On the Image of Certain Extension Maps. I

Israel Moreno Mejía

Abstract. Let X be a smooth complex projective curve of genus $g \ge 1$. Let $\xi \in J^1(X)$ be a line bundle on X of degree 1. Let $W = \operatorname{Ext}^1(\xi^n, \xi^{-1})$ be the space of extensions of ξ^n by ξ^{-1} . There is a rational map $D_\xi \colon G(n,W) \to SU_X(n+1)$, where G(n,W) is the Grassmannian variety of n-linear subspaces of W and $SU_X(n+1)$ is the moduli space of rank n+1 semi-stable vector bundles on X with trivial determinant. We prove that if n=2, then D_ξ is everywhere defined and is injective.

1 Introduction

Unless otherwise stated, we shall assume X to be a smooth complex projective curve of positive genus. Let M(m,d) (resp. $SU_X(m)$) denote the moduli space of semistable vector bundles on X of rank m and degree d (resp. rank m and trivial determinant). This is a normal projective variety of dimension $m^2(g-1)+1$ (if X has genus $g \ge 2$) whose points are the S-equivalence classes of semi-stable vector bundles of rank m and degree d on X. Seshadri [9] first constructed M(m, d) and one can also find details about its construction in [6]. For vector bundles A and C on X, the space $\operatorname{Ext}^1(C,A) = H^1(X,\operatorname{Hom}(C,A))$ parametrizes the classes of extensions $0 \to A \to B \to C \to 0$ up to isomorphisms of exact sequences acting as the identity on A and C (see [8, Lemma 3.1] or [7, Proposition 3.1]). This induces a rational map $\operatorname{Ext}^1(C,A) \dashrightarrow M(m,d)$, where $m = \operatorname{rank}(A) + \operatorname{rank}(C)$ and $d = \deg(A) + \deg(C)$, and this map is what one refers to as an extension map. Extension maps have been an important tool for studying these moduli spaces, see for instance [4, 7]. It follows from Lemma 2.1 below that the isomorphism class of a bundle with extension class $u \in \operatorname{Ext}^1(C, A^{\oplus n})$ only depends on the subspace of $\operatorname{Ext}^1(C, A)$ spanned by the components of u in the canonical decomposition $\operatorname{Ext}^1(C, A^{\oplus n}) \stackrel{\rho}{\simeq} \operatorname{Ext}^1(C, A)^{\oplus n}$. The rational map $\operatorname{Ext}^1(C, A^{\oplus n}) \dashrightarrow M(m, d)$ discussed above therefore induces a rational map $G(n, W) \longrightarrow M(m, d)$, where $W = \operatorname{Ext}^1(C, A)$ and G(n, W) is the Grassmannian variety of n-planes in W. The point of this note is to prove that for any line bundle $\xi \in J^1(X)$, if we pick $C = \xi^2$, $A = \xi^{-1}$ and n = 2, then the corresponding rational map $D_{\xi} \colon G(2,W) \to SU_X(3)$ is defined everywhere and is an injection, see Theorem 2.8. We also identify the image of D_{ξ} as a certain Brill–Noether locus in $SU_X(3)$ and give a geometric criterion for a point of G(2, W) to be a stable bundle. Specifically, the image under $D_{\mathcal{E}}$ of a point in G(2, W) is a stable bundle if and only if the corresponding line in $\mathbb{P}(W)$ does not intersect the image of X under the embedding defined by the linear system $|K\xi^3|$, where K is the canonical line bundle of X. The image of D_{ξ} is the Brill–Noether locus

$$\mathcal{S}_{\xi} = \{ [V] \in SU_X(3) \mid h^0(X, \xi \otimes gr(V)) \ge 2 \},$$

Received by the editors March 21, 2005; revised February 9, 2007. The author was partially supported by the Emmy Noether Research Institute for Mathematics.

AMS subject classification: 14H60, 14F05, 14D20. ©Canadian Mathematical Society 2007.

427

428 I. Moreno Mejía

where gr(V) is the associated graded bundle of V.

While this paper was still under revision, we were told that in [2] it is shown that in the non-fixed determinant case, the map considered here is birrational onto the Brill–Noether locus.

