless) tree:

⋅ ⋅ ⋅Ð→ π2
Ð→ π Ð→ 1Ð→

1
π
Ð→

1
π2 Ð→ ⋅ ⋅ ⋅ .
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Similarly, the subgraph G(P(D)+ ,E(⪯)) is of the form

⋅ ⋅ ⋅Ð→ π3
Ð→ π2

Ð→ π.

(ii) Let D be a one-dimensional nondiscrete valuation domain. For the sake of
concreteness, we will say that the corresponding value group is Q. In this exam-
ple, there are no irreducible elements and hence no two elements of P(D) are ad-
jacent. It follows that G(P(D),E(⪯)) is just the collection of vertices corresponding
to P(D) with no edges whatsoever. In fact, the graph of divisibility of any antimat-
ter domain (no irreducible elements) consists only of vertices. Topologically speak-
ing, (P(D), τ(⪯)) is totally disconnected. _at is, given any a ∈ P(D), we have that
M(a) = {a}. _e same is certainly true for the subspace (P(D)+ , τ(⪯)) and the sub-
graph G(P(D)+ ,E(⪯)).

Recall that a sink in a directed graph is a vertex with arrows in but no arrows out.
We have the following lemma.

Lemma 3.5 Let D be an integral domain and let G(P(D)+ ,E(⪯)) be the associated
graph of divisibility. _en a nonzero nonunit π ∈ D is irreducible if and only if the node
π is a sink in G(P(D)+ ,E(⪯)).

It is well known that D is atomic if and only if every element of G(D)+ can be
written as a sum of minimal positive elements. Similarly, D satisûes ACCP if and
only if every descending sequence of elements inG(D)+ stabilizes. Aswith the group
of divisibility, the graph of divisibility can be used to characterize the well-studied
factorization domains. As in [1], wemake the following deûnitions.

Deûnition 3.6 Let D be an integral domain.
(i) D is called a bounded factorization domain (BFD) if D is atomic, and for every

nonzero nonunit a ∈ D, there exists an upper bound N(a) on the set of lengths
of an irreducible factorization. _at is, if a = π1 ⋅ ⋅ ⋅ πn where each π i ∈ Irr(D),
then n ≤ N(a).

(ii) D is called a ûnite factorization domain (FFD) if D is atomic and every nonzero
nonunit a ∈ D is divisible by only ûnitely many irreducible elements.

(iii) D is called a half factorization domain (HFD) if D is atomic and every nonzero
nonunit a ∈ D has a unique factorization length. _at is, if ε1 ⋅ ⋅ ⋅ εm = a =

π1 ⋅ ⋅ ⋅ πn where each π i , ε i ∈ Irr(D), then m = n.

We close this section with the following result.

_eorem 3.7 Let D be an integral domain and let G(P(D)+ ,E(⪯)) be the associated
graph of divisibility.
(i) D is atomic if and only if for every non unit element a ∈ P(D)+, there exists a

(ûnite) path originating from a that terminates at an atom.
(ii) D satisûes ACCP if and only if for every a ∈ P(D)+, every path originating from

a terminates at an atom.
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(iii) D is a BFD if and only if for every a ∈ P(D)+, every path originating from a
terminates at an atom and there is an upper bound on the lengths of all such paths.

(iv) D is an FFD if and only if for every a ∈ P(D)+, every path originating from a
terminates at an atom and there are ûnitely many such paths.

(v) D is an HFD if and only if for every a ∈ P(D)+, every path originating from a
terminates at an atom and all such paths are of the same length.

4 Some Connectedness Properties

In this section, we consider the connectedness of the graph of divisibility. To do this,
we will examine the connectedness of the associated Alexandrov topology. We con-
clude the section with a few examples.

_eorem 4.1 Let D be an integral domain. _e following statements for a, b ∈ K× are
equivalent.
(i) _ere exist atoms π i , ξ i ∈ Irr(D) such that ab =

π1 ⋅⋅⋅πn
ξ1 ⋅⋅⋅ξm .

(ii) _e points a, b belong to the same connected component in the Alexandrov topol-
ogy (P(D), τ(⪯)).

(iii) _ere is a ûnite weak path connecting a to b in the graph of divisibility
G (P(D),E(⪯)) .

