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WAVELET BASES FOR A UNITARY OPERATOR

by S. L. LEE, H. H. TAN and W. S. TANG
(Received 16th August 1993)

Let T be a unitary operator on a complex Hilbert space #, and X, Y be finite subsets of o2 We give a
necessary and sufficient condition for T4X):={T"x:n€Z,xe X} to be a Riesz basis of its closed linear span
{THX)). f THX) and T4Y) are Riesz bases, and (T4 X)) =(THY)), then X is extendable to X’ such that
TXX’) is a Riesz basis of (T4Y)). The proof provides an algorithm for the construction of Riesz bases for
the orthogonal complement of (T%X)) in {THY)). In the case X consists of a single B-spline, the algorithm
gives a natural and quick construction of the spline wavelets of Chui and Wang {2, 3]. Further, the duality
principle of Chui and Wang in [3] and [4] is put in the general setting of biorthogonal Riesz bases in Hilbert
space.

1991 Mathematics subject classification: 41A15, 41A30, 42C05, 42C15.

1. Introduction

Mallat [12] has introduced a general method for the construction of orthonormal
wavelet bases via the multiresolution approximation, and Daubechies [S] has con-
structed an important class of compactly supported orthonormal wavelets, which are
very efficient for numerical computations and image decomposition and reconstruction
(see [1, 6]).

Translates of a uniform B-spline form a Riesz basis of its closed linear span in L*(R),
the space of square integrable functions. Orthonormalization of the B-spline basis leads
to the Lemari¢ wavelets [11]. However the process does not preserve the simple and
rich properties of uniform B-splines (see Schoenberg [15), and the references therein),
which could be useful in practice. This has led Chui and Wang ([2, 3, 4]) to consider
cardinal spline wavelets which generate Riesz bases of their closed linear spans.

The spline wavelets of Chui and Wang are closely related to cardinal spline
interpolation. In an attempt to construct spline wavelets based on cardinal Hermite
interpolation, Goodman, Lee and Tang [8] have introduced wavelet bases generated by
translating a finite set of functions. Coincidently, a result of Robertson [14] on
wandering subspaces for unitary operators provides a general setting for orthonormal
wavelets in Hilbert space. This provides a link between orthonormal wavelets and
unitary operators, and the main object of this paper is to extend the link in order to
provide a better perspective to spline wavelets, in particular the elegant results of Chui
and Wang [2, 3].

In Section 2, we give a characterization of Riesz bases generated by a unitary
operator T on a finite set Y in a Hilbert space. In Section 3, we show that if
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TXY):={T"y:neZ,ye Y} is a Riesz basis of its closed linear span {T%(Y)) and likewise,
THX) is a Riesz basis of (T4 X)), where X is another finite set, and {(TXX))c
{TYY)), then X is extendable to X’ such that THX’) is a Riesz basis of TXY). Our
proof is constructive, and provides an algorithm for the construction of Riesz bases for
the orthogonal complement of (T% X)) in (TXY)). This result is analogous to the
main theorem of Robertson [14]. Some identities related to duality are also obtained in
Section 3. Section 4 deals with Riesz bases of wavelets in Hilbert space. We extend the
duality principle of [3] and [4] to the general setting of biorthogonal Riesz bases in
Hilbert space. Explicit construction of Riesz bases for the orthogonal complement of
THX) in THY) is given in the case X consists of one vector. In Section 5 we show how
the spline wavelets of Chui and Wang are derived naturally from the general theory.
Spline wavelets can be useful in numerical computation because of the availability of the
cardinal interpolant and the ease with which B-spline series can be evaluated. The
problem of matrix compression by wavelets is discussed in the last section.

Throughout this paper, the inner product of any two vectors x and y in a Hilbert
space is denoted by (x,y>. We let L?(0,2n) be the space of all square integrable
2n-periodic complex-valued functions on the real line R, and let L2(0,2n) (respectively
L2.,0,27)) be the set of all row vectors with s components (respectively all mxs
matrices with entries) in L2(0,27). We denote by I, the mxm identity matrix. Given
two Hermitian m x m matrices 4 and B, we write A<B if the matrix B— A is positive
semidefinite.

2. Characterization of Riesz bases for a unitary operator

Let T be a unitary operator on a complex Hilbert space J# For V < # we shall write
THV):={T"v:neZ, veV},

and let {T%(V)) denote the closed linear span of T%#(V).
Let Y={y,,...,y,} = and suppose that

(Vo Ty >)ez€2(2), kK, j=1,....s.

Then
¥ < T"ye™ e L*(0,2n)
neZl
for k,1=1,...,s. Let
D, (0): =( Z Vs T"}’1>emo) . (2.1)
neZ ki=1

Then for almost all 6, ®,(f) is a Hermitian matrix. Let A{0), j=1,...,s, be its
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eigenvalues, The main result in this section is the characterization of TAY) as a Riesz
basis of its closed linear span.

Theorem 2.1. The set TXY) is a Riesz basis of {(TXY)) if and only if there are
positive constants C, and C, such that

C,24(0)=C, (2.2)
Jor almost all 6 and for j=1,...,s, or equivalently, C,1.S®(0) £ C,I, for almost all 6.