2 Extensions and Vector Bundles

We refer to [1, Proposition 2] for details about the bijection between the space $\operatorname{Ext}^1(C,A) = H^1(X,\operatorname{Hom}(C,A))$ and the isomorphism classes of extensions $0{\to}A \to B \to C \to 0$. See also [7, §3] for more properties.

Our notation is as follows. Given line bundles ξ, L on X, we represent $\xi \otimes L$ by ξL , in particular, $\xi^m = \xi^{\otimes m}$. Given a divisor D on X, we write $\mathcal{O}(D)$ to represent the corresponding line bundle on X and $\xi(D) = \xi \otimes \mathcal{O}(D)$. The Jacobian of line bundles on X of degree m is denoted by $J^m(X)$. Given an extension $e \colon 0 \to A \to B \to C \to 0$, we denote by $\delta(e)$ the corresponding vector in $\operatorname{Ext}^1(C,A)$ and by $\mathcal{V}(e)$ the vector bundle B. Given $u \in \operatorname{Ext}^1(C,A)$, let e_u be an extension $0 \to A \to B \to C \to 0$ such that $\delta(e_u) = u$.

There is a canonical isomorphism

(1)
$$\operatorname{Ext}^{1}(C, A_{1} \oplus A_{2}) \stackrel{\rho}{\cong} \operatorname{Ext}^{1}(C, A_{1}) \oplus \operatorname{Ext}^{1}(C, A_{2}).$$

So, given $u \in \operatorname{Ext}^1(C, A^{\oplus n})$ we can represent it by n vectors $(\rho_1(u), \dots, \rho_n(u))$, $\rho_i(u) \in \operatorname{Ext}^1(C, A)$.

The rational map from the Grassmannian to the moduli space M(m, d) is induced by the following.

Lemma 2.1 Let $u, u' \in \operatorname{Ext}^1(C, A^{\oplus n})$ be two vectors such that the subspaces

$$\langle \rho_1(u), \ldots, \rho_n(u) \rangle$$
 and $\langle \rho_1(u'), \ldots, \rho_n(u') \rangle$

of $\operatorname{Ext}^1(C,A)$ coincide. Then $\mathcal{V}(e_u) \cong \mathcal{V}(e_{u'})$. Moreover, assume that the only endomorphisms of A and C are scalars. Then if every non-zero homomorphism of A into C is an isomorphism or if $h^0(X,A^{\vee}\otimes\mathcal{V}(e_v))=n$, we have $\mathcal{V}(e_u)\cong\mathcal{V}(e_{u'})$ if and only if the subspaces $\langle \rho_1(u),\ldots,\rho_n(u)\rangle$ and $\langle \rho_1(u'),\ldots,\rho_n(u')\rangle$ coincide.

Proof The proof is similar to the proof of [7, Lemma 3.3] and we only give the first part. First notice that if we think of $\langle \rho_1(u), \ldots, \rho_n(u) \rangle$ and $\langle \rho_1(u'), \ldots, \rho_n(u') \rangle$ as the row spaces of matrices M_u and $M_{u'}$ representing u and u' respectively, then we see that there is $\mu \in GL_n(\mathbb{C})$ such that $M_{u'} = \mu \cdot M_u$. Now, given $\mu \in GL_n(\mathbb{C})$ we can make it act on $A^{\oplus n}$, and therefore (by functoriality) on $\text{Ext}^1(C, A^{\oplus n})$. It is clear from the construction of extensions that for $u \in \text{Ext}^1(C, A^{\oplus n})$ and $\mu \cdot u$ we have $\mathcal{V}(e_u) \cong \mathcal{V}(e_{\mu \cdot u})$ (although, of course, not by an isomorphism of exact sequences which is the identity on $A^{\oplus n}$ and C).

