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Abstract

It is well known that the trapezoidal rule of quadrature is exact for linear
functions on [0, I], and easy to see that it is exact for functions of the form
/ = l+g where /is linear and g is odd about | . Not so well known is an example
of a continuous function for which the trapezoidal rule is exact but which does
not have this form. In this paper we show that if the trapezoidal rule is exact
for / then / has the form above provided it has either absolutely convergent
Fourier series or continuous second derivative. We consider one-sided versions
in which the approximate integrals are non-negative, and also characterize those
sequences arising as the approximate integrals of a function with absolutely
convergent Fourier series.

1. Introduction and notation

We write 5" for the trapezoidal rule of quadrature whose wth approximate integral
(for n = 1, 2, 3, ...) assigns to any continuous function/on [0, 1] the value

TJ= «-1(i/(0)+ I
It is well known that, when/" is continuous, given any n there exists £, e [0, 1]
for which

1 f =
' o

In particular, <?~ is exact for linear functions. However, P is also exact for other
functions: whenever g is odd about the point \,

I'
J o

g=0 = Tng for n = 1 ,2 ,3 , . . . ,
1 o
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258 J. H. Loxton and J. W. Sanders [2]

since the points of evaluation of 9" are symmetric about \. So 5" is exact for any
sum

/ = l+g where / is linear and g is odd. (1)

A surprising counter-example due to Hille and Szasz and to Ching (see section 3
below) shows that there are continuous functions not of this form for which 3~ is
exact. In this paper we show that if ST is exact for a function/then/has the form
(1) provided it has either continuous second derivative or absolutely convergent
Fourier series.

Our results are also pertinent to the general question: how much information
about / is contained in the sequence (Tn/)n of approximate integrals o f / ? By
contrast with, say, the Fourier transform /, one expects to get very little infor-
mation. It is perhaps surprising that, when / has either continuous second
derivative or absolutely convergent Fourier series, the sequence (Tnf)n actually
determines / to within a periodic sine series (see Corollary 1).

To aid our study of functions for which 9~ is exact we say that a continuous
function / lies in the kernel of9~ if

7 n / = 0 for « = 1,2,3,....

Define a function to be odd if, for each xe[0,1], f(x)+f(l—x) = 0. This co-
incides with the usual definition when/is periodic on the real line with period one,
for then /(—x) = / ( l — x) and so our definition says/(x) = —f(—x). Through-
out the paper C(0,1) denotes the space of all continuous, complex-valued functions
/ o n [0,1] which are periodic in the sense that/(O) = / ( l ) . For an integer n, the
nth Fourier coefficient of/eC(0,1) is given by

o
We define .4(0,1) to be the space of all functions / e C(0,1) having absolutely
convergent Fourier series:

I
z

With this notation, our central result (Theorem 1) is: if/e/l(0,1) and/lies
in the kernel of 9~ then / is odd. This extends several results of Ching and Chui
([1,2,3,4]) which may, with superficial changes, be summarized as follows: if
/eC(0,1) and/lies in the kernel of 9~ then/is odd provided one of the following
conditions is satisfied:

(a)Z'etf1;
(b) /(«) = O(n~(l +£>) for some e > 0;
(0 I \f(n)\=O(N-1);0T

(d) f(x) = Y. an e2niq"x where q is a positive integer.
»0
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[3] Approximate integration 259

In each case above feA{0,1). For (a) this follows by Hardy's inequality (see
[6], page 49); for (b) and (c) it is obvious; and moreover (d) is true whenever
{<7n: n ^ 0} is replaced by any Sidon set (see [7], Chapter 15). However, it is easy
to construct elements of A(0,1) satisfying none of the conditions (a) to (d). On
the other hand, the counter-example mentioned above shows that some condition
is necessary on/for our Theorem 1 to work.

We consider non-periodic functions in Theorem 2 and prove that if/" is con-
tinuous on [0,1] and/lies in the kernel of ST then/is odd.

We make the following comments about our method of proof. All the cases
above due to Ching and Chui stem from a classical Mobius inversion theorem
(from [8], page 237). We have found an improved inversion theorem (see [10])
and this leads to a quick proof of Theorem 1 below. However, in this paper, we
give a self-contained proof which we exploit in section 3 to characterize those
sequences arising as (Tnf)n with feA(0,1).