To set up the proof of Theorem 2.1 we shall first consider some related results.

Lemma 2.1. Suppose TXY) is a Riesz basis of {THY)) and let F:{THY)>—-{THY))
be defined by

Foy=Y T (0 Ty>T", vedTHY)). (2.3)

j=1 neZ

Then F is a positive, bounded invertible operator which commutes with T.

Proof. The fact that F is positive, bounded and invertibie is well-known (see [16, p.
185]). The commutativity of F and T follows by applying (2.3) to FT(v), by virtue of the

fact that T is unitary. O
For any finite set Y={y,,...,y,} € such that TXY) is a Riesz basis of {(T%Y)), we
define
V:=F YY),
and denote
r=F7'(y), j=1,...,s 2.4)
By Lemma 2.1

T"ﬁj:r'lT"yj, neZ, j=l’__.’3.

Equations (2.3) and (2.4) give
W= Z ZZ s Tan>T"y1a
Jj=1 ne

from which we obtain
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<}~)k’ T"yj>=50.n6k.j’ neZ, k,j=l,...,5. (25)

Thus TXY) and T%4Y) are biorthogonal Riesz bases of {THY)>. Any ve{TXY))> can
be written as

“

v=7) X<, T"§)Ty;

j=1 nel

= i Y Lo, Ty, > Ty,

i=1 neZ

Proposition 2.1. For any finite set Yc #, ®,(0) is positive semi-definite for almost
all 6.

Proof. Let 6eR and 4=(a;)j-, €C". Then

AD,(0)4* =T (v, T")e™ (2.6)
nel
where
j=1

Since (yi, T"Y:D)necz€13(Z) for k,I1=1,...,s, so is the sequence (v, T"v)),.z- Hence the
expression on the right of (2.6) defines a function f in L%(0,2xn) with Fourier coefficients
f(ny=<v, T"v), neZ. We shall show that f is nonnegative. Indeed for any finite
sequence (c,) of complex numbers,

Y fin—m)c,é,= Y {T™, T")c,¢é,

2
=0.

Y ¢, T

Therefore (f(n)),.z is a positive definite sequence. By a well-known theorem in Fourier
analysis ([7, p. 116]), f is nonnegative almost everywhere. O

We need a property that is weaker than that of a Riesz basis.

Lemma 2.2. Let (f,),.z be a sequence in 5¥. The following conditions are equivalent.
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(1) Y KELDPP <o for every fe .

nel

(2) There exists a positive constant M such that

Zz|<f,fu>|2§M||f||2 for every f e

(3) There exists a positive constant M such that

for every finite sequence (c,) of scalars.

Lol MY el

(4) There exists a positive constant M such that

2
MY el

nel

2, ol

nel

for all (c,),.z€ 1A(Z).
(5) Z,,EZ c,f. converge in I for every (C,)pez€1%(Z).

Proof. The proof of the equivalence of conditions (1), (2) and (3) can be found in
[16, p. 154-155]. Suppose that (3) holds. If (c,),.z€!*(Z), then (3) implies that the
partial sums of ) ,.zc,f, form a Cauchy sequence in . Therefore (5) holds. Taking
limits in the inequality in (3) gives (4). The implication (4) = (3) is obvious. It remains to
prove that (5) =(1).

Fix f e # Take any (c,),z€!*(Z). For any ne Z, choose 6,€[0,2n) so that

e, Si> =leal f, fid]e™.

By (5), the series Y .z ¢,€”" f, converges to some vector g in J#, and

Y leal S S| = ZZ cae ™S, [ ={f,8) <oo.

nel

Hence ({f, f,))nez € I(Z). O

Remark 1. A sequence (f,),.z in J satisfying condition (1) in Lemma 2.2 is called a
Bessel sequence (see [16, p. 154]). Under the assumption that (f,),.z is a Schauder basis
of , the equivalence of conditions (3) and (5) can be found in [16, p. 37].

We next give a sufficient condition for a sequence (T"x),.z, X€#, to satisfy the
conditions of Lemma 2.2.
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Lemma 23. Let xei, Suppose that ({x,T"x)),ez is in 1X(Z) and there exists a
positive constant B such that

¥ (x, T"x)e"™ < B

nel

Jfor almost all 6. Then
X eaT"x||* < BY |e.|?
for every finite sequence (c,) of scalars.

Proof. Let ®(6)=Y ,.z<x, T"x)e™. By Proposition 2.1, ®(6) 20 for almost all 6. Let
v=Y ¢,T'x, where (c,) is a finite sequence. Then

0, T'xy=Yc{x, T" " 'x>, nel.
Hence (<U, TnX))neZ € IZ(Z)a

Y (o, T"xDe™=(3 c,e")®(f) a.e.

nel

.and
21 = | e Plo@pPa<s Ll
Then
07| =<v, 0> =L &, T
S e AL, T2
< BY o] O
Proof of Theorem 2.1. Let (a)),.,€l%Z), j=1,...,s, and suppose that

=Y Y aT"y;
=

j=1 nel
converges in # and (v, T"y;)),z€13(Z), j=1,...,s. Let

AfO):= Y ale™,

neZ

VAO):= Y <o, T"y;>e™, j=1,...,s,

nel
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A:=(A;)}=, and V:=(V));_, € L%(0,2m). Then
V=AD,. 2.7
Let U be the unitary matrix such that
U*®,U=D=diag(4,,...,4).
By (2.7),

VV*=BD?B*, (2.8)
where

B=(B;)5-:=AU.