Remark 2.2 (i) The isomorphism (1) can be described in terms of extensions (see [3, §2.6, exercise 2, p. 37]). Let $\sigma_i \in \operatorname{Ext}^1(C, A_i)$, i = 1, 2, and let $u = \rho^{-1}(\sigma_1, \sigma_2) \in$

Figure 1

Ext¹($C, A_1 \oplus A_2$). Given the extension $e_u \colon 0 \to A_1 \oplus A_2 \to B \to C \to 0$, one can recover the extensions e_{σ_i} , i = 1, 2. For instance, e_{σ_2} is the bottom exact sequence of the commutative diagram in Figure 1, which is obtained by constructing the push out diagram of the canonical projection $A_1 \oplus A_2 \xrightarrow{\pi_2} A_2$ and the injection $A_1 \oplus A_2 \to B$ of e_u , and where i_1 is the natural embedding of A_1 into $A_1 \oplus A_2$.

- (ii) Notice from the diagram in Figure 1 that for any $\sigma_2 \in \operatorname{Ext}^1(C, A_2)$, one can define a map $\Psi_{\sigma_2} \colon \operatorname{Ext}^1(C, A_1) \to \operatorname{Ext}^1(\mathcal{V}(e_{\sigma_2}), A_1)$ by taking $\Psi_{\sigma_2}(\sigma_1) = \delta(e)$ for $\sigma_1 \in \operatorname{Ext}^1(C, A_1)$, where e is the vertical extension in the middle of this diagram. Notice also that Ψ_{σ_2} is nothing but the homomorphism $\operatorname{Ext}^1(C, A_1) \to \operatorname{Ext}^1(\mathcal{V}(e_{\sigma_2}), A_1)$ induced by the surjection $s_2 \colon \mathcal{V}(e_{\sigma_2}) \to C$ of e_{σ_2} . In particular $\mathcal{V}(e_{\Psi_{\sigma_2}(\sigma_1)})$ is the fibered product of the surjections $s_i \colon \mathcal{V}(e_{\sigma_i}) \to C$ of e_{σ_i} , i = 1, 2.
- (iii) We will consider extensions e_u of the form $0 \to A \oplus A \to B \to C \to 0$. For any $\alpha, \beta \in \mathbb{C}$ such that $(\alpha, \beta) \neq (0, 0)$, let $i_{\alpha,\beta} = \alpha i_1 + \beta i_2$ where i_1, i_2 are the two natural embeddings $A \to A \oplus A$. Let $f_{\alpha,\beta}$ be the composite map $A \xrightarrow{i_{\alpha,\beta}} A \oplus A \to B$ and let $E_{\alpha,\beta}$ be the corresponding cokernel. The bundle $E_{\alpha,\beta}$ admits an extension structure $e(\alpha,\beta)\colon 0 \to A \to E_{\alpha,\beta} \to C \to 0$ such that if $u = \rho^{-1}(\sigma_1,\sigma_2)$, then $\delta(e(\alpha,\beta)) = \beta\sigma_1 \alpha\sigma_2$.

Recall that a vector bundle A on X is semi-stable (resp. stable) if for any proper subbundle $B \subset A$, we have $\mu(B) \leq \mu(A)$ (resp. $\mu(B) < \mu(A)$), where the slope μ is defined by $\mu(B) = \deg(B)/\operatorname{rank}(B)$. Equivalently, A is semi-stable (resp. stable) if $\mu(Q) \geq \mu(A)$ (resp. >) for every proper quotient bundle Q of A. Any semi-stable vector bundle has a $\operatorname{Jordan-H\"{o}Ider}$ filtration, that is, given a semi-stable vector bundle A, we can always find an increasing filtration $\{0\} \subset A_1 \subset A_2 \subset \cdots \subset A_m = A$ such that A_i/A_{i-1} are stable and $\mu(A_i/A_{i-1}) = \mu(A)$. Such a filtation is not unique, in

430 I. Moreno Mejía

general, however the associated graded bundle $gr(A) = \bigoplus_{i=1}^{m} A_i / A_{i-1}$ is well defined up to isomorphism. Two semi-stable vector bundles A, B are said to be S-equivalent if gr(A) = gr(B).

Lemma 2.3 Let $\xi \in J^1(X)$ and let E be a rank r vector bundle of degree 1. Let $0 \neq u \in \operatorname{Ext}^1(E, \xi^{-1})$, then we have

- (i) If E is stable, then $V(e_u)$ is semi-stable.
- (ii) If $V(e_u)$ is stable, then E is stable.

