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Wave scattering by an isolated cyclogeostrophic
vortex
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The propagation paths of oceanic internal tides are influenced by their interactions with
vortices. We examine the scattering effect that an isolated vortex in (cyclo)geostrophic
balance has on a rotating shallow-water plane wave. We run a suite of simulations in
which we vary the non-dimensional vorticity of the vortex, Ro, the relative scale of the
vortex size to the Rossby radius of deformation, Bu, and the size of the vortex compared
with the plane wave wavelength, K. We compare the scattered wave flux pattern with
ray-tracing predictions. Ray-tracing predictions are relatively insensitive to K in the 1 <

K < 4 range we investigate; however, they generally underestimate the broad angles of the
shallow-water wave scattering patterns, especially for the lower end of the K range. We
then measure the ratio of the scattered wave energy flux to the incoming wave energy flux,
denoted by S, for each simulation. We find that S follows a power law S ∝ (FrK)2 when
S < 0.2, where Fr = Ro/

√
Bu is the Froude number. When S > 0.2, it starts plateauing.

Key words: wave scattering, vortex interactions, wave–turbulence interactions

1. Introduction

When the barotropic tide oscillates over the bathymetry of the ocean, it creates internal
tides (ITs). These are internal waves that oscillate at or near the generating tidal frequencies
(Garrett & Kunze 2007). Of the 4 TW that are injected into the ocean by astronomical
forcing, approximately 2.4 TW are transferred to ITs (Egbert & Ray 2003). Most of their
energy is lost to turbulent mixing at the generation sites, while approximately 10 %–40 %
propagate away (Egbert & Ray 2000). Low modes can propagate thousands of kilometres,
making the details of their horizontal propagation critical to determining where they will
eventually dissipate (Zhao et al. 2016). This makes them an essential aspect for forecasting
climate and tuning general circulation models (de Lavergne et al. 2019).
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Unlike the barotropic tide, which oscillates in phase with astronomical forcing, IT
features are more susceptible to evolving as a result of changing ocean conditions
throughout its propagation (Nash et al. 2012). These changes include evolving local
stratification and, of note for this study, eddies. At mid-latitudes, mesoscale eddies
(∼100 km wide) are well described by quasi-geostrophic models. These are flows with
negligible advective effects and whose dynamic evolution is dominantly characterised by
a balance between Coriolis and pressure forces, which leads us to hereafter refer to these
flows as ‘balanced’. They feature small Rossby numbers Ro = U/(Lf ), where U and L
are characteristic eddy velocity and length scales, respectively, and f is the local Coriolis
parameter.

Advances in satellite altimetry in the 1990s, starting with the TOPEX/Poseidon mission,
provided the first global visualisations of large-scale currents and of the mesoscale eddy
field (Fu et al. 1994). This allowed Rainville & Pinkel (2006) to calculate the propagation
paths of mode-1 to mode-5 ITs using ray tracing. They also showed that higher modes are
more susceptible to phase shifts by the balanced flow, causing an apparent loss in IT energy
when measured by harmonically filtering narrow bands around the tidal frequencies.
However, ray tracing assumes that the IT horizontal wavelength λ is small compared
with the length scale of variations in the eddy velocity L. Mesoscale eddies usually have
length scales smaller than the largest mode-1 semi-diurnal tides at mid-latitudes, but are
typically larger than higher IT modes. As such, ray tracing is effective only for higher
modes in principle, but is often used when length scales are similar. Chavanne et al.
(2010) used three-dimensional ray tracing to model wave propagation of an IT with a
50 km wavelength through a 55 km vortex inspired by a vortex near the Hawaiian ridge.
They showed that, even near generation sites, the IT can become very incoherent, that is, it
can develop significant and time-evolving phase shifts with the astronomical forcing. They
also showed that IT energy could be amplified up to a factor of 15 in the core of the vortex.

New remote sensing satellites, such as the Surface Water and Ocean Topography
(SWOT) mission (Morrow et al. 2019), resolve scales up to a few tens of kilometres. The
increased resolution should enable us to observe higher Rossby numbers and shorter IT
wavelengths, prompting researchers to use new techniques to further refine the mapping of
ITs that do not use the ray-tracing assumption. One such technique is the kinetic equation
developed in Savva & Vanneste (2018), Kafiabad, Savva & Vanneste (2019) and Savva,
Kafiabad & Vanneste (2021) that models the redistribution of inertia–gravity wave energy
in position–wavenumber phase space when embedded in quasi-geostrophic turbulence.
This method, however, requires a small Rossby number. A powerful deterministic method
that does not assume length scale separation is triad resonance theory. Ward & Dewar
(2010) used triad resonance theory to describe the evolution of a wave mode embedded
in a balanced flow in the one-layer rotating shallow-water equations (RSWEs). In this
interaction, the balanced flow provides a pathway for the waves to exchange energy with
other waves of constant frequency. This method clearly illustrates how the advection term
couples the balanced mode and wave mode to force the linear equations of motion at
resonant wave modes. This so-called ‘catalytic interaction’ of a potential vorticity mode
(i.e. a mode whose features can theoretically be entirely derived from potential vorticity
inversion) and two wave modes was first described in Lelong & Riley (1991) and later
in Bartello (1995). However, as the Rossby number increases as well as the duration
of the scattering process, near-resonant triads and higher-order nonlinearities become
increasingly significant, and thus a solution that only considers resonant triads becomes
increasingly inaccurate.