In section 4 we consider one-sided versions of Theorem 1 in which Tnf = 0 is
replaced by Tnf^ 0, and give counter-examples to the obvious conjectures.

As justification for considering only continuous functions in this paper, we
envisage / as being unknown except for its values tabulated at the points of
evaluation of ST; (for finitely many Tn this table may be the outcome of an
experiment). In this case continuity is the most natural assumption which rules
out pathological extensions of the given data which are possible if the Lebesgue
integral is used. Indeed, &~ depends upon a set of points of evaluation which is
countable and so has Lebesgue measure zero. Hence arbitrary extensions are
possible if non-continuous functions are considered and then the Tnf give no
information about the Lebesgue integral of/

We observe that different rules of quadrature seem to need quite different
techniques, and hope to return to these in a later paper; see [10].

2. Main results

To prove our main results we pass to the Fourier transform. In this context we
have:

LEMMA 1. Iffe C(0,1) then f is odd if and only iff is odd in the usual sense that,
for each integer n,f( — n)+f(n) = 0.

PROOF. The nth Fourier coefficient of the function f(x) +/(1 -x) is/(-«)+/(«)•
So, by the uniqueness theorem ([7], section 2.4.1),/is odd if and only if/is odd.

Next we recast the kernel of f in terms of Fourier series. We write N for the
positive integers and «Z for the subgroup {nj:jeZ} of the integers Z.
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LEMMA 2. IffeA(0,1) then, for each neN, Tnf — Y,nzf- Iff merely belongs to
C(0,1), then Y*zf >s Cesaro summable to Tnf.

PROOF. Firstly, we observe that, if keZ and ek denotes the function x>—>e2*'k*
on [0,1], then, since ek is periodic,

where a = e2"ikl". Thus

(0 if n
(.1 if n\k.

Next, if the Nth Cesaro sum of / i s given by

\k\HN*

then by linearity

\k\^N,kenZy

Now as N increases, aNf tends uniformly to / ([7], section 6.1.1); hence, by
continuity of Tn, Tn(aNf) -> Tnf and so the second assertion follows.

The first assertion is proved by applying the argument above directly to the
unweighted partial sums of the Fourier series of/.

Our main result is:

THEOREM 1. IffeA(0, 1) and flies in the kernel of 2T then f is odd. In fact, f is
a (periodic) sine series. I

PROOF. This is a particular instance of a more general theorem from number
theory which we proved in [10]. However, we now give a different, self-contained
proof which we use in section 3. From the lemmas we have to show that, if
V_ \(j>\ < oo and YnZ <j> = 0 for n e N, then

= O for A: = 0 , 1 , 2 , . . . .

Our proof can be motivated as follows.
Suppose (aJn>0 ' s a one-sided sequence. Ignoring the question of convergence,

cancellation gives
an= i.an+a2n+a3n+a^n+...)

+(a6n+a12n+ai8n+a24n+...)
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To deal with the progressions on the right we let £„ denote the characteristic
function of «Z. The distribution of plus and minus signs which gives the right
cancellation is defined by the Mobius function:

MD = 1,
KP1P2 •••Pk) = (~ 1)* if>i,/>2. •••>/>* denote distinct primes

and
li(n) = 0 if n has a squared prime factor.

We let P denote the set of primes together with 1.
To get convergence in the scheme above we define a sequence of functions

where Tlp = {/?jp2 ...pk: fj < p for 1 < j < k and t e N u j O } } . Now

if all prime factors of; exceed p,

nervniv ' (.0 otherwise

(see [8], section 16.3). Secondly, xjjjj) tends to 0 if \j\ ̂  1, and to 1 if \j\ = 1.
Thirdly, £ 2 \l/p<f> = 0 for each /?eP since, by hypothesis, £ £,„<}> = 0 for «eN.

Consequently \pn (j> is absolutely summable over Z, is dominated by |$ | , and

n̂</> tends pointwise to (j> times the characteristic function of { — 1,1}. So by the
dominated convergence theorem for / ' (Z),

and so the latter is zero.
If A; > 1, we replace Z in the argument above by kZ to deduce <j>{ - k) + 4>(k) = 0.