Proof (i) Suppose that $V(e_u)$ is not semi-stable. Then there exists a vector subbundle F of $V(e_u)$ with $\mu(F) > \mu(V(e_u))$. By choosing a minimal such F, we can assume that F is stable.

Consider the extension $e_u \colon 0 \to \xi^{-1} \to \mathcal{V}(e_u) \to E \to 0$. Since $\mu(F) > \mu(\xi^{-1})$, then from [7, Lemma 2.1], the composite $F \to E$ is not 0 and $\mu(F) \le \mu(E) = 1/r$. But $\mu(F) \ge 1/r$. Therefore $F \to E$ is either 0 or an isomorphism and the extension e_u is trivial. This is a contradiction.

(ii) Let Q be a proper quotient bundle of E. Then it is also a quotient of $\mathcal{V}(e_u)$. By the stability of $\mathcal{V}(e_u)$, we have that $\deg Q \geq 1$ and, since $\operatorname{rank}(Q) < \operatorname{rank}(E)$, this implies that $\mu(Q) > \mu(E)$. Therefore $\mathcal{V}(e_u)$ is stable.

Lemma 2.4 Let $x \in X$ and let $h: L \to V$ be a homomorphism of a line bundle L into a vector bundle V. Then h factors as a map $L \to L \otimes \mathcal{O}(x) \to V$, where the map $L \to L \otimes \mathcal{O}(x)$ is induced by the canonical section of $\mathcal{O}(x)$ if and only if the fiber map h_x of h at x is zero.

Proof See [7, Lemma 5.3]

Lemma 2.5 Let $\xi \in J^1(X)$, $\lambda \in J^2(X)$. Consider an extension

$$0 \to \xi^{-1} \oplus \xi^{-1} \to V \to \lambda \to 0.$$

For $(\alpha, \beta) \in \mathbb{C}^2$ with $(\alpha, \beta) \neq (0, 0)$, let $f_{\alpha, \beta} \colon \xi^{-1} \xrightarrow{i_{\alpha, \beta}} \xi^{-1} \oplus \xi^{-1} \to V$ be the embedding defined in Remark 2.2(iii), and let $0 \to \xi^{-1} \xrightarrow{f_{\alpha, \beta}} V \to E_{\alpha, \beta} \to 0$ be the corresponding extension. Then V is stable if and only if $E_{\alpha, \beta}$ is stable for all $(\alpha, \beta) \neq (0, 0)$.

Proof If V is stable, then $E_{\alpha,\beta}$ is stable by Lemma 2.3(i). Conversely, suppose that all the vector bundles $E_{\alpha,\beta}$ are stable. By Lemma 2.3(ii), we know that V is semi-stable. So, suppose that L is a line subbundle of V of degree 0. Then for every point $x \in X$ the fiber L_x does not intersect the fiber of $(\xi^{-1} \oplus \xi^{-1})_x$ in V_x : if $L_x = (f_{\alpha,\beta})_x(\xi_x^{-1})$, then the fiber map $L_x \to (E_{\alpha,\beta})_x$ of the map $L \to E_{\alpha,\beta}$ at the point x is the zero map. Using Lemma 2.4 we see that the map $L \to E_{\alpha,\beta}$ factors through a map $L(x) \to E_{\alpha,\beta}$. Since $\mu(L(x)) = 1 > \mu(E_{\alpha,\beta}) = 1/2$, we see that $E_{\alpha,\beta}$ cannot be a stable bundle. So $V \cong \xi^{-1} \oplus \xi^{-1} \oplus L$, a contradiction. Therefore V does not contain line bundles of degree 0.

Now suppose that U is a rank 2 subbundle of V of degree 0. Then we have an extension $0 \to U \to V \to L \to 0$ with L a line bundle of degree 0. Since $h^0(\xi \otimes L)$ is 1 or 0, we can find $\alpha, \beta \in \mathbb{C}$ such that the composite map

$$\xi^{-1} \xrightarrow{f_{\alpha,\beta}} V \to L$$

is zero. Then there exists a map $E_{\alpha,\beta} \to L$ making the following diagram commutative.

Since $\mu(E_{\alpha,\beta}) = 1/2 > \mu(L) = 0$, we see that $E_{\alpha,\beta}$ cannot be a stable vector bundle. Therefore V is stable.