Integrating (2.8) gives

121:

ZIIVII’ I ZA,(G)ZIBAH)IZdO (2.9)

j=1

Suppose TXY) is a Riesz basis of (TXY))> and let TXY) be the dual basis. Then
there are positive constants K, L, K, L such that for any sequences (a)),.z€l%(Z),
j=1,...,s, the vector

=Y 2 &l

ji=1 nel

=Y XA, TypTy;,

/=1 nez.
satisfies
K Z, 2 loaf* < [oll* =L Zl 2 |al?, (2.10)
J=1 nez i=1 nez
and
Klzl Z |<v, Ty, > <ol <L Z Ezlu, Ty (2.11)

Since Y=y ||Vi|[?=X3=1 Yaez [<v, T"y;Df it follows from (2.9), (2.10) and (2.11) that

2x
1L SlePs [ 5 yorisopdosg S 3 lalf 212

1 1 nel 1 1 neZ

https://doi.org/10.1017/50013091500019064 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019064

240 S. L. LEE, H. H. TAN and W. S. TANG

But

s s
S 3 ki3 4= % I8
j= j=

Jj=1 nel

which, by (2.12), gives

s 2= s 2=z s 2n
5 Z j |BI(9)|2d9§ Z j /11{0)2|BJ{0))|2d9§£ Z j |BJ(9)|2d9. (2.13)
Lizi o j=10 Kisio
The inequalities hold for all B;e L*0,2n), j=1,...,s. Hence

L
TELOPSE

for almost all 6. Since 1(0) =0, we obtain (2.2)

Conversely, suppose that (2.2) holds. Let ® j(9)'=z,,ez<yj, T"y,-)ei"" be the (j, j)-entry
of the matrix ®,(6), j=1,...,

s. Let U(f) be the unitary matrix such that ®,(0)=
U(B)diag(A,(0),...,A(0)U(6)*. Then for j=1

D (6) =e;®y(0)ef= Y, L(O)|Un0)
k=1
where e; is the row vector (6;)i=; and (Uu(0))i=, is the jth row of U(6). Since
Zi=1 |Ujk(9)|2 =1, by (2.2),

®O)=C, ae.for j=1,...,s
By Lemma 2.3 and Lemma 2.2,

Y Ko, T"yp> <0, vedst, j=1,...,s

nel
and Y.z alT"y; converges in & for (a}),..€1%(Z), j=1
By (2.9), we have for any

v=Y Y aT"y;, (a)),ez€l¥(Z), j=1,...,s,

Jj=1 nel

ay L |al = Z virsciy 3 laif (2.19)
j=1 nelZ j=1 nel
Now,
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lell* = <o, 0>

=3 T aio, Ty

j=1 nel

and applying (2.14) leads to

ll?<C. 3 3 laaf

j=1 neZ
On the other hand,

T Tla =T T Ty

Z Z <U, T"yj> Tnyi

<ol
=1 nez

By (2.15)

i 2 <o, Ty Ty;

j=1 nekl

Jj=1 neZ

which together with (2.16) leads to
1 3
b2z % T lark)
2 =1 nel

2 (vl

1
CZ ji=1

Combining the first inequality in (2.14) and (2.17) gives
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2 C% : il2
lolPz=t Y 3 ladf> (2.18)

C2 j=1 nel

The inequalities (2.15) and (2.18) show that {T"y; neZ, j=1,...,s} is a Riesz basis of

(THY)). O
Proposition 2.2. Suppose TXY) and TXY) are biorthogonal Riesz bases of {T*Y)).

Then
O; =y (2.19)

Proof. ForveZ and k,I1=1,...,s,

50. v‘sk,l =V Ty

= 2. ATy, TyT9)

j=1 nel

= Z Z e T"ij><Tv_"yb,Vj>-
i=1 nel
Now,

£ (5 owaoee) (L onT0e)

vel veZ

= ._i, (Z e T”ff>e‘"°) (Z (T, YJ‘>3M>

vel veZ

z Z I T"ﬁijV-"}’h,Vj>eivo=5k.h

j=1 vel nel

Ii
DM«

which shows that
O0r=1

The result follows since @, is Hermitian. O

3. Extension of Riesz bases for a unitary operator

Throughout this section, let X ={x,,...,x,} and Y={y,,...,y,} be finite subsets of #
and suppose TAX) and T%(Y) are Riesz bases of (T4 X)) and (TXY)) respectively.
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Our main results here are the following analogues of Robertson’s theorems [14] on
wandering subspaces for unitary operators.

Theorem 3.1. Suppose s=r and (T4 X)) ={THY)). Then {THX))>={THY)).

