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Growth of Homology of
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Pro-p Groups
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Abstract. For a centre-by-metabelian pro-p group G of type FP,,,, for some m > 1, we show that
sup e 4 1k Hi(M,Zp) < oo, forall 0 < i < m, where A is the set of all subgroups of p-power index
in G and, for a finitely generated abelian pro-p group V, 1k V =dim V ®z, Q).

1 Introduction

J. S. Wilson proved that the Golod-Shafarevich inequality holds for finitely presented
soluble pro-p groups. Using this, he proved that, for finitely presented soluble pro-p
group G with a normal pro-p subgroup H such that G/H = Z,, the pro-p group H is
finitely generated [24, Corollary A, (iii)].

In the context of pro-p groups, the properties of being finitely generated and finitely
presented can be translated as the homological properties FP; and FP,, respectively. A
pro-p group G has homological type FP,, if Z,, considered as a trivial Z,[[ G ]]-mod-
ule, has a projective (free) resolution of pro-p Z,[[ G]]-modules, where the modules
in dimension up to m are finitely generated or, equivalently, if the homology groups
H;(G,F,) are finite for i < m. So G is finitely generated if and only if G is FP; and G
is finitely presented if and only if G is FP,. Thus, Wilson’s result can be stated as: for
soluble pro-p groups of type FP,, every normal pro-p subgroup with quotient Z, is
FP;.

Little is known for finitely presented soluble pro-p groups. C. Corob Cook [7]
showed that every virtually torsion-free, soluble, pro-p group of type FP, is of finite
rank (for groups of finite rank see [8]). J. King [13] classified the finitely presented
metabelian pro-p groups. This was later generalized by Kochloukova in [14], where
all metabelian pro-p groups of type FP,, were classified in terms of King’s invari-
ant (Theorem 2.4). Using this classification of metabelian pro-p groups of type FP,,,
Kochloukova and Pinto proved [16] that every finitely generated metabelian pro-p
group embeds in a metabelian pro-p group of type FP,,. The case m = 2 was proved
earlier by Remeslenikov [21], much before King’s classification of finitely presented
metabelian pro-p groups was established. The abstract case of the same embedding
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result for finitely generated metabelian discrete groups when m = 2 was proved by
G. Baumslag [1] and for general m was proved by Kochloukova and da Silva [18]. In
the case of Lie algebras, the embedding property of metabelian Lie algebras holds, too,
and was established by J. Groves and Kochloukova in [10].

Groves proved that a finitely presented abstract centre-by-metabelian group is abel-
ian-by-polycyclic [9]. In particular, it has the maximal condition on normal sub-
groups, thus the central part is finitely generated. Kochloukova and Pinto [17] showed
that this holds for finitely presented, centre-by-metabelian pro-p groups, i.e., the cen-
tral partis a finitely generated, abelian, pro- p group. This, together with Kochloukova’s
classification of metabelian pro- p groups of type FP,,, gives classification of centre-by-
metabelian pro-p groups of type FP,,. Our first result generalizes Wilson’s result [24,
Corollary A, (iii)] when G is a centre-by-metabelian pro-p group of homological type
FP,,,.

Theorem A Let G be a centre-by-metabelian pro-p group of type FP,,,, where m > 1
is an integer. If H is a normal pro-p subgroup of G such that G/H = Z,, then H is of
type FP,,.

In the following result, we give an example of a metabelian pro-p group of type FP;
with a normal pro-p subgroup that is not FP, and the quotient is Z,. This justifies
our hypothesis on G in Theorem A. The example was based on King’s examples of a
finitely generated metabelian pro-p group H that is not finitely presented [13].

Proposition B Let p > 2 be a prime number. Let Qq be the free abelian pro-p group
on the set {s,t} and k = F, ork = Z,. Let A = k[[Qo]]/(s +s™' + t+ t7' - 4), and
Q={(s,t,y)= Z; is generated as an abelian pro-p group by s, t and y, where y acts on
A (via conjugation) by multiplication with (s +s™) /2. Then G = Ax Q is a pro-p group
of type FP3, with a pro-p normal subgroup H = A x Qo such that G/H = Z,, and H is
not of type FP,.