Proof (i)⇒(ii) Suppose there exist atoms π i , ξ i ∈ Irr(D) such that a
b = π1 ⋅⋅⋅πn

ξ1 ⋅⋅⋅ξm . To
show that a, b belong to the same connected component, it suõces to show that
M(a) ∩M(b) is nonempty. To this end, note that

aξ1 ⋅ ⋅ ⋅ ξm = c = bπ1 ⋅ ⋅ ⋅ πn

implies that c ≺ a, because c
a = ξ1 ⋅ ⋅ ⋅ ξm . Similarly, we have that c ≺ b, from which it

follows that c ∈ M(a) ∩M(b) as needed.
(ii)⇒(iii) If a, b belong to the same connected component, then there exists a ûnite

set of points {a = x0 , x1 , . . . , xn = b} such that M(x i−1) ∩ M(x i) /= ∅ for all i ∈
{1, 2, . . . , n}. Hence, we can choose a c i ∈ M(x i−1) ∩M(x i) so that c i

x i−1
, c ix i

∈ F(D),
say c i

x i−1
= ξ1 ⋅ ⋅ ⋅ ξm and c i

x i
= π1 ⋅ ⋅ ⋅ πn where π i , ξ i ∈ Irr(D). It follows that there are

directed paths

c i Ð→ (x i−1ξ1 ⋅ ⋅ ⋅ ξm−1)Ð→ ⋅ ⋅ ⋅Ð→ (x i−1ξ1)Ð→ x i−1 ,
c i Ð→ (x iπ1 ⋅ ⋅ ⋅ πn)Ð→ ⋅ ⋅ ⋅Ð→ (x iπ1)Ð→ x i .

Hence, there is a weak path

x i−1 ←Ð ⋅ ⋅ ⋅←Ð c i Ð→ ⋅ ⋅ ⋅Ð→ x i

for all i ∈ {1, 2, . . . , n}, and so there is a weak path connecting a to b.
(iii)⇒(i) Suppose that a, b are distinct points in the T0 Alexandrov space

(P(D), τ(⪯)). _en there exists a ûnite weak path connecting a to b say

a = x0 ←→ x1 ←→ ⋅ ⋅ ⋅←→ xn = b.
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Using induction on n, we suppose that the result is true for all k < n. It follows from
the existence of the weak path a = x0 ↔ x1 ↔ ⋅ ⋅ ⋅↔ xn−1 that

a
xn−1

=
π1 ⋅ ⋅ ⋅ πn

ξ1 ⋅ ⋅ ⋅ ξm
,

where π i , ξ i ∈ Irr(D). Now observe that either xn−1 → b or b → xn−1. If xn−1 → b,
then by deûnition, we have xn−1

b = π ∈ Irr(D). It follows that
a
b
=

a
xn−1

⋅
xn−1
b

=
ππ1 ⋅ ⋅ ⋅ πn

ξ1 ⋅ ⋅ ⋅ ξm
,

and a similar argument handles the case.

If F is the subgroup of K× generated by Irr(D), then we can relate the number of
connected components of G(P,E(⪯)) with the order of the quotient group K×/F (a
homomorphic image of the group of divisibility K×/U(D)). We immediately get the
following result.

Corollary 4.2 _ere are 1-1 correspondences between the elements of K×/F, the con-
nected components ofG(P(D),E(⪯)), and the connected components of (P(D), τ(⪯)).

Example 4.3 Consider the classical construction D = Z + xQ[x]. It is well known
that the irreducible elements of D are the primes p ∈ Z and Q[x]-irreducible poly-
nomials of the form ±1 + xq(x), where q(x) ∈ Q[x] (see [3]). For each a ∈ D
let us write a(x) = (a0 , a1 , a2 , . . . ), where a0 ∈ Z and a i ∈ Q for all i ≥ 1. As
with power series representations, we deûne the order of a to be the natural num-
ber ord(a) = min{i ∈ N ∶ a i /= 0}. It follows from [3] that a(x) ∈ F(D) if and
only if ord(a) = 0. We will now show that two polynomials a, b ∈ D belong to the
same connected component of (P(D)+ , τ(⪯)) if and only if ord(a) = ord(b). Indeed,
write a(x) = x e0a(x) and b(x) = x f0b(x), where ord(a) = 0 = ord(b) (allowing
e0 = 0 = f0). If a(x) is connected to b(x), then there exist atoms π i , ξ i ∈ Irr(D) such
that

a(x)
b(x)

=
π1(x) ⋅ ⋅ ⋅ πn(x)
ξ1(x) ⋅ ⋅ ⋅ ξm(x)

.