Theorem 3.2. If (T%X)) is a proper subset of {T*Y)), then there exists
X, 1 €XTHY)), x,4, L{TXX)) such that THXvu{x,.,}) is a Riesz basis of
(THX U {x, 41}

Theorems 3.1 and 3.2 can be proved by applying Robertson’s theorems and a
modified form of the Fuglede-Putnam theorem ({8, Lemma 2.1]). However, we shall
prove them directly among other related results as they are of independent interest.

Since TXX) and TXY) are Riesz bases of their respective closed linear spans, there
exist X ={%,,...%,} < (THX)) and Y={j,,...., ¥} € {(THY)) such that

<ik1 Tvx,>=50'v5k_,, veZ,k,l=l,...,r, (3.1)
I T'Vn) =00, 0m s VELmMnN=1,...,s. (3.2)
Therefore, T4 X) and T%X) are biorthogonal Riesz bases of (TAX)), and TXY) and
T%(Y) are biorthogonal Riesz bases of (T4 Y)).
For any subset V={v,,...,v,} of {TXY)), where 1 Sm<s, let

P:,_l(o):: Z vy, T")’1>eino

nel

P d0):= Y, {vi, T"5pe™

nel
fork=1,....mI=1,...,s, and
Py=(Pf Dmxsr Pv=(B Dmxs
Then Py, Pye L2, (0,2n).
Proposition 3.1.  For any V={v,,...,0,,} ={THY),

P, =P, ®,. (3.3)
If in addition ({v, T'v)),.2€1X(Z), k,I=1,...,m, then

P,Pt=0,. (3.9

Proof. The equation (3.3) is proved in the same manner as Proposition 2.2, using
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o T'yd>=3. 3 06 T"9<T"y, T"y,

j=1 nel

whereas (3.4) is obtained using

3
(o, T = < Uy, Z Z (T"y, T"}’j>T"fj>

=1 nel

=3 T (o T 0 T,

j=1 nel
Proposition 3.2. If {TYX)><{TXY)), then
PePr=PyP%=1,,

where 1, is the r xr identity matrix.

Proof. The proof is the same as before, using (3.1). We shall omit the details.

(3.5)

]

Corollary 3.1. If {TAX))><{TXY)) and r=s, then Py, Pg, Py and P4 are invertible,

and
Px'=P%, Pz'=P%
Furthermore,
PPy ="y,
PyPy=y.

Proof. If r=s, (3.6) follows from (3.5). By (3.3) and 3.6
Py=Py®,
=(P}) ' ®y,
which gives (3.7). Finally, (3.8) follows from (3.7), (2.19) and (3.6).
Corollary 3.2. If {THX)><{THY)) and r=s, then
Oy=P0, P}

Qx = Px‘DYP}.
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Proof. By (3.3) and (3.4)
®;=PePy=Py02P}

which is (3.9), since ®, is Hermitian. The relation (3.10) can be derived in the same
manner. 0

Proof of Theorem 3.1. Let ye{TXY)) with y L {TXX)). Then for all veZ and
k=1,...,s,

0= <,V, Tvxk>

=Y ¥ THXT; T'x)

j=1 nel

=Y ¥ T9T "%, 3. (3.11)

Jj=1 nel

Let

Y(G):=( Y T”?j>e"“°) . (3.12)
vel i=1
Then Y e L2(0,27). By (3.11)
Y(0)P,(0)*=0.
Since Py{0) is invertible for almost all 8, Y(6) =0 a.e. If follows from (3.12) that
»Ty;»=0, vel, j=1,...,s.
Hence y=0. O

Corollary 3.3. If {TH X)) <{TXY)) then r<s.

Proof. Suppose r>s, and let X'={x,,...,x,}. Then TXX’) is a Riesz basis of
(THX')) and {(THX')) ={THY)). By Theorem 3.1, {TXX'))={THY)>. But T{X') is
not complete in {THX)). Hence there exists x#0, such that xe {TAX)> c<T4Y)) and
x L {THX')) ={THY)), which is impossible. a

Proof of Theorem 3.2. Suppose (T%(X)) is a proper subspace of {TXY)). By
Theorem 3.1 and Corollary 3.3, r<s. Take any 8¢€[0,2n). The rxs matrix P,{(f)=
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Qnez (X T"y€™), <, has at most rank r. Hence there exists a unit vector Y(6)=
(Y,(0), ..., Y(6)) eC* (considered as a row vector) so that

Y(6)P5(6)* =O0. (3.13)

Since Y3.,|Y{0)]>*=1, the functions Y, thus defined are bounded functions in L(0,2n).
Let

Yi(0)= Y aje™,

nel

where (a}),.z€1%(Z) for j=1,...,s, and let

Xp+t-= Z Z aiT"yj.

j=1 neZ

Then x,,,e{TAY)), a,={x,+,,T"j;> for neZ, j=1,...,s, and using the notation
before Proposition 3.1,

Y(0)=P(0),
where V={x,,,}. As in the proof of Theorem 3.1, (3.13) implies that
X+ 1, T'x>=0, veZ, k=1,...,r. (3.14)
Hence x,,, L (T4X)).
Since T%(Y) is a Riesz basis of (T%(Y)), by Theorem 2.1, there exist positive

constants C, and C,, and a unitary matrix U(6) such that

@, (0)=U(6) diag (1,(0),. .., A6)U(6)*
and
C,2(0)=C,, j=1,...,5s, (3.15)

for almost all 8. By Proposition 3.1, for almost all 9,
Py(6)Py(6)* = P(0)®((6)P\(0)*
=Y 1/0)|g/0)% (3.16)
i=1

where

g(6)=(g1(0),....8.0)= P(O)U(H).

