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On the Image of Certain Extension Maps. |

Israel Moreno Mejia

Abstract. Let X be a smooth complex projective curve of genus g > 1. Let £ € J'(X) be a line bundle
on X of degree 1. Let W = Ext!(¢", £~ !) be the space of extensions of £” by £ ~!. There is a rational
map D¢: G(n, W) — SUx(n + 1), where G(1n, W) is the Grassmannian variety of n-linear subspaces
of W and SUx(n + 1) is the moduli space of rank n + 1 semi-stable vector bundles on X with trivial
determinant. We prove that if # = 2, then D¢ is everywhere defined and is injective.

1 Introduction

Unless otherwise stated, we shall assume X to be a smooth complex projective curve
of positive genus. Let M(m, d) (resp. SUx(m)) denote the moduli space of semi-
stable vector bundles on X of rank m and degree d (resp. rank m and trivial deter-
minant). This is a normal projective variety of dimension m?(g — 1) + 1 (if X has
genus ¢ > 2) whose points are the S-equivalence classes of semi-stable vector bun-
dles of rank m and degree d on X. Seshadri [9] first constructed M (m, d) and one
can also find details about its construction in [6]. For vector bundles A and C on
X, the space Ext'(C,A) = H'(X, Hom(C, A)) parametrizes the classes of extensions
0 - A — B — C — 0 up to isomorphisms of exact sequences acting as the identity
on A and C (see [8, Lemma 3.1] or [7, Proposition 3.1]). This induces a rational map
Ext'(C,A) --» M(m, d), where m = rank(A) + rank(C) and d = deg(A) + deg(C),
and this map is what one refers to as an extension map. Extension maps have been
an important tool for studying these moduli spaces, see for instance [4, 7]. It fol-
lows from Lemma 2.1 below that the isomorphism class of a bundle with extension
class u € Ext'(C,A®") only depends on the subspace of Ext!(C, A) spanned by the
components of u in the canonical decomposition Ext!(C, A®")£ Ext!(C, A)®". The
rational map Ext!(C, A®") --» M(m, d) discussed above therefore induces a rational
map G(n, W) --» M(m,d), where W = Ext'(C,A) and G(n, W) is the Grassman-
nian variety of n-planes in W. The point of this note is to prove that for any line
bundle £ € J'(X), if we pick C = &%, A = £~ ! and n = 2, then the corresponding
rational map D¢: G(2, W) — SUx(3) is defined everywhere and is an injection, see
Theorem 2.8. We also identify the image of D¢ as a certain Brill-Noether locus in
SUx(3) and give a geometric criterion for a point of G(2, W) to be a stable bundle.
Specifically, the image under D¢ of a point in G(2, W) is a stable bundle if and only if
the corresponding line in P(W) does not intersect the image of X under the embed-
ding defined by the linear system |K&?|, where K is the canonical line bundle of X.
The image of D¢ is the Brill-Noether locus

8¢ = {[V] € SUx(3) | K(X, £ @ gr(V)) > 2},
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where gr(V') is the associated graded bundle of V.

While this paper was still under revision, we were told that in [2] it is shown that
in the non-fixed determinant case, the map considered here is birrational onto the
Brill-Noether locus.

2 Extensions and Vector Bundles

We refer to [1, Proposition 2 | for details about the bijection between the space
Ext!(C,A) = H'(X,Hom(C, A)) and the isomorphism classes of extensions 0—A —
B — C — 0. See also [7, §3] for more properties.

Our notation is as follows. Given line bundles £, L on X, we represent £ ® L by
€L, in particular, ™ = £¥™, Given a divisor D on X, we write O(D) to represent the
corresponding line bundle on X and £(D) = £ ® O(D). The Jacobian of line bundles
on X of degree m is denoted by J"(X). Given an extensione: 0 - A — B — C — 0,
we denote by d(e) the corresponding vector in Ext!'(C,A) and by V(e) the vector
bundle B. Given u € Ext!(C, A), let e, be an extension 0 — A — B — C — 0 such
that d(e,) = u.

There is a canonical isomorphism

(1) Ext'(C, A, @ Ay) = Ext(C, A)) @ Ext'(C, A,).

So, given u € Ext'(C,A®") we can represent it by n vectors (p;(u), ..., p,(u)),
pi(u) € Ext'(C, A).

The rational map from the Grassmannian to the moduli space M(m, d) is induced
by the following.