In this article, we model the interaction between an isolated balanced cyclogeostrophic
vortex and a Poincaré wave by numerically solving the single-layer RSWEs. Indeed, in
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Figure 1. Set-up for the simulation with parameters Roζ = −1.27, Bu = L2
d/(πR)2 = 1.76, where Ld is the

Rossby radius of deformation, and K = πR/λ = 3.0. (a) Normalised vorticity field for an isolated anticyclonic
cyclogeostrophic vortex. Black arrows represent the vortex velocity vectors. (b) Height field for a Poincaré wave
that is forced from the left side of the domain and interacts with the isolated vortex pictured in (a). The black
dash–dotted square in (b) aligns with the bounds of panel (a).

isolation, any IT mode of a stratified, rotating fluid obeys a set of RSWEs, with the
parameters appropriately redefined (e.g. Vallis 2017, § 3.4). This allows us to explore
the parameter space spanned by Rossby numbers that range from very small to O(1)

values, vortex scales that widely straddle the Rossby radius of deformation and Poincaré
wavelengths that are four times smaller than the vortex scale to as large as the vortex.
We first qualitatively compare the scattered wave flux with ray-tracing predictions. We
then calculate the amount of energy that is transferred from the incoming wave to the
scattered waves for each simulation and then find the scaling relations given the wave and
vortex parameters. These interactions are expected to be ubiquitous in the ocean, with
applications for diagnosing processes in global circulation models and satellite altimetry
data.

2. Methods

2.1. Physical and mathematical set-up
Here, we describe our equations and the processes we model, which we summarise in
figure 1.

We solve the RSWEs on a square domain of side length Lx, with which we associate a
Cartesian coordinate system (x, y) centred in the middle of the domain. The layer is under
gravitational acceleration g, has depth H at rest and rotates as an f -plane. These parameters
define a non-rotating speed c0 = √

gH and a Rossby radius of deformation Ld = c0/f . The
forced–dissipated one-layer RSWEs are

∂tu + u · ∇u + g∇h + f ẑ × u − μ∇4u = F w(x, t) + Sw(x) (2.1a)

and
∂th + h∇ · u + u · ∇h − μ∇4h = Fh(x, t) + Sh(x), (2.1b)

where u = (u, v) is the horizontal velocity field, ∇ = (∂x, ∂y) is the horizontal del
operator, μ is the kinematic hyperviscosity (utilised only to provide numerical stability)
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and h is the height of the total water column. The terms F w, Sw, Fh and Sh on the
right-hand sides are wave-forcing and sponge-layer terms, which we describe in more
detail later.

Our initial condition consists of an axisymmetric circular vortex centred at the origin
of the domain. We achieve this through a three-step process. First, we create a Gaussian
vortex in geostrophic balance following

[
u(0)
Θ , h(0)

Θ

]
=

[
π2fr,

H
Bu0

]
Ro exp

(
− r2

2(L/π)2

)
, (2.2)

where u(0)
Θ and h(0)

Θ are the initial tangential velocity and height fields of this vortex, L is its
characteristic width, Bu0 = (Ld/L)2 is the Burger number and r is the distance from the
centre of the vortex. While (2.2) is a relatively good approximation for a quasi-geostrophic
vortex, water parcels in a vortex with higher Ro experience a significant centrifugal
acceleration, which modifies the balance. Applying the iterative method of Penven, Halo
& Marié (2014), which we detail in Appendix A, to (2.2) yields velocity fields u(1)

Θ and
h(1)
Θ that are one step closer to achieving cyclogeostrophic balance. We then use these

velocity and height fields as initial conditions for an unforced RSWE simulation. After a
transitory adjustment in the form of waves radiating from the vortex and being dissipated
by additional sponge layers (see Appendix B), and a rearrangement of the water parcels,
a stationary vortex remains. Finally, we save the velocity and height fields u(2)

Θ and h(2)
Θ to

be used later as initial conditions for our forced simulations. We repeat this procedure for
as many initial vortices as we need. For all simulations, L = 25 km and f = −10−4 s−1.
Note that at the end of this procedure, the vortex has departed from the purely Gaussian
shape of (2.2), especially for high Rossby and Burger numbers, for which the adjustment
is the strongest.

The adjusted vortex length is defined as La = πR, where R is the radius of the maximum
tangential velocity Uq = u(2)

Θ (R), as shown in figure 1(a). We define its vorticity Rossby
number and bulk Rossby number as

Roζ = ζ

f

∣∣∣∣
x=y=0

and Rob = Uq

Laf
, (2.3a,b)

respectively, where ζ = ∂xv − ∂yu is the vertical vorticity (note that, at this point, no other
form of motion is present in the domain).

The resultant azimuthal velocity and vorticity profiles are shown in figure 2. For a
given value of Rob, cyclogeostrophic balance makes the cyclonic vortices wider than their
geostrophic counterparts. For a cyclonic vortex in the southern hemisphere, the inward
pressure gradient must balance not only the outward Coriolis force but also the centrifugal
force. Thus, a decrease in velocities near the initialised geostrophic value of Uq is needed
to achieve balance, leading to a wider shape. On the other hand, for anticyclonic vortices,
the centrifugal force and pressure gradient are outward and balance the inward Coriolis
force. Thus, the velocity increases, leading to a narrower profile (Shakespeare 2016).

In order to capture this cyclonic/anticyclonic asymmetry in the cyclogeostrophic
vorticity distributions, which the bulk Rossby number misses, we also measure the
enstrophy, ε, of each vortex, defined below as the integral of the square of the vorticity

ε′ =
∫∫

ζ 2 dx dy. (2.4)
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Figure 2. Azimuthal velocity profiles of a pair of cyclonic (solid blue) and anticyclonic (solid green) vortices
that originally started from the same geostrophically balanced velocity profile (solid red) with bulk Rossby
number Rob = 0.18. The final normalised velocity profiles are shown in (a) and the normalised vorticity
profiles are shown in (b). The vertical dash–dotted lines correspond to the position x = R, where the velocity
is maximum. The anticyclonic profiles are flipped over the x-axis to easily compare them with the cyclonic
profiles.