https://doi.org/10.1017/50013091500019064 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019064

WAVELET BASES FOR A UNITARY OPERATOR 247

Since P,{(0) is a unit vector in C* and U(6) in unitary, ) j-,|g{0)|>=1. By (3.15) and
(3.16),

C,SP,(OP,(0)*<C, ae. 3.17)

Hence the function P, P# is a bounded function in L?(0,2x), with {x,,, T"X,.,) as its
vth Fourier coefficient, for every veZ. Therefore, ({X,+ 1, T"%,+1D)vez€I%(Z) and if
(DV(B): = ZVEZ <xr+ 1s 'war-!- 1 >eiv9’ theﬂ

®,(6)=P(6)P,(0)*.
By (3.17),
C,<®,()<C, ae. (3.18)

Let X'=X u V. By (3.14), we have

(040 O
mx,w)—( A q,y(e)).

Therefore the eigenvalues of ®{0) comprise those of ®,(#) and ®,(6). Since THX) is a
Riesz basis of {(T%(X)), by Theorem 2.1 and (3.18), T X") is a Riesz basis of (T%X’)).

a

Corollary 34. If {TXX)) is a proper subspace of {TXY)) there exist X,41,...,X,
such that T{X U {x,+,,...,X,}) is a Riesz basis of (TXY)). Furthermore

(THY)) =<THX)> & Tx,., DO - D<THx,}>

where T*{x;} L THX) and T*{x;} L T*{x,}, for all j, I=r+1,...,s, j#l

Let V be a finite subset of (TXY)). Using the notations introduced before
Proposition 3.1, we give another characterization for T4V) to be a Riesz basis of

(THVD.

Proposition 3.3. Let V={v,,...,0,} ={TXY)), where 1<m<s. The following con-
ditions are equivalent:

(1) THYV) is a Riesz basis of {THV)).

(2) There exist positive constants A and B such that
Al £P,P}<BI, ae.

(3) There exist positive constants A and B such that
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Al <P,P3<BI, ae.

Proof. Since TXY) is a Riesz basis of {TXY)), by Theorem 2.1, there exist positive
constants C, and C, such that

C,I,<®,2C,I, ae. - (3.19)
By (3.3),
P,P:=P,0iP:.
Hence by (3.19),
C3P,Pt<P,PE<CiP,Pt ae., (3.20)

which implies the equivalence of (2) and (3).
If (v, T"0,))nez€1%(Z), k,I=1,...,m, then by Proposition 3.1,

L% =P V‘byﬁ A
and so by (3.19),
C,P, Pt <®,<C,P, Pt (3.21)
Therefore Theorem 2.1 and (3.21) give the implication (1) =>(3). Conversely, suppose
that condition (2} holds (and so does (3)). These imply that all the entries in the
matrices P, and P, are bounded functions in L%(0,2x). For k,I=1,...,m, the (k,])-entry

of P, P% is an L2-function with {v,, T"v,) as its vth Fourier coefficient, for ve Z. Hence
vy, T"0)), ez € 1%(Z). Conditions (3.21), (3) and Theorem 2.1 then give (1). O

4. Wavelets in Hilbert space
Let T be a unitary operator on a complex Hilbert space 2, and suppose
X={x,,...,x,} = such that THX) is a Riesz basis of Vp:=(T4X)). Let D be a
unitary operator on ¢ such that
TD=DY? 4.1
for some peZ, |p|>1, and
Vo= V; =:DV,. 4.2)
Then
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Y, =<{D(THX))>
={T"DT'x;meZ, j=1,...,r,1=0,....]p|— 1}, (4.3)
and TH{DT'x;: j=1,...,r,1=0,...,|p| - 1}) is a Riesz basis of V,. By Corollary 3.4, there

exists I'={z,,...,z,-1}€V; such that TZ{z;} LV,, T*z;} L T*z} for j#l,
THX uT) is a Riesz basis of V; and

Vi=V® Tz} @ ® T*zp-1)}-
Let W, be the orthogonal complement of ¥, in V. Then

Wo=T*z,} ® - ® Tz{zr(lpl - 1)}
=(THI)),

and TXI) is a Riesz basis of W,.
We shall henceforward assume that p=2. In this case we have the following two-scale

relations
xi=Y. Y {x,DT"%>DT"x; (4.4)
j=1 nel
Zk= Z Z <zk,DT"ij>DT"xj, k=l’...,r, (4'5)
j=1 nel

and decomposition relations

DT’X,‘= Z z {(DT’—'z"x,‘,fj>T"xj+(DT"Z"x,‘,Ej>T"Zj}, I=O, 1, (46)

j=1 nel

where X:={%,,...,%,}, T:={%,,...,%}, and THX) and T%X) are biorthogonal Riesz
bases of V,, and TX[") and THI) are biorthogonal Riesz bases of W,. Using the
notations of Section 3, and letting
Y:={Dx; DTx;: j=1,...,r},
by (3.3) of Proposition 3.1, we can express (4.4) and (4.5) in the equivalent form
Per=i5er‘bv‘ 4.7

Similarly by (3.7) or Corollary 3.1, the decomposition relation (4.6) is equivalent to

¢Y=P}urPer- (4.8)
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By Proposition 2.2 and Corollary 3.1, we have the dual relations

Pior=Pg r®p 4.9)
®y=P% rPror (4.10)

The duality principle for the case of cardinal spline wavelets was first considered by
Chui and Wang [3].