Finally, using the initial hypothesis again, 0(0) = 0.
Thus if/e.4(0, 1) lies in the kernel of P then, for each k,f(-k)+f(k) = 0,

and so/(x) = trtsf(n) sm(2nnx).

We are indebted to Professor I. H. Sloan for suggestions which lead us to
extend the previous result to non-periodic functions in the following way:

THEOREM 2. Iff" is continuous on [0,1] and flies in the kernel of ^ then f is odd.
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PROOF. Firstly, we can find an odd polynomial p such that /—peC2(0,1)
(This notation, in line with our definition of C(0,1), means that the first two
derivatives of /are periodic as well as continuous.) Indeed, letting

p(x) = a(x-i) + b(x-tf + c(x-tf,

p is clearly odd whatever coefficients are chosen; we determine them by insisting
that

pik\l)- pik\0) =/(*)(l)-/ (*)(0) for k = 0,1,2.

An easy computation shows that these three equations can be solved for a,b,c;
let us take this as done. It means that the function g=f—p and its first two
derivatives are periodic, as claimed.

Since g e C2(0,1),

§(n) = O(n~2),

and so geA(0, 1). Since p is odd, g lies in the kernel of !T. So, by Theorem 1,
1 g is odd. Again, since p is odd,/must be odd.
* From these theorems we have two easy consequences.

COROLLARY 1. If Tnf' = Tng for each n e N and f, g have either absolutely con-
vergent Fourier series or continuous second derivative, then f and g differ by an odd
function.

Concerning exactness of 3T we have:

COROLLARY 2. If & is exact for f and f has either absolutely convergent Fourier
series or continuous second derivative, then there is an odd function g such that

Observe that in all these results it is necessary to assume Tn f = 0 for every
neN. Indeed, if m is any positive integer, the function

9m(x) = Z Km/j) cos(2njx)
j\m

is clearly in ,4(0,1). By Lemrna 1 and properties of n,

\l if m = n,
*n\9m) *_, . v i A i ^ ,

knim 10 otherwise.

Nevertheless, gm is an even function.
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3. Mobius summation

We can get a little more from the proof of Theorem 1. As before, we let P
denote the set of primes together with 1 and let n p denote the set of square-free
positive integers whose prime factors do not exceed p.

For/>eP we define the kernel np by

n) ifnellp,
(.0 otherwise.

Also, we take the convolution product of two function <p and ij/ on N to be

whenever the series converges.
With this notation we can rewrite

I KJ) I <KJkn)
jeTlp keZ

from the schema in the proof of Theorem 1 as

where $(«) = XnZ$. The proof shows that if ^e/^Z) then

Hp*<S>(n)-+<!>( — n)+(j)(ri) asp-+co.

This suggests the following definition:

DEFINITION. Suppose <& is a function on N. We say that O is Mobius summable
to a function \\i on N if, for all n e N, fip * O(«) -> \j/(ri) as /? -• oo.

By Theorem 1 and the uniqueness theorem for Fourier transforms, we have:

LEMMA 3. IffeA(0, 1) then (Taf)n is the unique sequence O of the form
*(") = £nZ0 w7A QePiZXfor which fip*<& tends pointwise to the Fourier trans-
form of the function f(x)+f{\ -x).

This enables us to identify the space 3T(A(0,1)) of all sequences (Tnf)n with /
in ,4(0,1).

THEOREM 3. A sequence O of the form $(n) = YJ<Z$ f°r <^6/1(z) i s in -^(^C0' 0)
if and only if<b is Mobius summable to </>.

PROOF. By Lemma 3 it suffices to prove the converse implication; suppose O is
Mobius summable to <p, and set

/(*) = Y, 4>(n) c°s 2nnx.
neN
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ThenfeA(0,1) and Tnf— i£nz</> whence (Tn/)nis Mobius summable to <\>el\Z).
By the uniqueness part of Lemma 3, Tnf = <t>(w) as required.

Hille and Szasz ([9], page 417) and Ching (in [1], page 25) have considered the
following example:

nefi n

By the estimate of Davenport ([5], Theorem 1), the series is uniformly convergent
but, by Lemma 1, g is not odd. As easy calculation shows that g lies in the kernel
of.?".