Enstrophy is a convenient method for measuring the strength of the vortex for two reasons.
First, the vorticity is the most relevant quantity for scattering. This is expected from
ray-tracing theory, which predicts that at leading order in vortex velocity U, the vortical
part of the mean flow will rotate the wavevector k, while the divergent part will only affect
the ray paths at a higher order (Bühler 2014, § 4.4.3). This rotation of the wavevector is
the main form of scattering that we expect in our experiments. This is consistent with triad
resonance theory, which dictates that the dominant triad interaction between the vortex and
the wave flow produces a discrete rotation of the wavevector. Second, enstrophy integrates
the vorticity over the whole domain and therefore captures some of the information about
the spatial structure of the anticyclonic and cyclonic profiles created after cyclogeostrophic
adjustment. We non-dimensionalise enstrophy with ε = ε′/(L2

af 2).
We then generate a plane wave on the boundary at x = −Lx/2, hereafter referred to as

the ‘incoming side’. It propagates along x with wavenumber ki = (2πλ−1, 0), where λ is

the wavelength, and frequency ω0 =
√

f 2 + c2
0k2

i with corresponding period P = 2πω−1
0 .

We generate this wave via the forcing terms

F w = τ−1
w (Uw − u) Πw and Fh = τ−1

w (Hw − h) Πw, (2.5a,b)

which first appeared in (2.1a), where τw = P is the wave restoration time scale. In these
forcing terms, the fields (u, h) are restored to values (Uw, Hw) that satisfy the polarisation
relations for Poincaré waves (see Appendix C), that is,

Uw = Frwc0

(
1,

ω0

f

)
cos(|ki|x − ω0t) and Hw = |ki|H

f
sin(|ki|x − ω0t), (2.6a,b)
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where Frw = Uw/c0 is the wave Froude number, which we keep small throughout this
article to keep the waves linear. This forcing occurs over a limited spatial window along x,
following

Πw = Π(x, −Lx/2), (2.7)

where Π(x, x0) is a Tukey window that we detail in Appendix B.
At the boundary x = +Lx/2, hereafter referred to as the ‘outgoing side’, a sponge layer

absorbs waves through the sponge terms

Sw = −τ−1
s uΠs and Sh = τ−1

s (H − h)Πs, where Πs = Π [x, Lx/2 − λ] (2.8)

and τs = 0.05P is the sponge restoration time scale. We verified that the vortex remains
unaffected by the wave: for our purposes, it does not move, deform, or lose or gain energy
in any detectable manner. The result is a time-independent scattering amplitude pattern
induced by the vortex shown in figure 1(b).

2.2. Numerical set-up and experimental design
We use Dedalus (Burns et al. 2020) to solve the RSWEs spectrally with periodic
boundaries in the horizontal directions. We use 512 points in each direction with a
uniform spacing of dx = L/50. The time step is determined by the vortex strength using
the Courant–Friedrichs–Lewy condition dt < 10−2 dx/|Uq|. The simulation time for each
experiment is ts = 4tT/3, where tT = Lxk/ω0 is the transit time of the wave phase across
the domain. In practice, the phase and group speeds of the incoming waves are similar in
magnitude, and thus tT is sufficient time for the wave packets to reach the other side of the
domain.

To initialise the simulations, we define the unadjusted ratio of the vortex length scale to
the wavelength of the incoming wave K0 = L/λ, which we vary in the range 1 � K0 � 4.
In doing so, we test the consequences of violating the traditional ray-tracing assumption,
which requires K0 � 1. Similarly, we initialise the unadjusted Burger number as Bu0 =
(Ld/L)2 from 0.5 to 1.5. McWilliams (2016) noted that the size of realistic vortices is
around the radius of deformation Ld. However, we find that they are stable at various scales
and explore multiple regimes for completeness. Due to the different adjustment processes
between cyclonic and anticyclonic vortices, for a given initial L, the adjusted length scale
ratio K = La/λ is not the same for the cyclonic and anticyclonic simulations. In the end,
K ranges from 0.5 to 4.5, and similarly the adjusted Burger numbers Bu = (Ld/La)

2 range
between 0.43 and 2.6. We use vortices whose values for Roζ vary from −1.27 to 0.89.
We keep Frw < 10−3 for all simulations to avoid nonlinear steepening and wave–wave
interactions between the different components of the incoming and scattered waves. Our
suite of simulations consists of all combinations of the Rossby numbers, Burger numbers
and length scale ratios shown in table 1, resulting in a total of 200 simulations.

2.3. Diagnostics
In this section, we show how to extract the scattered wave fields from the simulation
outputs. We then demonstrate how to calculate the phase-averaged flux and outline the
process for calculating the ratio of wave energy scattered by the vortex.