Lemma 2.6 Let $\xi \in J^1(X)$, $\lambda \in J^2(X)$ and let $0 \neq u \in \operatorname{Ext}^1(\lambda, \xi^{-1})$.

(i) Let K denote the canonical line bundle of X. Then $\mathcal{V}(e_u)$ is non stable if and only if the class of u in $\mathbb{P}H^1(X,\lambda^{-1}\xi^{-1})$ is in the image of X under the natural embedding

$$\phi_{\xi,\lambda} \colon X \xrightarrow{|K\lambda\xi|} \mathbb{P}H^1(X,\lambda^{-1}\xi^{-1}).$$

If the class of u is $\phi_{\xi,\lambda}(x)$, then $\mathcal{V}(e_u)$ contains a unique maximal line bundle $L \cong \lambda(-x)$.

- (ii) Assume that $\mathcal{V}(e_u)$ is non stable. Let $\eta \in J^1(X)$. The destabilizing line bundle $L \subset \mathcal{V}(e_u)$ induces a linear map $\varphi_L \colon \operatorname{Ext}^1(\mathcal{V}(e_u), \eta^{-1}) \to \operatorname{Ext}^1(L, \eta^{-1})$. Consider the map $\Psi_u \colon \operatorname{Ext}^1(\lambda, \eta^{-1}) \to \operatorname{Ext}^1(\mathcal{V}(e_u), \eta^{-1})$ defined in Remark 2.2(ii). Then $\varphi_L \circ \Psi_u \colon \operatorname{Ext}^1(\lambda, \eta^{-1}) \to \operatorname{Ext}^1(L, \eta^{-1})$ is surjective.
- (iii) Set $\lambda = \xi^2$ and $\eta = \xi$ in (ii). Given $w \in \operatorname{Ext}^1(\lambda, \xi^{-1})$, there is an exact sequence $0 \to \mathcal{V}(e_{\theta}) \to \mathcal{V}(e_{\Psi_u(w)}) \to L^{-1}\xi \to 0$, where $\theta = \varphi_L \circ \Psi_u(w) \in \operatorname{Ext}^1(L, \xi^{-1})$.

Proof Part (i) is an application of [5, Proposition 1.1]. To prove (ii), it is enough to notice that $\varphi_L \circ \Psi_u$ is the natural map induced by the composition $c \colon L \subset \mathcal{V}(e_u) \to \lambda$, and that this is a non zero map. Moreover, using Lemma 2.4, $L = \lambda(-y)$ for some $y \in X$ and in particular the kernel has dimension 1 and x = y (if $\phi_{\xi,\lambda}(x)$ is the class of u).

For (iii), notice that $\mathcal{V}(e_{\theta})$ has determinant $L\xi^{-1}$. From the definition of φ_L , we see that $\mathcal{V}(e_{\theta}) \subset \mathcal{V}(e_{\Psi_u(w)})$. The claim follows using the fact that $\mathcal{V}(e_{\Psi_u(w)})$ has trivial determinant.

Lemma 2.7 Let $L_0 \in J^0(X)$ and let $\xi \in J^1(X)$. Let $SU_X(2, L_0)$ denote the moduli space of semi-stable rank 2 vector bundles on X with determinant L_0 . If $[V] \in SU(2, L_0)$ and $h^0(X, \xi \otimes V) \neq 0$, then there is $\theta \in Ext^1(\xi L_0, \xi^{-1})$ such that $V(e_\theta)$ is S-equivalent to V.

432 I. Moreno Mejía

Proof The proof is the same as that of [7, Lemma 5.8]. For instance, if V is non stable, say V is S-equivalent to $L_1 \oplus L_2$ with $L_1, L_2 \in J^0(X)$, then since $h^0(X, \xi \otimes V) \neq 0$ we can assume that $h^0(X, \xi L_1) \neq 0$. Therefore $L_1 = \xi^{-1}(x)$ and $L_2 = L_0 \xi(-x)$ for a single point $x \in X$ and we can take θ to be a non zero element of the kernel of the map $\operatorname{Ext}^1(\xi L_0, \xi^{-1}) \to \operatorname{Ext}^1(\xi L_0(-x), \xi^{-1})$ induced by $\xi L_0(-x) \to \xi L_0$.