Let us now further assume that r=1, that is, there exists a vector ¢ in J such that
TH{¢}) is a Riesz basis of V,:={TH{$})>,

TD=DT?
and
Vo c V1:=DVO.

Then there exists another vector ¢ in ¥, such that TX{¢}) is biorthogonal to TX{¢}).
Furthermore, letting

—pT
{gj.:g;fg, ol @.11)
then
T*({¢0,$:1})={DT"$:ne Z}
and

TZ({&O’ 51 H= {DT"$: neZj

are biorthogonal Riesz bases of V. The space V; can be expressed as

V1={gex’:g= Y 60T"¢, Y |5,,|2<oo}

nel nel

={ge%’:g= Y bDT"$, Y |b,,|2<oo}. (4.12)

nel neZl

Since ¢ and @ are in V,, they can be written as

¢=73 &DT"¢, or (4.13)
nel

¢=7Y c,DT"$, and (4.14)
neZl
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é=3% d,DT"¢, or

nel

é=Y d,0DT"3,

nel

where the filter coefficients (¢,)pcz, (€)nezs (dn)nezs (@n)nez are in I3(Z).

Proposition 4.1. The filter coefficients satisfy

Z 5n~2td_n= Z cn—lkz-n=50,ka keZ.

neZ nel

Proof. By (4.13)(4.16),

(T*¢,$>=Y é,_5d,= Y c,_2d,, keZ

nel nel

The results follow since {T*$, $> =dq .

A similar argument leads to:

Proposition 4.2. Let f and g be vectors in V;, such that

f=Y apr¢$=Yy a,DT"$

neZ nel

and

g=Y bDT¢=Y b,DT"$.

nel nel

Then g is orthogonal to {T*f: ke Z}

< Y 4, b,=0 forallkeZ

nel

<Y a,_b,=0 forallkeZ.

nel

The orthogonal complement W, of V, in ¥, can be characterized as follows.

Proposition 4.3. The space W, is given by

Wo={ge.#:g= Zz b, DT, ZZIE,J2 <00,
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Z C,,_z,,g;=0VkGZ,0r Z d,,_uF;=0VkEZ}, (4.19)
neZ neZ
and also by

Wo_{gex g= 2 b,DT"$, ¥ |b,|* < 0,

nel

Y & uby=0VkeZor ¥ 3,,_2,‘E:,=0VkeZ}. (4.20)

nel neZ

Proof. Since Vo= {TX{¢})>={TH{P)})), the assertions follow from Proposition 4.2
and (4.12) to (4.16). a

LetgeV,, and

g&= Z SnDTn¢= Z anTn$’

nel neZ

where z,,ez|b |2<oo and z,,ezlb] <oo. Using the notations in Section 3, if Y:=

{¢o, &1} and ¥:={@o,&,}, then

P\(6) =( Y b2, Y by le‘”") (4.21)
nekZ nelZ
and
ﬁ(ﬂl(e) =( 2 52nei’lo’ z 5211 + leino)- (422)
neZ nel

Theorem 4.1. Let ge V,. The following conditions are equivalent:

(1) The set T*({g}) is a Riesz basis of W,.

{2) The vector g satisfies the condition in (4.20), and there exist positive constants A
and B such that

ASP,OP,O)*<B ae.

(3) The vector g satisfies the conditions in (4.19), and there exist positive constants A
and B such that

Ag ‘g,(e)P(,,(e)* <B ae.
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Proof. By Propositions 3.3 and 4.3, we have (1)=(2) and (2)<(3). Conversely,
suppose that (2) holds. This implies that ge W,, and Tl({g}) is a Riesz basis of
{TX{g})>, which is a subset of W,. Therefore we have

KTH{,8})>=Vo ® KTH{g})> = 1 =<TXY)).

By Theorem 3.1, the above inclusion is in fact an equality. Hence {T*({g})> =W, and so
(1) holds. O

The next theorem shows the construction of four vectors each of which satisfies the
conditions in Theorem 4.1.

Theorem 4.2. With ¢ and ¢ given by (4.13) to (4.16), let

= ZZ(—I)—"“ﬁDT"&, (4.23)
V=3 (=7 e DT, (4.24)
J= ZZ(— )"+ d_ . ,DT"$, and (4.25)
n= ;(—1)-"+ITMDT"¢. (4.26)

Then TH{#i}), TH{¥}), TH{J}) and T{n}) are all Riesz bases of W,. Furthermore,
T%({n}) is biorthogonal to TX{7j}), and T%{y}) is biorthogonal to TH{\}'}).