Because the vortex does not evolve during the course of our simulations, we extract the
wave field (uw, hw) simply by subtracting the initial conditions from the simulation output,
that is, uw = u − u(2)

Θ and hw = h − h(2)
Θ . After the wave has reached the sponge layer, the

sub-domain defined by a square of length 4L centred at the origin will have a wave field
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Parameter Anticyclonic Cyclonic

Roζ −1.27, −0.54, −0.22, −0.13 0.18, 0.47, 0.60, 0.89
Rob (×100) −10.46, −5.07, −2.16, −1.19 1.80, 4.65, 5.98, 7.96
ε (×100) 19.02, 4.39, 0.80, 0.24 0.55, 3.71, 6.12, 11.01
Bu(La/L)2 = Bu0 0.5, 0.9, 1.0, 1.1, 1.5 0.5, 0.9, 1.0, 1.1, 1.5
K(La/L)−1 = K0 1, 1.5, 2, 3, 4 1, 1.5, 2, 3, 4

Table 1. Simulation parameters shown as initialisation before adjustments are made.
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Figure 3. Phase-averaged wave flux for (Roζ , Bu, K) = (0.60, 0.44, 4.3). The solid blue lines in the control
volume are used to calculate the ratio S of the scattered wave flux to the incoming wave flux. The vector
nin (nout) is the unit vector associated with the incoming (outgoing) boundary. (a) Full wave field φ̄w; (b) y
component of φ̄s.

pattern that is constant in time if averaged over one period P. We define the phase-averaged
energy flux density by

φX = 1
2

c2
0uX ηX and φ̄X = 1

P

∣∣∣∣∣
∫ tp+P

tp
φX dt

∣∣∣∣∣ , (2.9a,b)

where ηX = hX − H and tp > 0.9tT , which ensures that the wave has propagated past the
vortex but has not yet wrapped around the periodic boundaries. The subscript X indicates
which field is used. For example, X = w denotes the phase-averaged total wave flux φ̄w,
which we show in figure 3(a) for a typical total wave field.

To isolate only the flux of the scattered waves φ̄s shown in figure 3(b), we take a
two-dimensional Fourier transform of uw, vw and hw and cancel the amplitudes of the
Fourier modes whose wavevectors are parallel to the incoming wavevector ki. We then
take an inverse Fourier transform to obtain us, vs and hs, which we use to calculate φ̄s
using (2.9a,b).

To calculate the ratio of scattered wave flux to incoming wave flux, we define the control
volume shown in figure 3, which is made up of four boundaries located away from the
vortex. The incoming boundary is placed at x/L = −2, spans −2 � y/L � 2 and has unit
normal vector nin = (−1, 0). Given that we observe the backscatter to be negligible, all of
the energy enters through this boundary. We define the outgoing boundary as a semicircle

999 A100-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.963


J. Uncu and N. Grisouard

in the x > 0 half-plane, centred around the origin and of radius x/L = 2, where virtually
all of the energy exits. We denote by nout the unit vector normal to this boundary. There is
virtually no energy moving through the top and bottom boundaries shown in dashed blue
lines.

The total incoming and scattered fluxes are then

Φin =
∫

φ̄w · nin ds and Φs =
∫

φ̄s · nout ds, (2.10a,b)

integrated along the incoming and outgoing boundaries, respectively. To compare how
much energy is scattered between simulations, we define the scattering ratio as

S = Φs/Φin. (2.11)

While this definition excludes the energy in the waves which have scattered back into the
incoming direction due to the summation of wavevector rotations, the amount of energy in
these waves is likely to be small compared with the total scattered energy. Note that, since
the vortex does not evolve in time, triad resonance theory implies that the scattered waves
remain at the same frequency as in the incoming wave, and thus wave action and wave
energy can be related by a constant (Kafiabad et al. 2019). We will calculate this quantity
for all simulations in the next section, and we will use scaling laws to draw a relation from
the non-dimensional variables to S.

3. Results

3.1. Scattering pattern
The pattern of the wave flux density magnitude |φ̄w|, shown in figure 3(a), consists of an
alternating ‘constructive/destructive’ interference pattern in the {x > 0, y < 0} quadrant,
with the strongest flux values to be found near the exit of the vortex centre. In the {x > 0,
y > 0} quadrant, there is a less well-defined scattering pattern. This qualitatively matches
the alternating flux pattern of Dunphy & Lamb (2014) for a barotropic vortex. We see that
there are regions on the outgoing side of the vortex where the flux has dropped to near
zero and regions where the flux is more than three times that of the incoming wave.

To explain these features, we show the y-component of the scattered wave flux density,
φ̄s · ŷ, in figure 3(b). Indeed, isolating the scattered part of the wave field eliminates
the distracting interference pattern with the unscattered wave. The y-component helps
us to distinguish three scattered beams. The first one, hereafter referred to as the central
scattered beam (CSB), crosses the centre of the vortex. In the cyclonic case presented in
figure 3, this beam is characterised by φ̄s · ŷ < 0. The other two beams emanate from the
flanks of the vortex and have φ̄s · ŷ > 0. We hereafter refer to these beams as right and left
scattered beams (RSB and LSB, respectively), in reference to whether they approach the
left or right flank of the vortex with respect to the direction of incident wave propagation.

We can now interpret that the region where we see a maximum in |φ̄s| is where
constructive interference between the RSB and the CSB takes place. The regions where
we find zero flux are created by the RSB and CSB destructively interfering. In experiments
with strong vortices, we find lines of destructive interference due to a 180◦ phase difference
between RSB and CSB.

We claim that the scattering direction is mostly controlled by the vorticity. In our
simulations, the Coriolis parameter is negative, so the negative vorticity in the centre of
the cyclonic vortex produces the CSB, whose dominant wavevector rotates clockwise with
respect to the incoming wavevector, and the opposite-sign vorticity region on the outside
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Figure 4. Full flux field φ̄w for two similar but opposite-signed Roζ and two wavelengths. Here, Bu = 0.88
in all cases. Ray-tracing lines are in black. The green and purple contours correspond to the colour bar
shown in figure 1(a). The two dashed blue lines represent the primary scattering angle predicted by triad
resonance theory. Panels correspond to parameter values (a) Roζ = 0.60, K = 3.2; (b) Roζ = 0.60, K = 1.07;
(c) Roζ = −0.63, K = 3.2; and (d) Roζ = −0.63, K = 1.07.

