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1 Graphs and natural language processing

Graph structures naturally model connections. In natural language processing (NLP)

connections are ubiquitous, on anything between small and web scale. We find them

between words – as grammatical, collocation or semantic relations – contributing

to the overall meaning, and maintaining the cohesive structure of the text and the

discourse unity. We find them between concepts in ontologies or other knowledge

repositories – since the early ages of artificial intelligence, associative or semantic

networks have been proposed and used as knowledge stores, because they naturally

capture the language units and relations between them, and allow for a variety

of inference and reasoning processes, simulating some of the functionalities of the

human mind. We find them between complete texts or web pages, and between

entities in a social network, where they model relations at the web scale. Beyond

the more often encountered ‘regular’ graphs, hypergraphs have also appeared in our

field to model relations between more than two units.

Graphs have been rigorously studied, both mathematically and computationally,

providing a well-developed theoretical and practical base to the many natural

language processing problems that map into this framework.

In syntax, part-of-speech tagging was tackled using graph clustering (Biemann

2006) and dependency parsing using minimum spanning trees (McDonald et al.

2005). Related to parsing is the task of prepositional phrase attachment, which found

interesting solutions in semi-supervised based learning (Toutanova, Manning and

Ng 2004). Min-cut algorithms have also been used in text processing applications,

for instance for the problem of coreference (Nicolae and Nicolae 2006).

In semantics, graphs have been used to construct semantic classes (Widdows

and Dorow 2002) through networks of words built from very large corpora. On

similar word networks, work has also been done on understanding lexical network

properties (Ferrer i Cancho and Solé 2001), or extracting words that follow certain

semantic relations such as synonymy (Weale, Brew and Fosler-Lussier 2009). A

significant amount of effort has also been put into the measurement of semantic

distance using path-based algorithms on semantic networks (Lin 1998) or random-

walks (Ramage, Rafferty and Manning 2009). These random-walk algorithms

have been successfully applied to other problems in semantics, such as word
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sense disambiguation (Sinha and Mihalcea 2007; Agirre and Soroa 2009), name

disambiguation (Minkov, Cohen and Ng 2006) among others. The problems of

sentiment and subjectivity analysis were also tackled using graph-based methods,

such as clustering over graphs to identify the polarity of adjectives (Hatzivassiloglou

and McKeown 1997), or min-cut algorithms for sentence-level subjectivity analysis

(Pang and Lee 2004).

There are also a number of natural language processing applications that found

successful solutions in the use of graph-based methods. These include text summar-

ization (Erkan and Radev 2004; Mihalcea and Tarau 2004), semi-supervised passage

retrieval (Otterbacher, Erkan and Radev 2005), keyword extraction (Mihalcea and

Tarau 2004), text mining (Kozareva and Hovy 2011), deriving semantic classes

(Kozareva, Riloff and Hovy 2008), topic identification (Syed, Finin and Joshi 2008;

Coursey, Mihalcea and Moen 2009), topic segmentation (Malioutov and Barzilay

2006), machine translation (Zens and Ney 2005), cross-language information retrieval

(Monz and Dorr 2005), and question answering (Molla 2006).

2 Overview of the issue

The four papers in the current special issue each showcase and exploit a different

aspect/facet of graphs for different tasks in natural language processing.

Kotlerman et al. present a novel twist on the graphs as a framework for the

organization of knowledge. Textual Entailment Graphs expand the notion of the

ontology as a network of concepts to larger text units that convey complex

information. The entailment relation replaces the is-a relation from ontologies, and

text fragments replace concepts, to obtain a structure that organizes text units by

subsumption of the conveyed information.

Jadidinejad et al. exploit the graph structure of knowledge repositories for the

computation of semantic relatedness between texts. Previously, ontologies were used

to provide bag-of-concept representations for given texts, and these unstructured

collections were used for similarity/relatedness computations. The approach presen-

ted in this paper shows that the structure itself is useful: using the graph structure

of the ontology through a clique-based semantic kernel can lead to improvements

in semantic relatedness estimations.

Fernández et al. and Mitra et al. reveal and exploit sub-structures – communit-

ies of nodes representing words with related meanings – in word co-occurrence

graphs. Fernández et al. apply frequency-based filtering and ranking and clustering

algorithms to form and expose communities in word co-occurrence graphs. These

are taken to approximate word senses, that together with bilingual dictionaries help

perform sense-level translations.

Mitra et al. start with word-specific co-occurrence graphs, which are clustered

using the Chinese Whispers algorithm to form sense-specific clusters. This method is

applied on text collections representing disjoint time frames. Changes in the clusters

obtained from data from different time spans are analysed and interpreted as effects

of diachronic sense changes.
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