Proof. We first prove that T%({#j}) is a Riesz basis of W,. For every keZ,

Z (— 1)—n+16—n+16n—2k= Z (_E—2u+152n—2k+5-2u52n+l—Zk)
nel nel

=3 (—€_2041C2n-2k+ 254206 - 2041)=0.
nel

By (4.20), e W,. Since TZ({d)}) is a Riesz basis of {(T%{¢})), by Proposition 3.3, there
exist positive constants A and B such that

AP (0P (0)*<B ae. (4.27)

By (4.13) and (4.22),

F”,,(B):( Z EZ"e""", z Can+ 1em)-

neZ nel
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By (4.23) and (4.21),

P{,,.,(0)=(_ Y Emi€™ Y fz,,e‘"").

nel nel
Hence

2

2
Pa@)Pa(0)*=|> &_2p416”™| + =Py (0)P 4 (0)*.

neZ

Z E—Zne_i"o
neZ

Then by (4.27), we have
ASPL(OP0)*<B ae.
Hence by Theorem 4.1, T4{#}) is a Riesz basis of W,. The assertions involving ¥, ¥ and

n are proved similarly.
For every ke Z, by (4.18) and (4.17),

Tniiy=3 (=DM (D)7

nel

= Z Conir1d_pizi+1
neZ

= Z En-de—n

neZl

= 60’,‘.

Hence T%{n}) is biorthogonal to T%<#}). The proof for the case involving Y and ¥ is
similar. O

We now consider the special case when T%({¢}) is orthonormal.

Corollary 4.1. Let TX{¢}) be an orthonormal basis of V,, and let

¢=Y c,DT"¢, Y lc,|*<c0. (4.28)
nel nel
Then
Z c,,_ 2ka= 60.k k € Z, (4.29)
neZ
and if
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Y= (=1)""e DT, (4.30)

nel

then TY{y}) is an orthonormal basis of W,.
Proof. The assertions are easy consequences of Theorem 4.2. O

Remark 2. The assertions in Corollary 4.1 can be proved directly without recourse
to Fourier analysis.

Remark 3. For the case of orthonormal wavelet basis in L3(R), Corollary 4.1 is well
known (see for example [5, 12, 13]).

We now give a general discussion on the decomposition and reconstruction formulae
involving the scaling function ¢, wavelet functions ¥ and 7, and their duals which are
defined as in (4.13){4.16) and (4.23)(4.26).

Suppose the Jth level “averages”

s\{:(f;d,l.v)’ V=0,...,2"—1,

of a vector f are available. Here ¢; ,;=D'T"¢.
One can then apply the following decomposition formulae

si=Y pi-asi*t, (4.31)
leZ
=Y q-2s", v=0,...,2~1 (4.32)

leZ

for j=J—1,...,0 to obtain the “averages” (s/) and “details” (t) for the next J lower
levels of resolution. The sequences (p,);.z and (q;);cz are the decomposition sequences.
After some appropriate filtering processing of the pyramidal structure of the “details”
and the “averages”, one can recover s, through the use of the reconstruction formula

sit'=Y a,_sl+ Y byt (4.33)

leZ leZ
for v=0,...,2/—1, j=0,...,J — 1. The sequences (a,);z and (b)), 2 are the reconstruction
sequences.
The sequences (p,),.z and (a;),.z are obtained from the two-scale relations for ¢ and
&. Using (4.13) and (4.16), we have
p=¢&, leZ, (4.34)

a=d, leZ. (4.35)
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The sequences (q,),cz and (b;),.z are obtained from the two-scale relations for the
wavelet function and its dual. For ¢ and ¢, using (4.24) and (4.25), we obtain

g=(—1)""""c_14y, l€Z, (4.36)

by=(—-1""*'d_,,,, leZ. 4.37)
For n and #, using (4.23) and (4.26), we obtain

a=(=1)""4d_,,,, leZ, (4.38)

b=(-1)"""%_,,,, leZ (4.39)

5. Cardinal spline wavelets

It is well known that the uniform B-spline N, of order k defined by

Ny=Xw0.1 (5.1
and

Ne=N,_;*N,, k=2,3,..., (5.2)

generates a multiresolution approximation (V,,),.cz of L%(R) ([13, 2]). Indeed for a fixed
k, T*{N,} is a Riesz basis of V,:={T%{N,})> and V,:=D"V,, where

Tf(x)=f(x—1) (5.3)
and
Df(x)=4/2f(2%), feL(R). (54)
By Lemma 2.1, F: V,— V, such that
F(f)= ZZ S, T"N TN, (55

is a positive, invertible operator which commutes with T. A straightforward calculation
gives

F(Z a,,T"N,‘>= Y (Z asz,‘(n+k—v)> T"N,. (5.6)
neZ neZ \veZ

The fundamental spline

Lay(x)= Z 2N 5 (x +k—v)

vel
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satisfies
L(n)= 0o,
(see [15, 2]). It follows from (5.6) that
Ny:=F ' (Ny)=Y «T"N,. (5.7
nel

By the discussion following Lemma 2.1, T?{N,} and TZ{N,} are biorthogonal Riesz
bases of V. This was obtained by Chui and Wang [2] by a direct computation.