(recall figure 1a) produces the LSB and RSB, whose wavevector rotates anticlockwise.
Similarly, an anticyclonic vortex produces a CSB whose dominant wavevector rotates
anticlockwise and produces the LSB and RSB whose wavevectors rotate clockwise. To
support this claim, we now compare this pattern with the predictions from ray-tracing
equations, which we recall in Appendix D, for an anticyclonic and a cyclonic vortex of
similar |Roζ | and two different values of K.

Figure 4 shows that the rays which are initialised to only propagate through the
positive/negative vorticity on the vortex edges are rotated anticlockwise/clockwise. The
rays which travel through the centre are predominately rotated with the sign of the central
vorticity. Thus ray tracing captures the ‘anticlockwise/clockwise/anticlockwise’ scattered
beam pattern for cyclonic vortices and the ‘clockwise/anticlockwise/clockwise’ pattern
for anticyclonic vortices. There are small differences in the ray-tracing results when
we compare cyclonic and anticyclonic vortices that are more than just a flip over the
y = 0 axis for two reasons. First, anticyclonic vortices are ‘slimmer’ (vorticity is more
concentrated near the centre, over a shorter radius) than cyclonic vortices. Second, the
refractive effects due to the height field in the term dω/dx in (D1a,b) differ between
cyclonic and anticyclonic vortices. Indeed, an anticyclonic vortex centre rises above the
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mean depth, and since the group speed

cg = ghk
( f 2 + ghk2)1/2 (3.1)

increases with depth, the waves travel faster through the centre of the vortex, and thus the
height effects make the waves curve away from the centre line y = 0. Oppositely, cyclonic
vortex centres dip below the mean depth, so height effects make waves curve towards the
centre line. We checked that this effect is an order of magnitude smaller than the vorticity
effect for balanced vortices.

The exact location where the rays converge aligns more closely with constructive
interferences between CSB, LSB and RSB, for K = 3.2 as opposed to K = 1.07. Note
that the ray-tracing predictions do not vary much for the range of K explored. Figure 4
reveals that the most striking limitation of ray tracing is that it does not capture the broad
angles of scattering, as can be seen from the interference pattern created by the incoming
wave and scattered waves.

The triad resonance theory formalism of Ward & Dewar (2010) can be used to predict
the principal scattering angle θp, that is, the angle made between the incoming wave with
wavevector ki and the scattered wave ks, which is determined by the main length scale in
the vortex kv = 2π/La. Assuming |ki| = |ks|, the principal angle can be calculated as a
function of K as

θp = 2 arcsin((2K)−1). (3.2)

This implies that the angle of scattering would increase for smaller K. For K = 1.07,
triad resonance predicts that if there were only one balanced length scale La, the angle
of scattering would be 65◦, which is more than what we measure in our experiments as
shown in figure 4. We expect the discrepancy to be due to the multiple length scales and
spatial variations of the vorticity field experienced by the part of the plane wave passing
through the centre. Thus, even in this simple case, the principal scattering angle is not
enough to describe this pattern. Moreover, non-resonant, higher-order interactions would
not be captured by triad resonance theory. Thus, neither ray tracing nor triad resonances
easily predict the exact nature of the scattering pattern in this simple set-up.

3.2. Scattering statistics
We now summarise the relationship between the scattered ratio S on the non-dimensional
numbers Bu and K, as well as one of the three vortex strength metrics Rob, Roζ and ε.
Visual inspection reveals that for small values of the non-dimensional parameters, the
scattering ratio follows power-law relations, while for large values the scattering ratio
approaches a maximum of 100 % conversion. The latter is similar to the findings of
Dunphy & Lamb (2014), who carefully checked that their Boussinesq eddies did not
exchange net energy with the waves. Therefore, we propose to use an arctan relationship
that is linear near the origin and tends to a positive constant towards infinity. We considered
several functions, none of which demonstrated superior performance (see Appendix E),
and settled on

Sθ
Z = 2

π
arctan(AZαBuβKγ ), (3.3)

where the superscript θ denotes the optimised fit, Z ∈ {|Rob|, |Roζ |, ε} is a placeholder for
the three metrics of vorticity we will test and A, α, β and γ are the optimisation parameters.
To find them, we fit the cyclonic experiments separately from the anticyclonic experiments,
and in parallel, for comparison, we fit both datasets together, hereafter referred to as the
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A α β γ

Anticyclonic 10.67 ± 0.19 2.13 ± 0.01 −0.98 ± 0.01 2.10 ± 0.01
Cyclonic 5.35 ± 0.21 1.94 ± 0.01 −1.13 ± 0.01 2.10 ± 0.01
Combined 9.78 ± 0.59 2.10 ± 0.02 −0.99 ± 0.01 2.02 ± 0.02

Table 2. Optimisation parameters and their standard deviations for (3.3).

–0.5

0.1

–0.1 0.10 –0.1 0.10 –0.1 0.10

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.50

SZ
θ(Z = ε)

S

–0.5 0.50

SZ
θ(Z = Rob)

–0.5 0.50

SZ
θ(Z = Roζ)

(b)(a) (c)

Figure 5. The x-axis shows the data scaled by the fit function and respective optimisation parameters for the (a)
enstrophy, (b) bulk Rossby number and (c) vorticity Rossby number. The size of the markers corresponds to the
bulk Rossby number, the colours correspond to the adjusted ratio of length scales and the markers correspond
to the unadjusted Burger number, as shown in the legend in figure 6. The black dashed lines are perfect fit lines.

