
Canad. Math. Bull. Vol. 50 (3), 2007 pp. 427–433

On the Image of Certain Extension Maps. I

Israel Moreno Mejı́a

Abstract. Let X be a smooth complex projective curve of genus g ≥ 1. Let ξ ∈ J1(X) be a line bundle

on X of degree 1. Let W = Ext1(ξn, ξ−1) be the space of extensions of ξn by ξ−1. There is a rational

map Dξ : G(n,W ) → SUX(n + 1), where G(n,W ) is the Grassmannian variety of n-linear subspaces

of W and SUX(n + 1) is the moduli space of rank n + 1 semi-stable vector bundles on X with trivial

determinant. We prove that if n = 2, then Dξ is everywhere defined and is injective.

1 Introduction

Unless otherwise stated, we shall assume X to be a smooth complex projective curve

of positive genus. Let M(m, d) (resp. SUX(m)) denote the moduli space of semi-

stable vector bundles on X of rank m and degree d (resp. rank m and trivial deter-

minant). This is a normal projective variety of dimension m2(g − 1) + 1 (if X has

genus g ≥ 2) whose points are the S-equivalence classes of semi-stable vector bun-

dles of rank m and degree d on X. Seshadri [9] first constructed M(m, d) and one

can also find details about its construction in [6]. For vector bundles A and C on

X, the space Ext1(C, A) = H1(X, Hom(C, A)) parametrizes the classes of extensions

0 → A → B → C → 0 up to isomorphisms of exact sequences acting as the identity

on A and C (see [8, Lemma 3.1] or [7, Proposition 3.1]). This induces a rational map

Ext1(C, A) 99K M(m, d), where m = rank(A) + rank(C) and d = deg(A) + deg(C),

and this map is what one refers to as an extension map. Extension maps have been

an important tool for studying these moduli spaces, see for instance [4, 7]. It fol-

lows from Lemma 2.1 below that the isomorphism class of a bundle with extension

class u ∈ Ext1(C, A⊕n) only depends on the subspace of Ext1(C, A) spanned by the

components of u in the canonical decomposition Ext1(C, A⊕n)
ρ
∼= Ext1(C, A)⊕n. The

rational map Ext1(C, A⊕n) 99K M(m, d) discussed above therefore induces a rational

map G(n,W ) 99K M(m, d), where W = Ext1(C, A) and G(n,W ) is the Grassman-

nian variety of n-planes in W . The point of this note is to prove that for any line

bundle ξ ∈ J1(X), if we pick C = ξ2, A = ξ−1 and n = 2, then the corresponding

rational map Dξ : G(2,W ) → SUX(3) is defined everywhere and is an injection, see

Theorem 2.8. We also identify the image of Dξ as a certain Brill–Noether locus in

SUX(3) and give a geometric criterion for a point of G(2,W ) to be a stable bundle.

Specifically, the image under Dξ of a point in G(2,W ) is a stable bundle if and only if

the corresponding line in P(W ) does not intersect the image of X under the embed-

ding defined by the linear system |Kξ3|, where K is the canonical line bundle of X.

The image of Dξ is the Brill–Noether locus

Sξ = {[V ] ∈ SUX(3) | h0(X, ξ ⊗ gr(V )) ≥ 2},
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where gr(V ) is the associated graded bundle of V .

While this paper was still under revision, we were told that in [2] it is shown that

in the non-fixed determinant case, the map considered here is birrational onto the

Brill–Noether locus.

2 Extensions and Vector Bundles

We refer to [1, Proposition 2 ] for details about the bijection between the space

Ext1(C, A) = H1(X, Hom(C, A)) and the isomorphism classes of extensions 0→A →
B → C → 0. See also [7, §3] for more properties.

Our notation is as follows. Given line bundles ξ, L on X, we represent ξ ⊗ L by

ξL, in particular, ξm
= ξ⊗m. Given a divisor D on X, we write O(D) to represent the

corresponding line bundle on X and ξ(D) = ξ ⊗O(D). The Jacobian of line bundles

on X of degree m is denoted by Jm(X). Given an extension e : 0 → A → B → C → 0,

we denote by δ(e) the corresponding vector in Ext1(C, A) and by V(e) the vector

bundle B. Given u ∈ Ext1(C, A), let eu be an extension 0 → A → B → C → 0 such

that δ(eu) = u.