We use the notations in Section 4, with ¢=N,. A Riesz basis for the orthogonal
complement W, of ¥, in ¥, is not unique. By the well known relation

Nux)= zk: 2"‘“(") N (2x—n), (5.8)

n=0 n
and comparing coefficients with (4.13) we have
2"‘“/2<k>, n=0,...,k
€= {O, " otherwise. (39)
With the function 7 defined by (4.23), a straight forward computation gives
fi(x)=2"** (= 1)"LE2x-1), (5.10)

which is a scalar multiple of the spline wavelet 7,(x) = L$¥)Y(2x —1) of Chui and Wang [2].
Using (5.8), we obtain

z-~+llzz;=o(f>1v2,(k—n+j), n=—kt1,..., 21,
= "hS = 5.11
¢=<(¢DT"¢) 0, otherwise. (51D
With the function ¢ defined by (4.24), (5.11) yields
2k—-2
Y(x)=—2"%1 Y (—1)'Nu(v+ DNS2x +v), (5.12)
v+0

which is related to the compactly supported spline wavelet

2k-2
Yulx)=2"**1 Z,o (= 1)"N2v+ DNG(2x —v)
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of Chui and Wang {3] by ¢(x)= — ¢, (x+k—1).
By a similar computation, we obtain the sequences for the filter coefficients in (4.15)
and (4.16), viz.

d,=2"**12 Y o0 k , neZ, (5.13)
leZ n-2l
and
£ (k
d,=2"%*12Y o2b 3 (j)Nz,,(k—Zl—j+n), neZ. (5.14)
leZ j=0

The functions  and 7 in (4.25) and (4.26) are then given by

PJ(x)=2"% (= 1)k Y o2OLE2x — 1 +21), (5.15)
leZ
2k—1
nx)=2"51 Y (=1)"Ny(v) Y PON2x —14v—2)). (5.16)
v=1 leZ

Note that §(x) is related to the dual wavelet ,(x) of Chui and Wang [3] by
Y(x)=—¢,(x+k—1). By Theorem 4.2, TX{n}) and T%{#j}) are biorthogonal Riesz
bases of W,, and likewise for T*{y'}) and TX{{}}).

Using the sequences in (5.9), (5.11), (5.13) and (5.14), the decomposition and
reconstruction sequences for these two wavelets  and 5 can be obtained via (4.34)-
(4.39). In this case, the sequences (c,);.z and (&), are finite while (d));., and (d)),.z are
infinite sequences which depend on the B-spline coefficients («{**’),., of the fundamental
function L,,. The sequence (a?V),. satisfies the infinite linear system of equations

Y a?IN(k—1+j)=8,0. jeZ, (5.17)

leZ
and has the properties
M=o, keZ
and
4™ =0(r| M), 1= oo

where r, is the largest root less than —1 of the Euler-Frobenius polynomial of degree
2k—2 with coefficients (2k— IN(j), j=1,...,2k—1 (see [15, p. 38]). The absolute
value of «{?¥ decreases exponentially with increasing |I| In numerical computations, we

truncate the sequence to (af**)M _,,. This results in a finite section of the linear system
(5.17) which is diagonal dominant and can be efficiently solved by exploiting the
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symmetric nature of the sequence. Consequently the other sequences which depend on
(af?®) are also truncated accordingly.

Note here that we have two sets of decomposition and reconstruction formulae for
use in numerical applications, one for the ¢— pair and the other for the ¢—n pair. For
each of the two sets of formulae, two out of the four decomposition and reconstruction
sequences are finite. For the first set, this same feature is seen in [3]. However, for the
second set, if one were to interchange the roles of n and 7 as would be the case in [2],
only one out of the four sequences would be finite.

Determination of s/

i3

One of the advantages of using spline wavelets is the ease with which the “averages’
s can be computed from the data using the cardinal spline interpolant. Suppose that
the values of a function f € L%(R) are available at the points 277y, ve Z. Let

fix)=3 fQ7IML(2'x~v) (5.18)

vel

be the cardinal spline interpolant of f, where L,(x) is the order k fundamental spline and
k is assumed to be an even integer [15]. Obviously fi(x)e V; and we can express

[H)=Y s1¢5.4x), (5.19)

nel

where

sl=2-2 cf 27 %) p(x —n) dx.

A direct computation using (5.18) and the relations

Ly(x)= 3, afPN\(x +k/2—}),

JjeZ
and
Ny =N;* N,

leads to

2=2712Y £ Y BN, (k/2+v+ j—n).

vel jel
Remark 4. In [10], a periodized version of wavelet algorithms is applied to the

transformation and compression of matrices. A linear system in which the matrix
satisfies a discrete analogue of the Beylkin—-Coifman-Rokhlin condition (see [1]) is
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transformed by the wavelet decomposition algorithm and compressed. An approximate
solution of the original linear system is then recovered from the solution of the
compressed system by the reconstruction algorithm. Numerical results show that a
judicious choice of compactly supported non-orthonormal spline wavelets of Chui and
Wang [3] and those constructed in this section performs better in matrix compression
than the compactly supported wavelets of Daubechies [5]. A detailed discussion can be
found in [10].
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