Let $\xi \in J^1(X)$, let $W := H^0(X, K\xi^3)^*$ and let G(2, W) be the Grassmannian variety of 2-dimensional linear subspaces of W. We define the set

$$\mathcal{S}_{\xi} = \{ [V] \in SU_X(3) \mid h^0(X, \xi \otimes gr(V)) \ge 2 \},$$

where gr(V) is the associated graded bundle of V. Consider the rational map

$$D_{\xi} \colon G(2,W) \to SU_X(3)$$

induced by Lemma 2.1

Theorem 2.8 D_{ξ} is an injective morphism whose image is the set S_{ξ} .

Proof Let us first show that D_{ξ} is defined at each point of G(2, W). Using Lemma 2.1 we know that each line $l \subset \mathbb{P}(W)$ determines a rank 3 vector bundle V with trivial determinant *i.e.*, given two generators $\sigma_1, \sigma_2 \in W$ of l. Let

$$u = \rho^{-1}(\sigma_1, \sigma_2) \in \text{Ext}^1(\xi^2, \xi^{-1} \oplus \xi^{-1}).$$

Then one takes V to be $\mathcal{V}(e_u)$. Consider the embedding $\phi_{\xi,\xi^2}\colon X \xrightarrow{|K\xi^3|} \mathbb{P}(W)$, since the genus of our curve X is at least 1, there are points in any line $l \subset \mathbb{P}(W)$ that are not contained in $\phi_{\xi,\xi^2}(X)$. Then using Lemma 2.6(i) and Lemma 2.3(i), we see that V is semi-stable, so $D_{\xi}(l) = [V]$ and $D_{\xi}(l) \in \mathcal{S}_{\xi}$ since $h^0(X, \xi \otimes gr(V)) \geq h^0(X, \xi \otimes V)$. In fact, from Lemma 2.5, we see that a line in $\mathbb{P}(W)$ that does not intersect $\phi_{\xi,\xi^2}(X)$, determines a stable vector bundle V with $h^0(X, \xi \otimes V) = 2$. Conversely, if $[V] \in SU_X(3)$ is the class of a stable vector bundle with $h^0(X, \xi \otimes V) \geq 2$, then one can see, using Lemma 2.4, that $h^0(X, \xi \otimes V) = 2$ and that V admits an extension structure

$$0 \to \xi^{-1} \oplus \xi^{-1} \to V \to \xi^2 \to 0.$$

So *V* is induced by a unique line $l \subset \mathbb{P}(W)$ not intersecting $\phi_{\xi,\xi^2}(X)$.

Given the class of a non stable vector bundle $[V] \in \mathcal{S}_{\xi}$, we can write $gr(V) = L_1 \oplus E$, where L_1 is a line bundle and E is a rank 2 bundle which is either stable or a direct sum of two line bundles. Using Lemma 2.4, we see that if $h^0(X, \xi \otimes E) \geq 2$ then E cannot be stable because it contains a line bundle of degree 0. So we can assume that $h^0(X, \xi L_1) = 1 \leq h^0(X, \xi \otimes E)$. Let $\lambda = \xi^2$. There is a unique $x \in X$ such that $L := \lambda \otimes \mathcal{O}(-x) = \xi L_1^{-1}$. Let $u \in \operatorname{Ext}^1(\lambda, \xi^{-1})$ be such that its class in $\mathbb{P} \operatorname{Ext}^1(\lambda, \xi^{-1})$ is $\phi_{\xi,\lambda}(x)$. From Lemma 2.7 we know that there is $\theta \in \operatorname{Ext}^1(\xi L_1^{-1}, \xi^{-1})$ such that $\mathcal{V}(e_{\theta})$ is S-equivalent to E. Set $\eta = \xi$ in Lemma 2.6(ii). Take $w \in \operatorname{Ext}^1(\lambda, \xi^{-1})$ such that $\varphi_L \circ \Psi_u(w) = \theta$. So, from Lemma 2.6(iii) we see that if l is the line spanned by w and

u, then $D_{\xi}(l) = [V]$. Moreover, the natural map $\mathbb{P} \operatorname{Ext}^1(\xi L_1^{-1}, \xi^{-1}) \to SU_X(2, L_1^{-1})$ is injective, see [4, Corollary 4.4]. From this and from the fact that the kernel of $\varphi_L \circ \Psi_u$ has dimension 1, one can deduce that there is a unique line $l \subset \mathbb{P}(W)$ such that $x \in l$ and $D_{\xi}(l) = [V] = [L_1 \oplus E]$.