There is a canonical isomorphism

(1) Ext1(C, A1 ⊕ A2)
ρ
∼= Ext1(C, A1) ⊕ Ext1(C, A2).

So, given u ∈ Ext1(C, A⊕n) we can represent it by n vectors (ρ1(u), . . . , ρn(u)),

ρi(u) ∈ Ext1(C, A).

The rational map from the Grassmannian to the moduli space M(m, d) is induced

by the following.

Lemma 2.1 Let u, u ′ ∈ Ext1(C, A⊕n) be two vectors such that the subspaces

〈ρ1(u), . . . , ρn(u)〉 and 〈ρ1(u ′), . . . , ρn(u ′)〉

of Ext1(C, A) coincide. Then V(eu) ∼= V(eu ′). Moreover, assume that the only endo-

morphisms of A and C are scalars. Then if every non-zero homomorphism of A into C

is an isomorphism or if h0(X, A∨ ⊗ V(ev)) = n, we have V(eu) ∼= V(eu ′) if and only if

the subspaces 〈ρ1(u), . . . , ρn(u)〉 and 〈ρ1(u ′), . . . , ρn(u ′)〉 coincide.

Proof The proof is similar to the proof of [7, Lemma 3.3] and we only give the first

part. First notice that if we think of 〈ρ1(u), . . . , ρn(u)〉 and 〈ρ1(u ′), . . . , ρn(u ′)〉 as

the row spaces of matrices Mu and Mu ′ representing u and u ′ respectively, then we

see that there is µ ∈ GLn(C) such that Mu ′ = µ · Mu. Now, given µ ∈ GLn(C) we

can make it act on A⊕n, and therefore (by functoriality) on Ext1(C, A⊕n). It is clear

from the construction of extensions that for u ∈ Ext1(C, A⊕n) and µ · u we have

V(eu) ∼= V(eµ·u) (although, of course, not by an isomorphism of exact sequences

which is the identity on A⊕n and C).

Remark 2.2 (i) The isomorphism (1) can be described in terms of extensions (see

[3, §2.6, exercise 2, p. 37]). Let σi ∈ Ext1(C, Ai), i = 1, 2, and let u = ρ−1(σ1, σ2) ∈
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Figure 1

Ext1(C, A1 ⊕ A2). Given the extension eu : 0 → A1 ⊕ A2 → B → C → 0, one can

recover the extensions eσi
, i = 1, 2. For instance, eσ2

is the bottom exact sequence

of the commutative diagram in Figure 1, which is obtained by constructing the push

out diagram of the canonical projection A1⊕A2
π2→ A2 and the injection A1⊕A2 → B

of eu, and where i1 is the natural embedding of A1 into A1 ⊕ A2.

(ii) Notice from the diagram in Figure 1 that for any σ2 ∈ Ext1(C, A2), one can

define a map Ψσ2
: Ext1(C, A1) → Ext1(V(eσ2

), A1) by taking Ψσ2
(σ1) = δ(e) for

σ1 ∈ Ext1(C, A1), where e is the vertical extension in the middle of this diagram. No-

tice also that Ψσ2
is nothing but the homomorphism Ext1(C, A1) → Ext1(V(eσ2

), A1)

induced by the surjection s2 : V(eσ2
) → C of eσ2

. In particular V(eΨσ2
(σ1)) is the

fibered product of the surjections si : V(eσi
) → C of eσi

, i = 1, 2.

(iii) We will consider extensions eu of the form 0 → A ⊕ A → B → C → 0. For

any α, β ∈ C such that (α, β) 6= (0, 0), let iα,β = αi1 + βi2 where i1, i2 are the two

natural embeddings A → A ⊕ A. Let fα,β be the composite map A
iα,β
→ A ⊕ A → B

and let Eα,β be the corresponding cokernel. The bundle Eα,β admits an extension

structure e(α, β) : 0 → A → Eα,β → C → 0 such that if u = ρ−1(σ1, σ2), then

δ(e(α, β)) = βσ1 − ασ2.