‘combined case’. We use the least squares method to find the optimisation parameters
using Z = |Rob|, which we show in table 2. We find that all the optimisation parameters
have small errors, indicating that our fitting function is appropriate. The combined case is
plotted in figure 5, where we have rescaled the data based on the fit parameters. We see
that anticyclonic vortices scatter energy at a slightly higher rate, as evidenced by the data
points being slightly above the line of perfect fit and as confirmed by table 2. However, the
distinction is too small to conclusively claim that this is physical. Thus, we hereafter focus
on the combined cases.

We now redo the optimisation using the enstrophy ε and the vorticity Rossby number
Roζ in addition to the bulk Rossby number Rob. The optimisation parameters for the three
vortex strength metrics are shown in table 3. Figure 5 shows the three combined fits scaled
by their respective parameters. They appear to be approximately equivalent; however, if
we plot the same data on a logarithmic scale (figure 6), we observe that using the vorticity
Rossby number Roζ is not as effective as using the enstrophy ε or the bulk Rossby number
Rob, which yield closer fits to data points. Both seem to result in round number scaling
for α as well, with α ≈ 2 if Z = Rob or α ≈ 1 if Z = ε. No matter which measure of
vortex strength we use, we find that β ≈ −1 and γ ≈ 2. Simplifying the dependencies of
S further, we observe that

Rob/
√

Bu = U/
√

gH = U/c0 = Fr, (3.4)

where the last number is the Froude number.
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A α β γ

Rob 9.78 ± 0.59 2.10 ± 0.02 −0.99 ± 0.01 2.02 ± 0.02
Roζ 0.057 ± 0.001 1.77 ± 0.02 −1.02 ± 0.01 2.05 ± 0.02
ε 0.47 ± 0.02 1.03 ± 0.01 −0.98 ± 0.01 2.02 ± 0.02

Table 3. Optimisation parameters using three different vortex strength metrics in place of the bulk Rossby
number in (3.3).
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Figure 6. The scattering ratio data in figure 5 shown in logarithmic scale. The black dashed lines show
perfect fits.

Collecting these approximations, we find that for small values of our non-dimensional
parameters, (3.3) simplifies to

S ≈ 5Fr2K2, (3.5)

which we find to be reasonably accurate up to S ≈ 0.2 (see figure 7). This simplified
equation breaks down the scattering into a ratio of velocities multiplied by the ratio of
length scales.

3.3. Scaling interpretation
Here, we offer a possible interpretation for the seemingly round number scaling for Ro,
K and Bu we found in the previous section. To interpret our results, we turn to Ward &
Dewar (2010), who derived analytical solutions for a single wave mode interacting with a
single-length-scale zero-frequency balanced mode by expressing the RSWEs in the form
of interacting triads. In a simplified case, they showed that the amplitude of the scattered
wave mode As increases as a function of the balanced mode amplitude Av , the incoming
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Figure 7. Simplified scaling for low scattering ratios as a function of only the Froude number Fr = Rob/
√

Bu
and length scale ratio K.

wave mode amplitude Ain(t) and the interaction coefficient Γ , which is directly derived
from the RSWEs. Specifically, this evolution is described by (adapted from Ward & Dewar
2010, (3.11))

dAs

dt
= 2Γ AvAin. (3.6)

Let us start by assuming that the wave mode amplitude is constant in time, which can be
achieved to a good approximation if the interaction is weak or brief. Then, we have

As/Ain = 2Γ AvTi, (3.7)

where Ti is the time scale of the interaction. We can express this equation as a function of
our non-dimensional variables. First, the amplitude of the vortex mode is proportional to
the bulk Rossby number Av ∝ Rob. Second, while the form of the interaction coefficient is
very complicated even for a single triad, Ward & Dewar (2010) found that for K � √

Bu,
Γ ∝ K and for K � √

Bu, Γ ∝ K2. In our parameter regime, the Burger numbers are such
that 0.7 <

√
Bu = Ld/L < 1.6, and we use waves with 0.5 � K � 4.5. We are therefore

in an intermediate regime where the scaling Γ obeys cannot be estimated a priori. As we
are about to see, our simulations appear to be closer to a regime where Γ ∝ K. Finally, the
time scale of this interaction is proportional to the group speed. Note that f drops out of the
scattering relation, which is because the wave frequencies we examined are high enough
compared with | f |, making the waves act more like non-rotating shallow-water waves, and
thus all group speeds are close to c0. This time scale is then related to the Burger number
through Ti ∝ 1/c0 ∝ Bu−0.5. Thus, assuming Γ ∝ K, we have

S = Φs/Φin ∼ (As/Ain)
2 ∝ Ro2

bK2Bu−1, (3.8)

as we found using our theory-agnostic three-dimensional fits for small values of S.
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As the time of interaction increases, the amplitude of the incoming wave decreases
and hence the growth rate of the triads progressively decreases. This is an alternative
interpretation of the plateau that we see at high values of S, and is why the arctan must be
included in our scalings.

Recall that our approximately Gaussian vortex has multiple energetic length scales
forming a spectrum of triads, each with their own value of Γ . Furthermore, each of the
scattered waves that form due to the interaction of the incoming wave can then interact
themselves with the vortex to create secondary triads. Thus, the fact that the specific vortex
shape that we chose results in very similar scaling to the one-length-scale vortex in Ward &
Dewar (2010) is remarkable. Furthermore, it may imply that similarly bell-shaped isolated
vortices will have similar scalings. In light of these arguments, we expect the details in the
way they plateau to be different, but similar isolated vortices likely follow the same growth
rates for small values of S.