Consider a line $l_2 \subset \mathbb{P}(W)$ such that $D_{\xi}(l_2) = [V]$. Let $x_2 \in X$ such that $\phi_{\xi,\lambda}(x_2) \in l_2 \cap \phi_{\xi,\lambda}(X)$ and let $u' \in \operatorname{Ext}^1(\lambda, \xi^{-1})$ such that its class in $\mathbb{P} \operatorname{Ext}^1(\lambda, \xi^{-1})$ is $\phi_{\xi,\lambda}(x_2)$.

Let L' be the maximal line subbundle of $\mathcal{V}(e_{u'})$. Let $x_2 \neq p \in l_2$. Let $w \in \operatorname{Ext}^1(\lambda, \xi^{-1})$ such that its class in $\mathbb{P}(W)$ is p. From Lemma 2.6(iii), we see that V is S-equivalent to ${L'}^{-1}\xi \oplus \mathcal{V}(e_{\theta'})$, where $\theta' = \phi_{L'} \circ \Psi_{u'}(w) \in \operatorname{Ext}^1(L', \xi^{-1})$. Now, we consider the cases E stable and $E = L_2 \oplus L_3$ separately.

If *E* is stable, then we see that the maximal line subbundle of $\mathcal{V}(e_{u'})$ is *L*. So, $x = x_2$, that is, there is a unique line $l \subset \mathbb{P}(W)$ such that $D_{\xi}(l) = [L_1 \oplus E]$.

Now suppose that $E = L_2 \oplus L_3$ and that $x_2 \neq x$. We have $L' \not\cong L$, so we can assume that $L_2 \cong L'^{-1}\xi$. Now, $\mathcal{V}(e_{\Psi_u(u')}) \cong \mathcal{V}(e_{\Psi_{u'}(u)})$, so using Lemma 2.6(iii) twice, we see that $\mathcal{V}(e_{\Psi_u(u')})$ is S-equivalent to $L_1 \oplus L_2 \oplus L_3$. That means that the line containing $\phi_{\xi,\lambda}(x)$ and $\phi_{\xi,\lambda}(x_2)$ is mapped to [V] by D_{ξ} . Therefore $l = l_2$.

Acknowledgements I would like to thank Professor H. Kurke and Dr. W. Kleinert for their hospitality and support during my stay at the Institut für Mathematik of the Humboldt-Universität zu Berlin. I also thank Dr. W. Oxbury for helpful discussions, and the referee for suggestions and comments.

References

- M. F. Atiyah. Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85(1957), 181–207.
- [2] L. Brambila-Paz, I. Grzegorczyk, and P. E. Newstead, *Geography of Brill-Noether loci for small slopes*. J. Algebraic Geom. **6**(1997), no. 4, 645–669.
- [3] D. J. Benson. Representations and Cohomology. I. Second edition. Cambridge Studies in Advanced Mathematics 30, Cambridge University Press, Cambridge, 1998.
- [4] A. Bertram, Moduli of rank-2 vector bundles, theta divisors, and the geometry of curves in projective space. J. Differential Geom. 35(1992), no. 2, 429–469.
- [5] H. Lange and M. S. Narasimhan. Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266(1983), no. 1, 55–72.
- [6] J. Le Potier. Lectures on Vector Bundles. Cambridge Studies in Advanced Mathematics 54, Cambridge University Press, Cambridge, 1997.
- [7] M. S. Narasimhan and S. Ramanan. Moduli of vector bundles on a compact Riemann surface. Ann. of Math. 89(1969) 14–51.
- [8] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. 82(1965), 540–567.
- [9] C. S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. 85(1967), 303–336.

Instituto de Matemáticas Universidad Nacional Autónoma de México México, D.F. C.P. 04510 México e-mail: israel@matem.unam.mx