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LATTICE COVERINGS AND THE DIAGONAL GROUP

G. RAMHARTER

Let M be any bounded set in n-dimensional Euclidean space. Then
almost all n-dimensional lattices I with determinant 1 have the
following property: There exists a diagonal transformation D with
determinant I (depending on L) such that L does not cover space
with DM . Moreover, if M has non-empty interior, the exceptional
(null-) set contains at least enumerably many diagonally non-

equivalent lattices.

1. Let L denote the space of lattices in #7n-dimensional Euclidean
space R with determinant 1 , equipped with the usual measure and
topology (see [11] Section 17, Section 19), and let D be the group of
nonsingular diagonal n x n-matrices. The main purpose of this note is to

prove the following result.

PROPOSITION. Let M be a bounded set however large in R'. Then
all lattices L € L except thoge from a null-set in L (in the sense of
the measure introduced) have the following property: L can be made a non-
covering lattice for DM by applying a suitable diagonal transformation
D e D (depending on L ) with |det D| =1 .

We will obtain this as a corollary of the Theorem to be stated below.
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Also it will become clear from (1) that our assertion is certainly not
trivial at least for sets M with non-empty interior. The present result
can be regarded as a metrical contribution to the following general
inhomogeneous problem of the “first type" (in Bambah's terminology [1]
p.120; see also [7] p.208, and [17]) p.407): Given some class M of

(measurable) sets in ﬂiﬂ and a subgroup G of the general linear group

on I(’n , determine the infimum §(M) of all positive numbers § with the
property that, for any M e M with wvol(M) < § and any lattice L[ ¢ L ,
there exists a transformation G € G such that the Minkowski sum GM + L

does not cover R . Taking in particular (in view of our present
objective) the diagonal group D , we reformulate this by introducing

the function

GM(L) = sup{vol(DM) | De D, L not a covering lattice for DM} .

For bounded M this quantity is positive, possibly infinite (Note that
H' is not covered by DM + L if and only if L is strictly admissible
for some translate of DM ). Then obviously

8(MW) = in£{6,(L) | Me M, L e L} .

This should be compared with the corresponding covering problem of the

second type, involving the quantity

GM(L) = inf {vol(DM) | D € D, L a covering lattice for DM} .

D.B. Sawyer [15] proved that for arbitrary lattice I ¢ L one has

sup GK(L) = n'/nl
X

where the sup is taken over all n-dimensional convex bodies KX , not

necessarily (-symmetric (Indeed, by the affine invariance of this class
of sets, this need only be proved for the integer lattice z" ) .

We remark that there is an analogous packing problem in connection
with the diagonal group which was suggested by Mordell in 1936 and has

attracted much interest since (see for example [7]] Section 24, [7] p.191

£.). It is concerned with the function
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DK(L) = sup{vol(DK) | D e D, L a packing lattice for DK} .

If K is restricted to the class K of {-symmetrical bounded convex

bodies in ' , then trivially pK(L) < 1 , by Minkowski's theorem. The
question is to decide whether the values of this function are bounded away
from ¢ when K and [ are varying over K and L . Rogers [14]
confirmed this by finding explicit positive lower bounds in all dimensions.
These estimates can be improved when further conditions are imposed on the
bodies considered. This was done by Hlawka [/0] and Davenport for the
classes of parallelepipeds DB (D € D , B the unit cube) and ellipsoids
DS (S the unit sphere), respectively.

A conjecture by Gruber claiming that pB(L) takes the value 1

(which is the greatest possible value) at almost all L € L is still open
for n 2 3 (for metrical and topological results in this direction see

[(§,712] ).

2, Here we obtain an affirmative answer to the inhomogeneous version
of this conjecture. The following Theorem clearly implies the above

Proposition.

THEOREM. Let M be any bounded (measurable) set in IR with non-
empty interior and let L' denote the set of lattices L ¢ L with
GM(L) < w, Then

(1) L' contains an enumerable set of diagonally inequivalent lattices;
moreover, §(M) = inf{§,(L) | L e L} is a finite positive number.

(2) L' is a null-set in L.

Proof. We find it convenient to consider the Minkowski sets
Bp:(|x1lp +...+|xn|p)1/p <1, that is the (open) unit balls of the
p-norms (1 < p < @) . In particular, letting p tend to « , we obtain
the unit cube B =B_ . By Qi (i=1,...,2n) we denote the (open)

coordinate orthants, listed in any order. We introduce the auxiliary

function
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a (L) = max sup{vol(DB_nQ.)|DeD, L admissible f DB _nf.} .
o P P o0 |DeD, issible for b 1}

We remark that the functions ap(L) and GB(L) , B = Bp , can be

described in terms of a semiregular continued fraction expansion for two-
dimensional lattices (see [13]). We collect some basic relations between
the above functions. First, it follows immediately from the definition

that GM(L) is diagonally invariant with respect to both M and L: for

any set M and any L € L we have

(3a) Sy L) 6y (L) (De D),

(3b) 8y(DL) = &, (L) (D e D, |detD| = 1).

By use of (3a), it is easily proved that for any bounded set M with

non-empty interior (as specified in the Theorem) the inequalities
14
(4a,b) e GB(L) < GM(L) <e GB(L)

hold with some positive constants e, ¢’ independent of L . Here ¢
(respectively ¢’) may be taken as the ratio vol(M)/vol(DB) where D e D

is any diagonal matrix such that a translate of M can be inscribed in

DB (respectively DB is contained in some translate of intM) . Next we
show that
(5a,b) nin ™ (L) s sy) < 1o (D) .