Recall that a vector bundle A on X is semi-stable (resp. stable) if for any proper

subbundle B ⊂ A, we have µ(B) ≤ µ(A) (resp. µ(B) < µ(A)), where the slope µ is

defined by µ(B) = deg(B)/ rank(B). Equivalently, A is semi-stable (resp. stable) if

µ(Q) ≥ µ(A) (resp. >) for every proper quotient bundle Q of A. Any semi-stable

vector bundle has a Jordan–Hölder filtration, that is, given a semi-stable vector bundle

A, we can always find an increasing filtration {0} ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Am = A such

that Ai/Ai−1 are stable and µ(Ai/Ai−1) = µ(A). Such a filtation is not unique, in
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general, however the associated graded bundle gr(A) =
⊕m

i=1 Ai/Ai−1 is well defined

up to isomorphism. Two semi-stable vector bundles A, B are said to be S-equivalent

if gr(A) = gr(B).

Lemma 2.3 Let ξ ∈ J1(X) and let E be a rank r vector bundle of degree 1. Let

0 6= u ∈ Ext1(E, ξ−1), then we have

(i) If E is stable, then V(eu) is semi-stable.

(ii) If V(eu) is stable, then E is stable.

Proof (i) Suppose that V(eu) is not semi-stable. Then there exists a vector subbun-

dle F of V(eu) with µ(F) > µ(V(eu)). By choosing a minimal such F, we can assume

that F is stable.

Consider the extension eu : 0 → ξ−1 → V(eu) → E → 0. Since µ(F) > µ(ξ−1),

then from [7, Lemma 2.1], the composite F → E is not 0 and µ(F) ≤ µ(E) = 1/r.

But µ(F) ≥ 1/r. Therefore F → E is either 0 or an isomorphism and the extension

eu is trivial. This is a contradiction.

(ii) Let Q be a proper quotient bundle of E. Then it is also a quotient of V(eu).

By the stability of V(eu), we have that deg Q ≥ 1 and, since rank(Q) < rank(E), this

implies that µ(Q) > µ(E). Therefore V(eu) is stable.

Lemma 2.4 Let x ∈ X and let h : L → V be a homomorphism of a line bundle L

into a vector bundle V . Then h factors as a map L → L ⊗ O(x) → V , where the map

L → L⊗O(x) is induced by the canonical section of O(x) if and only if the fiber map hx

of h at x is zero.

Proof See [7, Lemma 5.3]

Lemma 2.5 Let ξ ∈ J1(X), λ ∈ J2(X). Consider an extension

0 → ξ−1 ⊕ ξ−1 → V → λ → 0.

For (α, β) ∈ C
2 with (α, β) 6= (0, 0), let fα,β : ξ−1

iα,β
−→ ξ−1 ⊕ ξ−1 → V be

the embedding defined in Remark 2.2(iii), and let 0 → ξ−1
fα,β
−→ V → Eα,β → 0

be the corresponding extension. Then V is stable if and only if Eα,β is stable for all

(α, β) 6= (0, 0).

Proof If V is stable, then Eα,β is stable by Lemma 2.3(i). Conversely, suppose that all

the vector bundles Eα,β are stable. By Lemma 2.3(ii), we know that V is semi-stable.

So, suppose that L is a line subbundle of V of degree 0. Then for every point x ∈ X

the fiber Lx does not intersect the fiber of (ξ−1 ⊕ ξ−1)x in Vx: if Lx = ( fα,β)x(ξ−1
x ),

then the fiber map Lx → (Eα,β)x of the map L → Eα,β at the point x is the zero map.

Using Lemma 2.4 we see that the map L → Eα,β factors through a map L(x) → Eα,β .

Since µ(L(x)) = 1 > µ(Eα,β) = 1/2, we see that Eα,β cannot be a stable bundle. So

V ∼= ξ−1 ⊕ ξ−1 ⊕ L, a contradiction. Therefore V does not contain line bundles of

degree 0.
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Now suppose that U is a rank 2 subbundle of V of degree 0. Then we have an

extension 0 → U → V → L → 0 with L a line bundle of degree 0. Since h0(ξ ⊗ L) is

1 or 0, we can find α, β ∈ C such that the composite map

ξ−1 fα,β
−→ V → L

is zero. Then there exists a map Eα,β → L making the following diagram commuta-

tive.