4. Discussion and conclusion

We examined the scattering effect induced by an isolated vortex on a plane Poincaré
wave. By removing the vortex and the incoming wave, we are able to visualise the
scattered wave energy using the wave-averaged flux. The scattered energy forms in an
‘anticlockwise/clockwise/anticlockwise’ (‘clockwise/anticlockwise/clockwise’) pattern,
which we attribute to the strong negative (positive) vorticity in the interior for
(anti)cyclones and weaker positive (negative) vorticity in the exterior. The ray-tracing
equations capture this alternating pattern, but the locations of ray convergence do not
always align with the locations of maximum amplitude in the simulation data. We see the
expected limitations of ray tracing when the vortex and wavelength are of comparable size,
most strikingly when K = 1, where the angle of scattering it predicts is much shallower
than those we see in the simulations. The scattering pattern of anticyclonic and cyclonic
vortices of similar Rossby number magnitude lead to slightly different patterns due to the
difference in shape after cyclogeostrophic balance, but the effect is minor in our parameter
regime.

Overall, our scattering patterns qualitatively agree with those of the Boussinesq
simulations of Dunphy & Lamb (2014, figure 5) for barotropic vortices, which gives us
confidence that RSWEs are a appropriate model for studying IT/vortex interactions. Note
that these authors mention that their attempts at interpreting the scattering pattern with ray
tracing had failed, leading them to conclude that this approach is not appropriate in their
regime. Here, we interpret these ‘hot–cold’ patterns as interference patterns between three
scattered beams and the transmitted incident wave, whose general features and directions
qualitatively agree with ray-tracing predictions. As such, our interpretation rehabilitates
ray tracing to some degree. However, it fails to predict the very existence of a transmitted
plane wave, nor can it predict how wide the scattering pattern is, even in experiments with
high K values. Therefore, previous work based on ray tracing (e.g. Rainville & Pinkel
2006; Chavanne et al. 2010) should be interpreted with caution.

On a related subject, figure 8 of the previously cited article shows very different
scattering patterns for baroclinic vortices. Interactions between baroclinic modes could
yield different results, which could be investigated with multi-layer RSWEs in future
studies.

Using three-dimensional fits, we derived a relation that gives the scattering ratio as a
function of the Burger number Bu, the ratio of the vortex to the wave length scale K and a
measure of the vortex strength, which we quantify through the bulk Rossby number Rob,
the vorticity Rossby number Roζ and the enstrophy ε. We observe that the fit is successful
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when an arctan is used with a power-law combination of the three non-dimensional
numbers as the argument. We find that the bulk Rossby number Rob and the enstrophy
ε are the most suitable vortex strength metrics for predicting the scattering ratio, while
the vorticity Rossby number Roζ yields a less suitable approximation. We find round
number scalings for the argument in the arctan, specifically, tan(πS/2) ∝ Ro2

bK2Bu−1.
This aligns with the triad formalism from Ward & Dewar (2010), where the growth
rate of a single triad wave is shown to be proportional to the amplitude of the vortex,
which is determined by Rob, the time of interaction, which is determined by Bu, and the
triad interaction coefficient, which is related to K. Since our theory-agnostic fits using a
Gaussian vortex result in the same scaling as the single-mode example in Ward & Dewar
(2010), it may imply that these scalings would be similar for a variety of isolated vortices
with bell-shaped height fields, at least for small values of S. For small scattering ratios,
these dependencies reduce to S ∝ Fr2K2.

Independently, Ito & Nakamura (2023) non-dimensionalised the equations of motions
first and showed that FrK−1 = Uλ/(c0L) can be used to separate the vortical effects
on the wave from the linear equations. They varied this parameter as a whole to show
different scattering regimes and patterns. At higher values, they showed that the wave
can become trapped in the vortex. While their scaling significantly differs from ours,
note that we obtained our results by measuring the scattered energy in a theory-agnostic
fashion. Furthermore, our scalings are consistent with the theory of Ward & Dewar (2010),
who found that stronger triads form at large values of K. Additionally, Coste, Lund &
Umeki (1999), who investigated how a vertical vortex in solid-body rotation creates phase
dislocations on an incoming wave, found a similar ratio to FrK.

Although we did not vary Frw, we do not anticipate the results to vary until the wave has
enough energy to alter the structure of the vortex itself (e.g. via wave capture; see Bühler
& McIntyre 2005), or to undergo destabilising nonlinear processes. Study of the nonlinear
wave regime is likely to represent an avenue for further research.

Most eddies with characteristic width L are well approximated by a Gaussian profile
within radius L/3 from their centre (Chelton, Schlax & Samelson 2011), which makes
our scaling relation broadly applicable. To find a more general scaling relation, we could
extend our analysis to other vortex profiles and in the process check how robust our scaling
relations are to the vortex shape. For example, Flierl (1988) discusses the stability of
axisymmetric vortices whose radial profiles are more general than our Gaussian vortices.
We could explore the scattering properties of the stable ones in a future study. We
could also use stable oblate vortices (e.g. Young 1986), which would add another degree
of freedom to our scaling relations, and produce asymmetries in the scattering pattern
depending on the incoming wave direction.

The parameter range we explored covers a broad range of physical regimes in which
an IT will interact with eddies in the ocean. We did not explore waves larger than the
vortices, but we can extrapolate from our data that K < 1 would lead to little scattering
(S < 0.1) even at vorticity Rossby numbers of O(1) and Burger numbers of O(0.1). We
also did not explore simulations with |Roζ | � 1 and Bu < 0.4, but since we came close to
complete scattering with K = 4, we can extrapolate to find which simulations would lead
to completely scattered waves (S = 1). For example, if we had Rossby and Burger numbers
equal to one, a wave with K = 5 would already lead to almost complete scattering with
S = 0.97. In open ocean regimes, mesoscale eddies are approximately the size of mode-1
M2 tides (K = 1) and have Rob = 0.01 and Bu ≈ 1, so we predict that the scattering will be
small at S < 1 %. In submesoscale regimes, near coasts and strong currents, where mode-5
ITs interact with vortices of Rob > 0.1, the scattering ratio will be greater than 10 %.