Lemma 2.1 Letu,u’ € Ext'(C,A®") be two vectors such that the subspaces

<P1(”)7---7Pn(u)> and <Pl(“/)a-~-7pn(“/)>

of Ext'(C, A) coincide. Then V(e,) = V(e,:). Moreover, assume that the only endo-
morphisms of A and C are scalars. Then if every non-zero homomorphism of A into C
is an isomorphism or if K°(X, AY @ V(e,)) = n, we have V(e,) = V(e,) if and only if
the subspaces (p1 (1), ..., py(u)) and (p1 (1), ..., pu(u’)) coincide.

Proof The proof is similar to the proof of [7, Lemma 3.3] and we only give the first
part. First notice that if we think of (p1(u), ..., p,(1)) and (p;(&’), ..., pa(u')) as
the row spaces of matrices M, and M,/ representing u and u’ respectively, then we
see that there is ¢ € GL,(C) such that M,,, = p - M,,. Now, given p1 € GL,(C) we
can make it act on A®", and therefore (by functoriality) on Ext'(C, A®"). It is clear
from the construction of extensions that for u € Ext!(C,A®") and u - u we have
V(e,) = V(e,.,) (although, of course, not by an isomorphism of exact sequences
which is the identity on A" and C). [

Remark 2.2 (i) The isomorphism (1) can be described in terms of extensions (see
(3, §2.6, exercise 2, p. 37]). Let 0; € Ext'(C,A;),i = 1,2,and letu = p~'(0y,0,) €
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Ext'(C,A; @ A,). Given the extension e,: 0 — A; @ A, — B — C — 0, one can
recover the extensions e,,, i = 1,2. For instance, e,, is the bottom exact sequence
of the commutative diagram in Figure 1, which is obtained by constructing the push
out diagram of the canonical projection A; $ A, X4 A, and the injection A; A, — B
of e,, and where 7; is the natural embedding of A, into A; @ A,.

(ii) Notice from the diagram in Figure 1 that for any o, € Ext!(C, A;), one can
define a map ¥,,: Ext'(C,A;) — Ext'(V(e,,),A;) by taking ¥,,(0,) = 6(e) for
o1 € Ext!(C, A,), where e is the vertical extension in the middle of this diagram. No-
tice also that U, is nothing but the homomorphism Ext!(C, A;) — Ext'(V(e,,),A;)
induced by the surjection s,: V(e,,) — C of e,,. In particular V(e\pnz (o1)) 1s the
fibered product of the surjections s;: V(e,,) — C of e,,, i = 1, 2.

(iii) We will consider extensions e, of the form0 — A®A — B — C — 0. For
any o, 3 € Csuch that (o, 3) # (0,0), let i, g = ai; + (i, where i}, i, are the two

natural embeddings A — A @ A. Let f, 3 be the composite map A “APA— B
and let E, 3 be the corresponding cokernel. The bundle E, 3 admits an extension
structure e(a, 3): 0 — A — E,3 — C — Osuch thatif u = p~!(0y,0,), then
d(e(e, B)) = Po1 — aon.

Recall that a vector bundle A on X is semi-stable (resp. stable) if for any proper
subbundle B C A, we have 1(B) < pu(A) (resp. u(B) < u(A)), where the slope i is
defined by u(B) = deg(B)/ rank(B). Equivalently, A is semi-stable (resp. stable) if
w(Q) > u(A) (resp. >) for every proper quotient bundle Q of A. Any semi-stable
vector bundle has a Jordan—Holder filtration, that is, given a semi-stable vector bundle
A, we can always find an increasing filtration {0} C A} C A, C --- C A,, = Asuch
that A;/A;_, are stable and p(A;/A;—1) = u(A). Such a filtation is not unique, in
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general, however the associated graded bundle gr(A) = " | A;/A;_, is well defined
up to isomorphism. Two semi-stable vector bundles A, B are said to be S-equivalent
if gr(A) = gr(B).

Lemma2.3 Let £ € JYX) and let E be a rank r vector bundle of degree 1. Let
0 # u € Ext!(E, &), then we have

(i)  IfE s stable, then V(e,) is semi-stable.
(i) If'V(ey) is stable, then E is stable.

Proof (i) Suppose that V(e,) is not semi-stable. Then there exists a vector subbun-
dle F of V(e,) with pu(F) > p(V(e,)). By choosing a minimal such F, we can assume
that F is stable.

Consider the extension e,: 0 — ¢~' — V(e,) — E — 0. Since u(F) > (&™),
then from [7, Lemma 2.1], the composite F — E is not 0 and u(F) < u(E) = 1/r.
But (F) > 1/r. Therefore F — E is either 0 or an isomorphism and the extension
e, is trivial. This is a contradiction.