0 // ξ−1
fα,β

// V //

��

Eα,β //

~~||
|
|
|
|
|
|

0

L

Since µ(Eα,β) = 1/2 > µ(L) = 0, we see that Eα,β cannot be a stable vector

bundle. Therefore V is stable.

Lemma 2.6 Let ξ ∈ J1(X), λ ∈ J2(X) and let 0 6= u ∈ Ext1(λ, ξ−1).

(i) Let K denote the canonical line bundle of X. Then V(eu) is non stable if and only

if the class of u in PH1(X, λ−1ξ−1) is in the image of X under the natural embedding

φξ,λ : X
|Kλξ|
−→ PH1(X, λ−1ξ−1).

If the class of u is φξ,λ(x), then V(eu) contains a unique maximal line bundle L ∼= λ(−x).

(ii) Assume that V(eu) is non stable. Let η ∈ J1(X). The destabilizing line bun-

dle L ⊂ V(eu) induces a linear map ϕL : Ext1(V(eu), η−1) → Ext1(L, η−1). Con-

sider the map Ψu : Ext1(λ, η−1) → Ext1(V(eu), η−1) defined in Remark 2.2(ii). Then

ϕL ◦ Ψu : Ext1(λ, η−1) → Ext1(L, η−1) is surjective.

(iii) Set λ = ξ2 and η = ξ in (ii). Given w ∈ Ext1(λ, ξ−1), there is an exact se-

quence 0 → V(eθ) → V(eΨu(w)) → L−1ξ → 0, where θ = ϕL ◦Ψu(w) ∈ Ext1(L, ξ−1).

Proof Part (i) is an application of [5, Proposition 1.1]. To prove (ii), it is enough to

notice that ϕL◦Ψu is the natural map induced by the composition c : L ⊂ V(eu) → λ,

and that this is a non zero map. Moreover, using Lemma 2.4, L = λ(−y) for some

y ∈ X and in particular the kernel has dimension 1 and x = y (if φξ,λ(x) is the class

of u).

For (iii), notice that V(eθ) has determinant Lξ−1. From the definition of ϕL, we

see that V(eθ) ⊂ V(eΨu(w)). The claim follows using the fact that V(eΨu(w)) has trivial

determinant.

Lemma 2.7 Let L0 ∈ J0(X) and let ξ ∈ J1(X). Let SUX(2, L0) denote the moduli

space of semi-stable rank 2 vector bundles on X with determinant L0. If [V ] ∈
SU (2, L0) and h0(X, ξ ⊗ V ) 6= 0, then there is θ ∈ Ext1(ξL0, ξ

−1) such that V(eθ) is

S-equivalent to V .
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Proof The proof is the same as that of [7, Lemma 5.8]. For instance, if V is non

stable, say V is S-equivalent to L1⊕L2 with L1, L2 ∈ J0(X), then since h0(X, ξ⊗V )6= 0

we can assume that h0(X, ξL1) 6= 0. Therefore L1 = ξ−1(x) and L2 = L0ξ(−x) for

a single point x ∈ X and we can take θ to be a non zero element of the kernel of the

map Ext1(ξL0, ξ
−1) → Ext1(ξL0(−x), ξ−1) induced by ξL0(−x) → ξL0.

Let ξ ∈ J1(X), let W := H0(X, Kξ3)∗ and let G(2,W ) be the Grassmannian variety

of 2-dimensional linear subspaces of W . We define the set

Sξ = {[V ] ∈ SUX(3) | h0(X, ξ ⊗ gr(V )) ≥ 2},

where gr(V ) is the associated graded bundle of V . Consider the rational map

Dξ : G(2,W ) → SUX(3)

induced by Lemma 2.1

Theorem 2.8 Dξ is an injective morphism whose image is the set Sξ .

Proof Let us first show that Dξ is defined at each point of G(2,W ). Using Lem-

ma 2.1 we know that each line l ⊂ P(W ) determines a rank 3 vector bundle V with

trivial determinant i.e., given two generators σ1, σ2 ∈ W of l. Let

u = ρ−1(σ1, σ2) ∈ Ext1(ξ2, ξ−1 ⊕ ξ−1).