We now have the equation

x e0a(x)ξ1(x) ⋅ ⋅ ⋅ ξm(x) = x f0b(x)π1(x) ⋅ ⋅ ⋅ πn(x),

and one easily checks that

e0 = ord(x e0) = ord(x e0aξ1 ⋅ ⋅ ⋅ ξm) = ord(x f0bπ1 ⋅ ⋅ ⋅ πn) = ord(x f0) = f0 .

For the converse, suppose that e0 = f0 . Again, using the fact that ord(a) = 0 = ord(b)
is equivalent to a, b ∈ F(D), we have the existence of atoms π i , ξ i ∈ Irr(D) such that

a(x)
b(x)

=
π1(x) ⋅ ⋅ ⋅ πn(x)
ξ1(x) ⋅ ⋅ ⋅ ξm(x)

.

On the other hand, e0 = f0 implies

a(x)
b(x)

=
x e0a(x)
x f0b(x)

=
a(x)
b(x)

.
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It follows that the distinct connected components of (P(D)+ , τ(⪯)) are given by the
set {Irr(D) = [2], [x], [x2], . . . }. In other words, there is no weak path xm ↔ ⋅ ⋅ ⋅↔

xn in G(P+ ,E(⪯)) whenever m /= n.

Example 4.4 Let x , y be indeterminates over the ûeld F2 .
(i) Now let X = {xα ∶ α ∈+} and

Z1 = {
yk

xα
∶ α ∈ Q+ , k ∈ Z+ , and k ≥ 2}.

We determine the number of connected components in the graph of divisibility of the
domain D1 = F2[X , y, Z1](X ,y ,Z1) . To do this,we ûrst observe that the integral closure
of D1 is the rank 2 valuation domain V = F2[X , Z](X ,Z), where Z = {

y
xα ∶ α ∈ Q+}.

_e value group of V is Z ⊕Q ordered lexicographically, and it is easy to check that
every nonzero nonunit element of V is a unit multiple of yk or x r yk , where (k, r) ∈
Z+ ⊕ Q. It is not hard to check that every element of Irr(D1) has value (1, 0). It is
now an easymatter to check that the connected components of G(P(D1)

+ ,E(⪯)) are
given in terms of their values by

{[(0, α)]}α∈Q+ ∪ {[(k, 0)]}k∈Z+ ∪ {[(k, α)]}k≥2 α<0 .

For example, consider the elements f = x 1/2 and g = y3/x 1/3. _en v( f ) = (0, 1/2)
and v(g) = (3,−1/3)._en v(g/ f ) = v(g)−v( f ) = (3,−5/6) cannot bewritten in the
form m(1, 0), where m ∈ Z. In other words, g/ f cannot be expressed as the quotient
of atomic elements.

(ii) If Z2 = {yk/x j ∶ j ∈ Z+ , k ∈ Z+ , and k ≥ 2} and D2 = F2[x , y, Z2](x ,y ,Z2), then
(P(D2)

+ , τ(⪯)) is a connected Alexandrov space. Equivalently, the graph of divisi-
bility G(P(D2)

+ ,E(⪯)) is weakly connected. One need only check that the integral
closure of D2 has the discrete value group Z⊕ Z ordered lexicographically. Again, it
is not hard to check that every element of Irr(D2) has value (0, 1) or (1, 0) and given
any f , g ∈ D2, we have that v( g

f ) = m(1, 0) + n(0, 1), where m, n ∈ Z.

5 Some Generalizations of Atomicity

In this section, we show that a connected graph of divisibility gives rise to a general-
ization of atomicity.

Deûnition 5.1 Let D be any integral domain.
(i) D is called almost atomic if for every nonzero nonunit a ∈ D, there exist atoms

{π i} ⊂ Irr(D) such that aπ1 ⋅ ⋅ ⋅ πn ∈ F(D).
(ii) D is called quasi atomic if for every nonzero nonunit a ∈ D, there exists an

element b ∈ D such that ab ∈ F(D).

It is easy to see that almost atomicity implies quasi atomicity. Also, if D is quasi
atomic, it is not hard to show that every nonzero prime ideal of D contains an irre-
ducible element. We have the following lemma.

Lemma 5.2 Given an integral domain D, each condition below implies the next.
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(i) D is atomic.
(ii) D is almost atomic.
(iii) D is quasi atomic.
(iv) Every nonzero prime ideal of D contains an irreducible element.