On the one hand, this example shows that nothing like Theorems 1 and 2 holds
for general continuous functions on [0, 1]. On the other hand, it shows that some
condition like the hypothesis of Theorem 2 is necessary to remain inside ^~(A(0,1)).

4. One-sided versions

It is natural to seek a generalization of Theorem 1 (and hence automatically of
Theorem 2) with Tnf=0 replaced by T n / ^ 0 , and a slightly weakened con-
clusion. In this section we show that two natural conjectures of this type are false,
and give two positive results.

Clearly, if/eC(0,1) satisfies / ( -« )+ / («) > 0 for n = 0,1,2,3,... then, from
Lemma 1, Tnf^ 0 for each weN. The next two examples (and also the one in
section 3) show that the converse is false.

Example 1. The function/= -el+e2+e3 belongs to A(0,1) and

( -1 i f n = l ,
/ ( « ) = 1 ifn = 2, 3,

[ 0 otherwise.
So

T fl if n = 1,2,3,
lo otherwise.

Consequently Tn/> 0 for neN, and yet/(-1)+/(1) < 0.

Example 2. Example 1 is rather trivial because it has only finitely many n for
which Tnf is nonzero, and only one n for which / ( -« )+ / (« ) < 0. Let
be everywhere positive. Set

f= E <Kp)(e2p-ep).
peP
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Then/6/4(0,l)and

( <f>(0)-4>(2) if n = 2 ,

<Kn) if«eP\{2},
<f>(n/2) ifn/2eP,

VO otherwise.

So a straightforward calculation shows that

X <P(p) i f n = 2
peP\{2)

Un/2) if«/2eP\{2}.

lO otherwise

Consequently Tn/5= 0 for each neN, yet /(—/?) +f(p) < 0 for each /?eP.
Alternatively, and unrelated to the condition above, if / e C(0,1) and

f(x)+f(l-x)^0 for xe[0, 1], then 7;/> 0 for neN. Again the converse is
false.

Example 3. Define

-lOx i fO^xs: 1/10,
10(x-l/5) if 1/10 < JC ^ 3/10,
1 if 3 / 1 0 < J C < 7/10,

-10(*-4/5) if 7/10 ^ J C < 4/5,
0 if

/(*) =

Then/(l/10) < 0, yet calculation shows Tnf^ 0 for each «sN.
In the positive direction we have two results. In the first £(s) = JlneNn~s.

THEOREM 4. Let p be the unique real root of £(p) = 2 with p > 1. IffeA(0,1),
Tnf> 0 for each /ieN, a« /̂ Tmnf^ m~"Tnf for m, neN, then, for each neN,
/(-»)+/(«) £0. """ " ' / •

PROOF. By the inversion process of the proof of Theorem 1,

neN

Now

hence
/ ( -« )+ / (« ) £0 .

Our final result shows that, under an extra condition, the assumption Tn/> 0
for each neN is sufficient to ensure/is odd.
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THEOREM 5. LetfeA(Q, 1) with Tnf^ OforneN. Suppose that, for peP, weN,

S(n,p)

where S(n,p) = u {nqZ: qeP and 2 ^ q sg p}. Then f is odd.

PROOF. If we can show Znz /^ 0 for each n. then Tttf= 0, and so Theorem 1
applies to yield the conclusion. In fact we do this in an apparently roundabout
manner by showing f( — k) +f(k) ^ 0; then from Zs<nP)7^0 we can conclude

77
Suppose initially that k = 1. An easy manipulation using the properties of the

Mobius function yields, in the notation of the proof of Theorem 1, for each

nel\p nZ Z S(l,p)

(For example, when p = 3,

Z7-Z7-Z7+Z7=Z7- Z 7- Z 7+Z7
Z 2Z 3Z 6Z Z 2Zu3Z 2Zn3Z 6Z

= Z7- I 7
Z 2Zu3Z

= Z7- Z 7)
Z S(l,3)

So, interchanging sums,

Z7^=Z7O) Z MnKnO)̂ o.
Z jeZ n e n .

From the proof of Theorem 1, \\ip tends pointwise to the characteristic function
of {-1,1}; hence7(-1)+7(1) ^ 0.

Finally, taking k > 1, the same argument shows f(—k)+f(k) 5= 0.
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