(ii) Let Q be a proper quotient bundle of E. Then it is also a quotient of V(e,).
By the stability of V(e,), we have that deg Q > 1 and, since rank(Q) < rank(E), this
implies that (Q) > p(E). Therefore V(e,,) is stable. [ |

Lemma2.4 Letx € X and let h: L — V be a homomorphism of a line bundle L
into a vector bundle V. Then h factors asa map L — L ® O(x) — V, where the map
L — L ® O(x) is induced by the canonical section of O(x) if and only if the fiber map h,
of h at x is zero.

Proof See [7, Lemma 5.3] |
Lemma2.5 Leté € JU(X),\ € JA(X). Consider an extension

(| N W L VN G}

For (o, 3) € C* with (o, 8) # (0,0), let fo53: £71 Jap, el SV obe

the embedding defined in Remark 2.2(iii), and let 0 — &7} Jup, V — Ey3 — 0

be the corresponding extension. Then V is stable if and only if E, 3 is stable for all

(o, B) # (0,0).

Proof IfV isstable, then E, g is stable by Lemma 2.3(i). Conversely, suppose that all
the vector bundles E,, g are stable. By Lemma 2.3(ii), we know that V' is semi-stable.
So, suppose that L is a line subbundle of V' of degree 0. Then for every point x € X
the fiber L, does not intersect the fiber of (7! & £71),in V2 if Ly = (fu5)(67Y),
then the fiber map L, — (E, ). of the map L — E, 3 at the point x is the zero map.
Using Lemma 2.4 we see that the map L — E, 3 factors through a map L(x) — E, s.
Since p(L(x)) = 1 > p(Ey ) = 1/2, we see that E,, 3 cannot be a stable bundle. So
V ¢ @ ¢! @ L, a contradiction. Therefore V' does not contain line bundles of
degree 0.
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Now suppose that U is a rank 2 subbundle of V' of degree 0. Then we have an
extension 0 — U — V — L — 0 with L a line bundle of degree 0. Since h°(¢ ® L) is
1 or 0, we can find o, § € C such that the composite map

ey

is zero. Then there exists a map E, 3 — L making the following diagram commuta-
tive.

Since p(E, ) = 1/2 > pu(L) = 0, we see that E, 3 cannot be a stable vector
bundle. Therefore V is stable. |

Lemma2.6 Leté&c JY(X), A€ J2(X)andlet0 # u € Ext'()\, £71).
(i) Let K denote the canonical line bundle of X. Then V(e,,) is non stable if and only
if the class of u in PH' (X, \"'¢71) is in the image of X under the natural embedding

den: X L pHI(x, A,

Ifthe class of u is g¢ \(x), then V(e,) contains a unique maximal line bundle L = \(—x).
(ii) Assume that V(e,) is non stable. Letn € J'(X). The destabilizing line bun-
dle L C V(e,) induces a linear map o;: Ext'(V(e,),n" ') — Ext'(L,n~'). Con-
sider the map W,,: Ext'(\,n™") — Ext'(V(e,),n™") defined in Remark 2.2(ii). Then
oroW,: Ext'(\,n~1) — Ext'(L,n"') is surjective.
(iii) Set A = &* andn = € in (ii). Given w € Ext'(\,£7V), there is an exact se-
quence 0 — V(eg) — V(ey, ) — L71E — 0, where @ = 1 o W, (w) € Ext!(L, 7).

Proof Part (i) is an application of [5, Proposition 1.1]. To prove (ii), it is enough to
notice that oy o U, is the natural map induced by the compositionc: L C V(e,) — A,
and that this is a non zero map. Moreover, using Lemma 2.4, L = A(—y) for some
y € X and in particular the kernel has dimension 1 and x = y (if ¢¢ x(x) is the class
of u).

For (iii), notice that V(eg) has determinant L£~!. From the definition of ¢y, we
see that V(ep) C V(ew,(w)). The claim follows using the fact that V(ey, (4)) has trivial
determinant. [ |

Lemma2.7 LetLy € J°(X) and let ¢ € J'(X). Let SUx(2, Ly) denote the moduli
space of semi-stable rank 2 vector bundles on X with determinant Ly. If [V] €
SU(2,Ly) and h°(X, &€ @ V) # 0, then there is € Ext'(£Ly, 1) such that V(eg) is
S-equivalent to V.
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Proof The proof is the same as that of [7, Lemma 5.8]. For instance, if V is non
stable, say V' is S-equivalent to L; &L, with L;, L, € J%(X), then since h%(X, £QV)# 0
we can assume that h%(X, £L;) # 0. Therefore L; = ¢ ~'(x) and L, = Ly&(—x) for
a single point x € X and we can take 6 to be a non zero element of the kernel of the
map Ext' (£Ly, £71) — Ext'(ELo(—x), £~ 1) induced by ELo(—x) — £Lo. [ ]