Proof It suõces to show that (iii) implies (iv). Suppose that D is quasi atomic. If a
is a nonzero element of a prime ideal P, then there is b ∈ D such that ab = π1 ⋅ ⋅ ⋅ πn ,
where each π i ∈ Irr(D). But then π1 ⋅ ⋅ ⋅ πn ∈ P so that π i ∈ P for some i ≤ n.

_ese observations give an example of an integral domain that is not quasi atomic.

Example 5.3 As in Example 4.3, let D = Z + xQ[x]. _en xQ[x] is a prime ideal
of D that contains no irreducible element. To see this, recall from Example 4.3 that if
f ∈ Irr(D), then ord( f ) = 0. But f ∈ xQ[x] if and only if ord( f ) ≥ 1. It follows from
Lemma 5.2 that D is not quasi atomic.

We now show the connection between almost atomicity and a connected graph of
divisibility.

_eorem 5.4 _e following statements are equivalent for a domain D.
(i) D is almost atomic.
(ii) (P, τ(⪯)) is connected.
(iii) G(P,E(⪯)) is weakly connected.

Proof (i)⇒(ii) Choose any two points a, b ∈ (P, τ(⪯)). If D is almost atomic, there
exist atoms π i , ξ i ∈ Irr(D) such that aπ1 ⋅ ⋅ ⋅ πn and bξ1 ⋅ ⋅ ⋅ ξm ∈ F(D). In otherwords,
there exist atoms σi , σ i ∈ A(D) such that

a
b
=

π1 ⋅ ⋅ ⋅ πnσi ⋅ ⋅ ⋅ σ j

ξ1 ⋅ ⋅ ⋅ ξmσ i ⋅ ⋅ ⋅ σk
.

It follows from _eorem 4.1 that any pair of points in (P, τ(⪯)) belong to the same
connected component.

(ii)⇒(iii) Follows immediately from _eorem 4.1.
(iii)⇒(i) Since G(P,E(⪯)) is weakly connected, there is a weak path connecting

any a
1 ∈ P (where a ∈ D) to an element of the form π

1 , where π ∈ Irr(D). _eorem 4.1
implies that there exist atoms π i , ξ i ∈ Irr(D) such that

a
π
=

π1 ⋅ ⋅ ⋅ πn

ξ1 ⋅ ⋅ ⋅ ξm
.

In other words, there exist atoms ξ i ∈ Irr(D) such that aξ1 ⋅ ⋅ ⋅ ξm ∈ F(D).

Using _eorem 5.4 and the results from the previous section, we are led to an ex-
ample of an almost atomic domain that is not atomic.

Example 5.5 (i) As in Example 4.4(i), let D1 = F2[X , y, Z1](X ,y ,Z1), where

X = {xα ∶ α ∈ Q+} and Z1 = {
yk

xα
∶ α ∈ Q+ , k ∈ Z+ , and k ≥ 2} .
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Since the connected components are in a 1-1 correspondence with Q, it is certainly
not the case that D1 is almost atomic (_eorem 5.4). However, it is the case that D1 is
quasi atomic. Indeed, given any nonzero nonunit f ∈ D1, we can write v( f ) = (k, α).
_ere is a g ∈ D1 such that v(g) = (2,−α), and so

v( f g) = v( f ) + v(g) = (k + 2, 0) = (1, 0) + ⋅ ⋅ ⋅ + (1, 0).

Translating this information back to D1 , we get that f g = yk+2u for some unit u ∈ V .
Note that if yn+1u ∈ D1 for some unit u ∈ V , then yn+1u = v1xα +v2 y l /xβ+v3 y,where
either v i ∈ U(D1) or v i = 0. If n > 0, then v1 = 0 = v3 . It follows that l ≥ n + 1 so that
ynu = v2 y l−1/xβ . _erefore, yu = v2 y l−n/xβ ∈ D1 as l − n ≥ 1. It follows from all of
this that f g ∈ F(D) as needed.

(ii) As in Example 4.4(ii), let D2 = F2[x , y, Z2](x ,y ,Z2), where

Z2 = {
yk

x j ∶ j ∈ Z
+ , k ∈ Z+ , and k ≥ 2}.

Since G(P(D2)
+ ,E(⪯)) is weakly connected, it must be the case that D2 is almost

atomic. However, it is not atomic, since, for example, v(y2/x 1/2) = (2, 1/2) cannot be
written as an N-linear combination m(1, 0) + n(0, 1).
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