M. R. Bridson and Kochloukova [4] generalized Wilson’s result in the following di-
rection. For a finitely generated pro-p group H, let d(H) be the minimal number of
generators of H. They showed [4, Proposition A] that for a finitely presented soluble
pro-p group G, one has SUPG/ 2, d(H) < oo. Using this, they then proved [4, Corol-
lary D] that for a finitely presented nilpotent-by-abelian-by-finite pro-p group, one
has sup . 4 tk H{(M,Z,) < oo, where A is the set of all pro-p subgroups of finite
index in G and, for an abelian pro-p group B, rk B := dimg, B ®z, Q,, is the torsion
free rank of B. Observe that in a pro-p group, a subgroup of finite index always has
a p-power index. They also gave an example of a finitely presented metabelian pro-p
group where this fails when one changes the field of coefficients from Q, to Fp, i.e.,
SUp e 4 dimp, Hi(M,F,) = oco.

The next result generalizes [4, Corollary D] for centre-by-metabelian pro- p groups.
Recall that, by a result of Kochloukova and Pinto, the central part of a finitely pre-
sented centre-by-metabelian pro- p group is finitely generated [17]. The same is known
to hold for the category of Lie algebras by a result of Bryant and Groves [5].
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Theorem C  Let G be a centre-by-metabelian pro-p group of type FP,,,, where m > 1.
Then sup ;. 4 tk Hi(M,Z,) < oo, for all 0 < i < m, where A is the set of all subgroups
of p-power index in G.

We also show that for m = 2, the condition in Theorem C that G is of type FP,, is
necessary.

Proposition D Let p > 2 be a prime number. For the group G defined in Proposition B
fork = Z,, we have that sup ;. , tk Hy(M,Z,) = oo, where A is the set of all subgroups
of p-power index in G.

Finally, based on Theorems A and C we suggest the following conjecture.

Conjecture  There is a function p: {1,2,3,--} x{1,2,3,---} = {1,2,3,---} such that
for every soluble pro-p group G of soluble class k and of homological type FP,(y ) and
for every normal pro-p subgroup H of G such that G/H ~ Z,, we have that H is of type
FP,.

2 Preliminaries

2.1 Homological Finiteness Properties of Pro-p Groups

Recall that for a pro-p group G and k = IF, or k = Zj, the completed group algebra
k[[G]] is the inverse limit of (k/p'k)[G/U] over all i > 1 and open normal subgroups
U of G. The completed group algebra k[[G]] is a local ring whose unique maximal
ideal is the kernel of the canonical map k[[G]] — IF, that sends G to 1and k to k/pk =~
F,.

! A pro-p group G is of homological type FP,, if there is a projective resolution (in the
category of pro-p modules, thus all differentials should be continuous) of the trivial
Z,[[G]]-module Z, P: --- - P; > P,y — --- > Py » Z, — 0, where all P; are
finitely generated for i < n. It is worth mentioning that by [25, Lemma 7.2.2] any
abstract homomorphism p: V. — W of pro-p R-modules, where R = k[[G]], k a
pro-p ring, and V and W are finitely generated pro-p R-modules, is automatically
continuous.

By [20, Theorem 1.6] a pro-p group G is of type FP,, if and only if the pro-p ho-
mology H;(G,F,) is finite for all i < n. Thus G is FP; if and only if G is finitely gen-
erated as a pro-p group (we say simply finitely generated). And both H;(G,F,) and
H,(G,F,) are finite if and only if G is finitely presented as a pro-p group [22, §7.8],

ie., G ~ F[ (SF), where F is a free pro-p group with a finite basis, S is a finite subset

of F, and (SF) is the normal pro-p subgroup generated by S.
2.2 Metabelian Pro-p Groups

Let F be the algebraic closure of F, and F[[T]] be the formal power series algebra
with a group of units F[[T]]*. Let Q be a (topologically) finitely generated abelian
pro-p group and T(Q) be the set Hom(Q, F[[T]]*) of continuous homomorphisms
from Q to F[[T]]*. By the universal property of Z,[[Q]], each v € T(Q) extends to a
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unique continuous algebra homomorphism from Z, [[ Q]] to F[[ T]], which we denote
by v.

Definition 2.1 ([13, Definition A]) Let Q be a finitely generated abelian pro-p group
and A a finitely generated pro-p Z, [ Q]]-module. King’s invariant is defined as

A(A) = {v e T(Q) | Anng, oy (A) < Ker v} u {1},
where Annz 1o7(A) = {A € Z,[[Q]] | AA = 0} is the annihilator of A in Z, [ Q]].