Let ¢ € JU(X), let W := H°(X,K&*)* and let G(2, W) be the Grassmannian variety
of 2-dimensional linear subspaces of W. We define the set

8¢ = {[V] € SUx(3) | K’(X, £ @ gr(V)) > 2},
where gr(V) is the associated graded bundle of V. Consider the rational map
D¢: G(2,W) — SUx(3)
induced by Lemma 2.1
Theorem 2.8 Dy is an injective morphism whose image is the set S¢.

Proof Let us first show that Dy is defined at each point of G(2, W). Using Lem-
ma 2.1 we know that each line | C P(W) determines a rank 3 vector bundle V with
trivial determinant i.e., given two generators 1,0, € W of I. Let

u=p Yo,0,) € Ext'(e3, 6 T e,
3
Then one takes V' to be V(e,). Consider the embedding ¢¢ ¢2: X ﬂ P(W), since
the genus of our curve X is at least 1, there are points in any line I C P(W) that are
not contained in ¢¢ 2 (X). Then using Lemma 2.6(i) and Lemma 2.3(i), we see that V
is semi-stable, so D¢(I) = [V'] and De(I) € 8¢ since h°(X,£@gr(V)) > h°(X,£®V).
In fact, from Lemma 2.5, we see that a line in P(W) that does not intersect ¢¢ 2 (X),
determines a stable vector bundle V with h°(X, ¢ ® V) = 2. Conversely, if [V] €

SUx(3) is the class of a stable vector bundle with #°(X, £ ® V') > 2, then one can see,
using Lemma 2.4, that h°(X, £ ® V) = 2 and that V admits an extension structure

0—>§71@§71—>V—>§2—>0,

So V is induced by a unique line [ C P(W) not intersecting ¢ 2 (X).

Given the class of a non stable vector bundle [V] € §¢, we can write gr(V) =
Ly ® E, where L, is a line bundle and E is a rank 2 bundle which is either stable or a
direct sum of two line bundles. Using Lemma 2.4, we see that if 1(X, £ ® E) > 2 then
E cannot be stable because it contains a line bundle of degree 0. So we can assume that
HO(X,EL) = 1 < KX, € ® E). Let A = £2. There is a unique x € X such that L :=
A® O(—x) = L7 Let u € Ext'()\, €71 be such that its class in P Ext!(\, £71) is
@e(x). From Lemma 2.7 we know that there is § € Ext! (le_l, &1 such that V(ey)
is S-equivalent to E. Set n = ¢ in Lemma 2.6(ii). Take w € Ext!()\,£~!) such that
wr oW, (w) = 6. So, from Lemma 2.6(iii) we see that if ] is the line spanned by w and
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u, then D¢(I) = [V']. Moreover, the natural map P Extl(le_l,f_l) — SUX(Z,LI_I)
is injective, see [4, Corollary 4.4]. From this and from the fact that the kernel of
@ o ¥, has dimension 1, one can deduce that there is a unique line I C P(W) such
that x € land D¢(I) = [V] = [L, ® E].

Consider a line , C P(W) such that D¢(,) = [V]. Let x, € X such that
Pen(x2) € b N Pe(X) and let u” € Ext' (X, £71) such that its class in P Ext'(\, £71)
is e (x2).

Let L’ be the maximal line subbundle of V(e,/). Letx, # p € L. Letw €
Ext' (A, £71) such that its class in P(W) is p. From Lemma 2.6(iii), we see that V' is
S-equivalent to L’71§ ® V(eg:), where 8’ = ¢ o U, (w) € Ext!(L’,£71). Now, we
consider the cases E stable and E = L, @ L3 separately.

If E is stable, then we see that the maximal line subbundle of V(e, ) is L. So,
X = X, that is, there is a unique line | C P(W) such that D¢(I) = [L, ® E].

Now suppose that E = L, @ L; and that x, # x. We have L’ % L, so we can assume
that L, = L’flf. Now, V(ey, ) = V(ew,, ), s0 using Lemma 2.6(iii) twice, we see
that V(eg,(,)) is S-equivalent to L, & L, & Ls. That means that the line containing
@e(x) and ¢ 5 (xy) is mapped to [V] by D¢. Therefore [ = L. [ |
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