The first inequality (5a) is easily obtained on comparing the volumes of

a (lattice point free) simplex of the form DT(T: m1+...+xn < 1,

TgseeesX, > 0) and a maximal inscribed translate of a parallelepiped of the
form D'B (D, D' ¢ D) . For the proof of (5b)} take any lattice point

free parallelepiped of the form DB + 2z, 2 € Rn . Eventually enlarge it by
moving appropriate facets outward until at least one facet contains a
lattice point in its relative interior (the volume will not be decreased by
this process). By passing to a suitable translate p' , if necessary,

we may assume that the boundary of P’ contains the origin ¢ . Now P!’

, . . . . n-1
is the disjoint union of its non-empty intersections Pi 2

in number) with the open orthants, and its intersections with the

coordinate planes (which do not contribute to the volume). P!
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being lattice point free, the same is true for the subsets Pi . Now (5b)

follows from the fact that these subsets are all of the form DiB n Qi '
D’I:ev.

We proceed to the proof of (1). First we exhibit an enumerable
class of lattices [* generated by real number fields for which GM(L*)
is finite. By (4b) and (5b) it is enough to show that am(L*) is finite
for these lattices. Let A be an 7 X #i-matrix whose elements
Aggees-1Qqy form a basis of a totally real number field of degree = ,
the k-th column consisting of the conjugates of a5 (k=1,....m) . Then

L*=A*7z" A*:A/]detAll/n » is in L . For the calculation of a_ (L*) it

suffices to consider, in each orthant Qi , the (enumerable) system of

lattice point free (open) parellelepipeds Pij of the form DjB n Qi

each of whose facets not contained in a coordinate plane has a lattice
point in its relative interior. It is known [3-6] that under the above

assumptions this system is periodic in the following sense: Foxr each
i=1,...,2n , there exists a finite subsystem of parallelepipeds

E%l""' , say, such that any Pij is representable as Dpik with

im(Z)
some Xk e{l,...,m(7)} , De D, |detD| = 1 . Therefore a (L*) = max. o
L
{v°1(Pik)} , but this is clearly finite. Thus we have proved that 6M(L*)
is finite for any lattice of the type described.
Finally, Hlawka's result [](] ensures the existence of an (explicit)

positive lower bound, depending only on the dimension, for the values of
pB(L) . Together with the inequality (4a) and the trivial estimate
GB(L) > pB(L) this implies that inf 6B(L) is positive, which completes

L
the proof of (1).

We turn to the proof of (2). Consider the following conditions for

lattices [ ¢ L :

(a) IN{0} has no points in common with the coordinate planes;
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(b) there exists a sequence of diagonal transformations Di € D with
|detDi| =1(=1,2,...), depending on L , such that the lattices

Li = DiL have bases Ai converging (elementwise) to a nonsingular matrix

AQ where @ is an n X n-permutation matrix and A contains an

(n-m) x m rectangular block (I <m < n-1}) of zeros below the diagonal;

(c) the homogeneous minimum inf{|:x:1:t:2...xn| x ¢ IN{0}} is equal to o .

It follows from a result of Birch and Swinnerton-Dyer [2] that (c) implies
(b). On the other hand, it is well-known that almost all lattices in L
satisfy conditions (a) and (c). Accordingly, for the verification of (2},

it will suffice to prove that GM(L) =® if L has properties (a) and (b).

We do this by showing that aZ(Li) tends to ®© , as 7 > ® . Let

g_;t) roee ,gz,(:') be the columns of 4 = (alg.)) . After renumbering the

coordinate axes, if necessary, we may suppose that & is the identity
matrix. Then, for each pair of indices k,j,k=mtl,... m; g =1,...,m,

(i)

the elements akj tend to 0 , as 7T > ® . ILet Ei denote the (n-1)-
. . . ; () ()
dimensional lattice plane generated by the points 2’21 R W
There is a unique vector 2(7') orthogonal to Ei and normalized by the
conditions |g(7')| =1, di = (g(‘l')c_l:f)) >0 . Let h(i) be the index of
. 3 . () : ()
the orthant which contains the point ¢ . Since e belongs to the

orthogonal complement of the subspace generated by g_‘;‘l’) P .,c_z;’l) , the

components gg[’) (j=1,...,m) tend to o0 , as 1 + = ., The points

a_zh’),.. .,g::’) define a cell of L‘i , hence the open strip Hi bounded ,by
the lattice planes E’i and E’i+gr(l1') is lattice point free. The same
is true a fortiori for the simplex Ti = Hi n Qh(‘i) . Now

vol(r,) = ditnt|e{HelP )T s e (1o,

since the sequence di has a positive limit and at least one of the

(<)

components of e tends to zero (note that, for j=1,...,n, the
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(i)

vectors gj tend to a limit # 0 , and that all components of the unit

()

vectors e are non-zero by (a), and remain bounded). It follows that

al(Li) > o ({ + ®)

Using successively the relations (5a),(3b) and (4a), we obtain

nin " (L) < 85(L;) = 65(D.L) = §5(L) < c-JGM(L) X

Since this holds for all %2 =1,2,..., we end up with GM(L) = o , as

required. This completes the proof of the Theorem.
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