Kochloukova and Zalesskii [19] associated an invariant that is a subset of T(Q)
with any finitely generated pro-p group G . This invariant and the above invariant
A(A) are quite hard to calculate in concrete examples.

We state below an important property of A(A). A similar result holds for the Bieri-
Strebel invariant 2 (Q) defined for a finitely generated ZQ-module A [3].

Lemma 2.2 ([13,23]) Let B be a pro-p Z,[[Q]]-submodule of A. Then A(A) =
A(B) U A(A/B).

We say that A is m-tame over Z,[[ Q]] (or is m-tame as a pro-p Z, [[ Q]]-module) if

whenever vy, ..., v, € A(A) satisfy v; ---v,,, = 1, thenv; = --- = v, = 1. From Lemma
2.2 we see that if A is m-tame and B is a pro-p Z,[[ Q]]-submodule of A, then B is also
m-tame.

King showed [13, Corollary G] that 2-tameness of A finitely characterizes presen-
tation of any extension of A by Q. Using this he showed the following.

Proposition 2.3 ( [13, Proposition H]) Suppose that p > 2. Let Qo be a free abelian
pro-p group on the set {s, t} and let A =F,[[Qo]]/(s+s7" +t +t7' = 4). Then the split
extension A x Qq is not of homological type FP,, i.e., is not finitely presented.

The classification of the metabelian pro-p groups of type FP,, is presented in the
following theorem. The case m = 2 was done by King [11, Theorem C] and the case of
a general natural number m was proved by Kochloukova [14].

Theorem 2.4 ( [14, Theorem D]) Suppose that1 - A - G - Q — lis an exact
sequence of pro-p groups, where G is finitely generated, and A and Q are abelian, and
consider A as a pro-p Z,[[ Q]]-module via the action of Q induced by conjugation. Then
the following are equivalent:

(i) G isof type FP,, over Z;

(ii) the completed m-th exterior power K;"P (A) of A is a finitely generated pro-p
Z,[[Q]]-module via the diagonal Q-action;

(iii) the completed m-th tensor power @ZPA of A is a finitely generated pro-p
Z,[[Q]]-module via the diagonal Q-action;

(iv) the completed m-th symmetric tensor power §Zmp (A) of Ais a finitely generated
pro-p Z,[[Q]]-module via the diagonal Q-action;

(v) Ais m-tame over Z,[[Q]].
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Completed tensor powers, completed symmetric powers, and completed exterior
powers of pro- p modules A over pro-p rings can be defined by the appropriate univer-
sal properties or can be constructed by taking inverse limits of the tensor, symmetric,
and symmetric abstract powers of the finite p-quotients of A (for more properties on
completed tensor product see [22, §5.5]). Note that by [6, Lemma 1.1] if k is a pro-p
ring, V is a right pro-p k-module, and W is a left pro-p k-module, then there is a nat-
ural isomorphism V ®; W ~ V&, W provided either V or W is a finitely presented
pro-p k-module.

3 Pro-p Subgroups of G With G/H ~Z,

Theorem 3.1 Let G be a metabelian pro-p group of type FP,,,, where m > 1is an
integer. If H is a normal pro-p subgroup of G such that G/H = Z,, then H is of type
FP,,.

Proof Let A be an abelian normal pro-p subgroup of G such that the quotient Q =
G/Ais abelian. Set Ag = HNn A, Qp = H/Ap and note that Qy is a pro-p subgroup of
Q. Thus there is a short exact sequence Ag ~ H — Qg of pro-p groups with Ay and
Qo abelian. Observe that Ag is normal in G, hence Ay is a pro-p Z,[[ Q]]-submodule
of A. Since G/H = Z,, there are two cases:

« [A:Ag] <ooand Q/Qqg = Zj,

d A/AO jd Zp and [QQ()] < 00,

In the first case, since G is of type FP,,,, by Theorem 2.4 we have that A is 2m-
tame over Z,[[ Q]]. Hence, by Lemma 2.2, A, is 2m-tame over Z,[[Q]] and so, using

again Theorem 2.4, @ZAO is a finitely generated Z,[[ Q]]-module via the diagonal

Q-action. Let B = @ZPAQ and consider G = B x Q, where Q acts diagonally on B.
Since B®z, B is finitely generated as a Z,[[ Q]]-module via the diagonal action, by
Theorem 2.4 we obtain that G is of type FP,. Now note that H := B x Qo is a normal
pro-p subgroup of G such that G/H = Zy. Then, by Wilson's result [24, Corollary A,
(iii)], H is finitely generated and so B = ®Z,A0 is finitely generated as a Z,[[Qo J]-
module. By Theorem 2.4 this implies that A, is m-tame as a Z, [[ Qo ]]-module and so,
by Theorem 2.4 again, any extension of Ay by Qg is of type FP,,. In particular, H is of
type FP,, as required.

In the second case, let Hy be the preimage of Qo in G, so there is a short exact
sequence of groups A -~ Hy — Qp. Thus Hy has finite index in G and so is of type
FP;,,. Then by Theorem 2.4 we have that A is 2m-tame as a Z, [ Qo ]]-module. Since
Ayg is Z,[[Qo]]-submodule of A, by Lemma 2.2, A is also 2m-tame as aZ, [ Qo ]]-
module. Then by Theorem 2.4, H is FP,,,, hence is FP,. [ |

Proof of Theorem A Let C -~ G — G/C be a central extension with G/C meta-
belian. By [17, Corollary 3.5], C is a finitely generated abelian pro-p group, hence
H n C is a finitely generated abelian pro-p group, hence of type FP.,. Consider the
short exact sequence of pro-p groups Co -~ H — H/Cy, where Cy = H n C. Since
Co is of type FP., we have that H is of type FP,, if and only if H/C, is of type FP,,
(the abstract case is proved in [2], the pro-p case is [12, Theorem 2]). Note that H/C,
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is a normal subgroup of the metabelian pro-p group G/C. Furthermore, since C is
a finitely generated abelian pro-p group and G is a pro-p group of type FP,,,, the
quotient group G/C has type FP,,,. Finally (G/C)/(H/Cy) ~ G/HC is a quotient of
G/H = Z,, hence is either Z, or finite. In the first case we can apply Theorem 3.1 to
deduce that H/Cy is of type FP,,. In the second case H/Cy has finite index in G/C,
hence has the same homological type as G/C, i.e., H/Cy is FP;,, so is FP,,,. ]

Theorem 3.2  Let p > 2 be a prime number. Let Qq be the free abelian pro-p group
on the set {s,t} and k = F, ork = Z,. Let A = k[[Qo]]/(s +s™' + t + t' — 4) and
Q= (st,y)~ Z;‘, generated by s, t, and y, where y acts on A (via conjugation) by
multiplication with (s + s™') /2. Then the split extension A x Q is of type FP;.

Proof Observe that (s+s7')/2 is not an element of the unique maximal ideal of the
local ring k[[ Qo ]], hence is invertible in k[[ Qo ]]. Thus the pro-p group A x Q is well
defined. .

If k = Zj note that by Theorem 2.4 A x Q is FP; if and only if V' = ®7, A is finitely
generated as a Z,[[ Q]]-module via the diagonal Q-action. Since Z,[[Q]] is a local
ring, V is finitely generated as a Z, [[ Q]]-module if and only if V//pV is finitely gener-
ated as a IF, [[ Q]]-module (and these two conditions are equivalent to V&g, o7, is
finite). Finally since V/pV ~ ®Z (A/pA), we reduce to the case where k = IF,. Thus
henceforth we can assume that k = F, and to prove the theorem it is enough to show
that (®F A)®r, )T, has finite dimension over IF,.

Since Qo is a free abelian pro-p group on the set {s,¢}, we have that ', [[Q,]] is
isomorphic to the formal power series algebra IF, [[ S, T]] over IF, in the commutative
indeterminates S, T, where S = s —1and T = ¢ - 1. Thus, (A®7z,A®z,A)®F, 1o F) is
isomorphic to B = F,[[S1, S2, S3, T1, T, T5]] /L, where

L= (515253 -1, tityt3 —1,)/1)/2)/3 —1,5,‘ +S;1 + i+ t;l -4 | 1<i< 3),

Si=s;i—1,T;=t;—1and y; = (s; +s;')/2 for 1 < i < 3. Thus to prove that B is finite,
it is enough to show that the images of s;, t; in B are algebraic over IF, for 1 < i < 3.