999 A100-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.963


J. Uncu and N. Grisouard

These results inspire useful diagnostics for satellite altimetry data and global circulation
models to determine where errors may be at their highest given the local vorticity field,
IT mode, local rotation rate and stratification. Future work on our idealised model should
include simple time-varying balanced flows (e.g. vortex pairs) and oblate vortices and
involve adding vertical layers to include the effects of baroclinicity in the balanced flow.
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Appendix A. Cyclogeostrophic balance iterative method

To create a time-independent balanced vortex with a non-zero Rossby number we need to
include the effects of advection. Thus, the vortex must satisfy

u · ∇u + f ẑ × u = −g∇η. (A1)

Equation (A1) can be solved analytically for some axisymmetric cases; however, we can
extend this to larger Ro if we use the iterative method in Penven et al. (2014), which we
describe below.

Let the velocity ug associated with the geostrophic flow be f ẑ × ug = −g∇η. We
rearrange (A1) to give

u − ẑ f −1 × (u · ∇u) = ug. (A2)

It is then possible to approximate the solution by iterating (A2) as follows:

u(n+1) = ug + ẑ f −1 × (u(n) · ∇u(n)) (A3)

while max |u(n+1) − u(n)| < 10−4 ms−1 or until u(n+1) > u(n). These adjusted velocities
are used to initialise the velocity field in the vortex simulation.

Appendix B. Sponge layers

The Tukey window is used to force and absorb waves on either side of the domain. It has
the profile of a tapered cosine at the edges and a constant at the centre. This is useful to
ensure that the waves achieve the amplitude they are prescribed.
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The formula for the Tukey window is

Π(x, x0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < x0,

1
2

{
1 − cos

[
2πx
Δλ

]}
, x0 � x < Δλ/2 + x0,

1, Δλ/2 + x0 � x < λ− Δλ/2 + x0,

1
2

{
1 − cos

[
2πx
Δλ

− 2π

Δ

]}
, λ− Δλ/2 + x0 � x < λ+ x0,

0, λ+ x0 � x,

(B1)

where Δ = 0.7.
The vortex adjustment simulation requires a sponge layer to absorb the waves that radiate

during the adjustment process. To absorb waves with minimal reflection, a circular sponge
layer is set at a distance R1 = 2L, which increases linearly until R2 = 2.8L as

CS(r) =

⎧⎪⎨
⎪⎩

0, r � R1,

(r − R1)/(R2 − R1), R1 � r � R2,

1, R2 � r.
(B2)

For simulations with high Rossby numbers, there does tend to be some reflection, but it
has a small effect on the diagnostics.

Appendix C. Linear shallow-water equations

The linear shallow-water equations are as follows:

∂tu + f ẑ × u = −g∇η and ∂th + H∇ · u = 0, (C1a,b)

where f is constant in this article. Let us assume a wave solution that is only propagating
in one direction, so that V = [ũ, ṽ, h̃]eikx; we can then rewrite (C1a,b) as

∂tV + MV = 0, where M =
⎡
⎣ 0 −f ikg

f 0 0
ikH 0 0

⎤
⎦ . (C2)

The three eigenvalues of M are proportional to the frequencies of the wave modes. They
are ωG = 0 and ω

(±)
W = ±

√
f 2 + gHk2, with corresponding eigenvectors

G =
[

0, 1, − if
gk

]
and W ± =

[
ω

(±)
W
f

, 1,
−ikH

f

]
. (C3a,b)

The eigenvectors W ± are used to force the wave from the right.

Appendix D. Ray tracing

Ray tracing is a method to track the position and wavevector of a wave packet through a
fluid medium, assuming that the wavelength is small compared with the length scales in
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Figure 8. (a) Fitting curves. (b) Sigmoid fit using the same legend as in figure 6.

A α β γ

Sigmoid 8.18 ± 0.02 1.86 ± 0.02 −0.85 ± 0.02 1.80 ± 0.02
Tanh 4.08 ± 0.03 1.86 ± 0.03 −0.85 ± 0.01 1.80 ± 0.02

Table 4. Optimisation parameters for alternative fitting functions using Z = Rob.

the medium. Let the position of the wave packet be x with wavevector k, and let it be made
to pass through a velocity field U = (U, V); then the ray-tracing equations read

dx/dt = U + dω/dk and dk/dt = −(∇U) · k − dω/dx, (D1a,b)

where ω =
√

f 2 + ghk2. The first equation describes the evolution of the wave packet
position due to the advection of the media and the group speed. The second equation
describes the refraction of the wavevector as a result of strain and shear and due to the
change in frequency.

Appendix E. Alternative fitting functions

Here, we explore two other choices for fitting function which are linear for small values of
S and then plateau towards one, namely a sigmoid and a tanh defined as

S̆θ
Z = 2(1 + exp[−AZαBuβKγ ]), (E1)

Šθ
Z = tanh[AZαBuβKγ ]. (E2)

The curves for these functions are shown in figure 8(a) and the fit parameters are shown
in table 4. We find that the fit parameters for both the sigmoid and the tanh can no longer
be rounded to whole numbers as we were able to do using arctan. Furthermore, the fit has
become worse for both these functions, as shown in figure 8(b) for the sigmoid (to compare
with figure 6), because both functions plateau too quickly, resulting in inaccurate fitting
for low values of S. While the arctan we use in the main text models the data well for all
values of S, we do not believe this implies that there is something physical about arctan,
but rather that it is likely just a convenient choice to model the plateau.
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