Then one takes V to be V(eu). Consider the embedding φξ,ξ2 : X
|Kξ3|
−−−→ P(W ), since

the genus of our curve X is at least 1, there are points in any line l ⊂ P(W ) that are

not contained in φξ,ξ2 (X). Then using Lemma 2.6(i) and Lemma 2.3(i), we see that V

is semi-stable, so Dξ(l) = [V ] and Dξ(l) ∈ Sξ since h0(X, ξ⊗ gr(V )) ≥ h0(X, ξ⊗V ).

In fact, from Lemma 2.5, we see that a line in P(W ) that does not intersect φξ,ξ2 (X),

determines a stable vector bundle V with h0(X, ξ ⊗ V ) = 2. Conversely, if [V ] ∈
SUX(3) is the class of a stable vector bundle with h0(X, ξ ⊗V ) ≥ 2, then one can see,

using Lemma 2.4, that h0(X, ξ ⊗V ) = 2 and that V admits an extension structure

0 → ξ−1 ⊕ ξ−1 → V → ξ2 → 0.

So V is induced by a unique line l ⊂ P(W ) not intersecting φξ,ξ2 (X).

Given the class of a non stable vector bundle [V ] ∈ Sξ , we can write gr(V ) =

L1 ⊕ E, where L1 is a line bundle and E is a rank 2 bundle which is either stable or a

direct sum of two line bundles. Using Lemma 2.4, we see that if h0(X, ξ⊗E) ≥ 2 then

E cannot be stable because it contains a line bundle of degree 0. So we can assume that

h0(X, ξL1) = 1 ≤ h0(X, ξ ⊗ E). Let λ = ξ2. There is a unique x ∈ X such that L :=

λ ⊗ O(−x) = ξL−1
1 . Let u ∈ Ext1(λ, ξ−1) be such that its class in P Ext1(λ, ξ−1) is

φξ,λ(x). From Lemma 2.7 we know that there is θ ∈ Ext1(ξL−1
1 , ξ−1) such that V(eθ)

is S-equivalent to E. Set η = ξ in Lemma 2.6(ii). Take w ∈ Ext1(λ, ξ−1) such that

ϕL ◦Ψu(w) = θ. So, from Lemma 2.6(iii) we see that if l is the line spanned by w and
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u, then Dξ(l) = [V ]. Moreover, the natural map P Ext1(ξL−1
1 , ξ−1) → SUX(2, L−1

1 )

is injective, see [4, Corollary 4.4]. From this and from the fact that the kernel of

ϕL ◦ Ψu has dimension 1, one can deduce that there is a unique line l ⊂ P(W ) such

that x ∈ l and Dξ(l) = [V ] = [L1 ⊕ E].

Consider a line l2 ⊂ P(W ) such that Dξ(l2) = [V ]. Let x2 ∈ X such that

φξ,λ(x2) ∈ l2 ∩ φξ,λ(X) and let u ′ ∈ Ext1(λ, ξ−1) such that its class in P Ext1(λ, ξ−1)

is φξ,λ(x2).

Let L ′ be the maximal line subbundle of V(eu ′). Let x2 6= p ∈ l2. Let w ∈
Ext1(λ, ξ−1) such that its class in P(W ) is p. From Lemma 2.6(iii), we see that V is

S-equivalent to L ′−1ξ ⊕ V(eθ ′), where θ ′
= φL ′ ◦ Ψu ′(w) ∈ Ext1(L ′, ξ−1). Now, we

consider the cases E stable and E = L2 ⊕ L3 separately.

If E is stable, then we see that the maximal line subbundle of V(eu ′) is L. So,

x = x2, that is, there is a unique line l ⊂ P(W ) such that Dξ(l) = [L1 ⊕ E].

Now suppose that E = L2⊕L3 and that x2 6= x. We have L ′ 6∼= L, so we can assume

that L2
∼= L ′−1

ξ. Now, V(eΨu(u ′)) ∼= V(eΨ
u ′

(u)), so using Lemma 2.6(iii) twice, we see

that V(eΨu(u ′)) is S-equivalent to L1 ⊕ L2 ⊕ L3. That means that the line containing

φξ,λ(x) and φξ,λ(x2) is mapped to [V ] by Dξ . Therefore l = l2.
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