Define a; := s; +s;" and ; := t; + t;', for1 < i <3. Soy; = %,1<i < 3.
Henceforth, for a, b € F,[[S1, S2, S3, Ty, Ta, T3]), we write a = b for a — b € L, i.e., the
images of a and b in B are the same. Since y;y,y3 = 1, we get ayaa3 = 8. Moreover,
a; + i =4for1<i<3. Thus

3 5152 5183 $3S s s s

- 152 S153 8283 1 2 3
(3.1) 8=z =] (si+si1):slszs3+ +——+—+——+ —_—+—.
i=1 $15283  S3 S2 S1 $283 85183 5152

-1.-1 5152 4+ S183 4 283

- $3222, 22, 22
Since 515283 = 1= 5785537, v . sPs3 + sis3 + s3s2,

2,2, 2
s1 S2 3 SytS3+S85 _ 2 2, 2
—t —— + —— = ——5—= =] +5; +53,
$283 5153 S152 $15253
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and by (3.1), we get
518 518 $28 s s s
22,22,22, 2, 2, 2_%5% 153 253 1 2 3
SIS+ S S5+ S AS A HSFE—+—+ —+ — + — + —
$3 $2 $1 $283 5153 S152
=8 — 515283 — =8-1-1=6.
515253
Then, since s;s,53 = 1,
3 3 1 3 31
2 _ R Y 2 1
(3.2) Z(xi—Z(sd—s') ‘Zsi+zsz+6
i=1 i=1 i i=1 i=1 5;
22, 22, 22
_2, 2,2 SiS2 T SiS5 45583
s%sts
15253

_ 2 2 2 22 22 22 —
=5 + 85 + 53+ 578, + 8783 +55855 +6=12.
Now since a; + §; = 4 and aya, 03 = 8, we have by (3.2)

3

3
ﬁ(4—ﬁi) = maa; =8 and 2(4—[3,-)2 = Zaf =12.
i=1 i=1

i=1

Developing the left side in the above equations, we obtain

(3.3) 16(B1+ Ba + B3) —4(B1fa + BiBs + B2B3) + P1B25 = 56
and
(3.4) 8(B1+ B2+ B3) = Bt + B3 + B3 + 36.

Using that 1,3 = 1, we will rewrite equations (3.3) and (3.4) in terms of #, ¢, and
t3. For this, denote a := ZL t;and b = tity + fits + bts = 3o_, L. Note that since

i=17%;
— 2024 —
tityts = 1, Zi#j#k#i ti tj Iy = Zz%] titj. Thus,
3

ﬁl+ﬁ2+ﬁ322(ti+ti—1)5a+b,

i=1

/jlﬁ2+ﬁ1ﬁ3+ﬁ2ﬁ3:Z(ti+%)(tj+l) = Mt

il b7 gk lilit
= D (Gt + e+ e+ 1)

3 3
= titi+ Yy e+ (O tit) (O tk) = 3hitats
ij k=1 itj i=1
=b+a+ba-3,

Bi+B5+ B = (Z;ﬁi)z =2(BiB2 + PiBs + B23)

=(a+b)*-2(b+a+ab-3)=a*+b*-2a-2b+6,

k

and
(3.5) BiB2B3 = ﬁ(ti + l) = Ii(tf +1)

i=1 tz
=R+ 1+ + 2 B0+ 212 + 2
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But
3 3
(3.6) Sti=(O ) -2tit,+ i3 + tat;) =a” - 2b
i=1 i=1
and so
3 3 3
(3.7) (X8)(O 1) =285+ 55+ 6565) + D 11
i=1 i=1 i=1

Note that, since t; is a root of the polynomial (x— ;) (x—t,) (x—t3) = x> —ax*+bx -1,
we have that £] — at? + bt; —1=0and t} — at} + bt} — t; = 0. Thus

3
Mtt=ad -bY +3 t;
i=1

=a(a) t;-bY t;+3)-bY .+ t;

=(a®-b)> ]+ (1-ab) t;+3a

= (a*-b)(a* -2b) - a*b + 4a
and so by (3.6) and (3.7)
(38) 20t +H5+66) =060 -t

= (a* - 2b)(a* - 2b) - [(a* - b)(a® - 2b) — a*b + 4a] = 2(b* - 2a).

Therefore by (3.5), (3.6), and (3.8) 18283 = 2 + a* — 2b + b* — 2a. Thus, in terms of
a, b, equations (3.3) and (3.4) are, respectively,
(3.9) a’+b* - 4ab+10a +10b=42 and a’+b>-10a - 10b = 42,

from which, by summing the above equations, we conclude that 2a* + 2b* — 4ab = 0,
that is, 2(a — b)? = 0, so a = b. Substituting in (3.9), we obtain 2a* - 20a + 42 = 0.
Thus a and b are also algebraic over IF,, from which we get t;, t,, t3 algebraic over IF,.
This implies §; = t; + t,Tl and so a; =4 - f;, for i = 1,2, 3, are algebraic over IF,. Since
a; =s;+s;" is algebraic over Fj, and (x —s;)(x —s;') = x* —a;x +1,1 < i < 3, we also
have that sy, 55, s3 are algebraic over IF,. |

The following corollary completes the proof of Proposition B.

Corollary 3.3  Let Qq, A, and Q be as in Theorem 3.2. Then G = AxQ is a metabelian
pro-p group of type FP3 with a pro-p normal subgroup H = Ax Qq such that G/H = Z,
and H is not of type FP,.

Proof By Theorem 3.2 we have that G = A x Q is of type FP3 and by Proposition 2.3
H = A x Qg is not of type FP,. [ |

Proof of Proposition D Recall that p > 2. We show first that it suffices to show that

(3.10) sup rk(ﬂzA)@?Z
k=1

Lo Zp = o0

Indeed, consider the Lyndon-Hochschild—-Serre spectral sequence

k k
E}; = Hi(Q" ,Hj(A,Zy)) = Hij(Ax QY Zy).
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Note that E7 j depends on k, but we do not put an extra index k to E} j in order not
to confuse the notation.
By definition
2 —~2
E5,=(A A)®ZP[[QPk]]ZP’
k 3
E3, = Hy(Q",Zyp) = N Z,,
k
E3, = Hy(QF, A).
Note that since A x Q is FPs, it is FP,, and by [4, Proposition A + Proposition B]

skup dimg, (A ® 1] Qp) < oo.
>1

Then, by Theorem 5.5 from the next section, sup,, dimg, H,-(ka, A) ®z7, Q, < oo,
for all i. In particular, this holds for i = 2, and so sup,, rk(E3 ) < co. Observe that
by the description of E3 , above we have that sup,, rk(E3 ;) < oo. Then, since all
possible nonzero differentials that finish at E§ , should start at E3 | or E3 , we deduce
that sup,.,, rk(Eg?,) = oo if and only if (3.10) holds. Suppose now sup,., rk(Eg3,) =

oo. Since Eg°, is a subgroup of H(A x QPk,Zp), one has

sup rk(H, (A % QPk,Zp)) > sup rk(Eg,) = oo,
k21 k>1
as required.

To prove (3.10)) consider the decomposition of Z, [[ Q ]]-modules RA=VieV,,
where the completed tensor product is over Z,, Q acts diagonally, and for 0: ®2A -

@)ZA given by 0(a;®a,) = a,®ay, we set
Vi={v-0(v)|ve ®2A} and V,={v+0(v)|ve ®2A}.

Then V; is isomorphic to KZA via the canonical map ®2A — RZA, where the com-
pleted exterior product is over Z,.
Consider the epimorphism of pro-p rings

~2 _ _ _ _
p: ® A= Zp[[Sl,Sz, TlaTZ:H/(Sl +Sll+ th + t11—4,52 +521 + 1t + t21 —4) — A
sending s, and s;! to s™! and sending ¢, and #;! to t~!. Note that the diagonal action

51+sfl 52+s;l

of the generators of Q on ®2A is given by multiplication by sis,, t;£5, and ==

Then the map p induces an epimorphism of pro-p groups
~2 _ Kk k
P (B AV, oy Zp — Al((s+5) —2%) = Wi
Note that
~2 —~ —~
(® A)®ZP[[QPk]]ZP = (V1®Zp[[QPk]]ZP) (&) (V2®ZP[[QPk]]ZP)’

. . ~2 Era— . S~ —_
andsi —s; € VS ® A. Thena; = s —s71 = pi((s; —55)®1) € pk(V1®ZP[[Q,,k]]Zp),

where s? — s~ denotes the image of s — 5™ in A. Note that {; },<;<ypc_; generates a
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free Z,-submodule of Wy of rank 2p* — 1. Hence,

—~2 —
tk(A"A®,, 1o Zp) 2 1k (ViBy, omtyZp) >2pF 1. ]

Q* Qr*

4 Some Homology Groups Classified up to Torsion

Recall that H;(G, V') denotes the pro-p homology of the pro-p group G with coeffi-
cients in a pro-p Z,[[G]]-module V. By definition, pro-p modules over pro-p rings
are compact, hence V # Q. Even in the case when A is an abelian pro-p group that
is not torsion-free and i > 3, the homology H;(A,Z,) has a complicated structure,
though there is a natural embedding KIZPA — H;(A,Z,), as shown by King [12, Theo-
rem B]. The following lemma shows that H;(A,Z;) ®z, Q, can be easily described.
As pointed out at the beginning of the paragraph, we cannot resolve the problem by
moving Q, inside the homology functor. Recall that KIZPA denotes the completed
exterior power of A over Z,.

Lemma 4.1 Let A be an abelian pro-p group.

() Hi(AZp) ®2, Qp = (Ay, A) @2, Qp forall i > 1;
(i) if Q is a finitely generated pro-p abelian group and A a finitely generated pro-p
Z,[[Q]]-module, we have

Hi(Q Hi(A,Zy)) ®z, Qp = Hi(Q. A}, A) ®z, Q,
fori>0,j>1

Proof (i) If B is an abelian, torsion-free, pro-p group, then H;(B,Z,) = KIZPB for
all i > 1[12, Theorem B]. So the lemma follows trivially for torsion-free abelian pro-p
groups.

Now let tor A be the torsion pro-p subgroup of A. From the short exact sequence
of abelian pro-p groups tor A = A > M, where M = A/ tor A, we obtain the Lyndon-
Hochschild-Serre spectral sequence

E}; = Hi(M, Hj(tor A, Zy)) = Hi1j(A, Zp).

Since, for j # 0, H;(tor A, Z,) is torsion, we have EIZ] is also torsion for j # 0. Also,
the spectral sequence says that H, (A, Z, ) has a filtration with factors isomorphic to

each E7; such that i + j = n, i.e., there is a filtration of abelian pro-p groups

A1=0CAgC---CA;CA;1C---CA, :Hn(A,Zp),

2.
i,j
so it is also torsion for j # 0, so Ef% ®z, Q, = 0 for j # 0. Therefore, since ~ ®z, Q,
is an exact functor, we obtain a filtration of (Q,-vector spaces

such that A;/A;_y = E[,_; for every 0 < i < n. Moreover, E{7; is a subquotient of E

i,n—i

Vi=0cVoc--cVicViyC-- eV, = Hy(AZy) ®z, Qp,

where V; = A; ®z, Q,. Using again that — ®z, Q, is an exact functor, we get that
Vi/Viay = (AifAin) ®2,Qp = ETS,; ®7, Qp, for 0 < i < nand hence V;/V;_, = 0 for
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0<i<mn-landso0=V_=Vy;=---=V,_.. Then

H, (A, Zy) ®z7, Qp = Vo =V, [ Vi1 2 E5 ®7, Q.
Moreover, from the differential map d;, ,: E} = E;_, .|, since E,_, _ is torsion,

we have that E], \/E/*0 = E}, [ Ker(d], ;) ~Im(d], ;) € E},_, ,_, is torsion forall r > 2.
So E2 /E;, is torsion and, since — ®z, Q,, is exact, we obtain

oo ~ T2
Eylo ®z, Qp 2 E; o ®2, Qp.
Thus

H,(A,Zy) ®z, Qy 2 E; 82, Q,p
= H,(M, Ho(torA, Zy)) ®z, Qy = Hy(M,Zy) ®z, Q,

and, since M is torsion-free, H, (M, Z,) = KZP M.
We claim that

(4.0) (Az,M) @z, Qy = (Az,4) 8z, Q.

Consider the commutative diagram

kery —— R%PA - K;PM

[ [ |

kerf —— @ZPA AN @ZPM

where the vertical maps are the canonical maps from completed tensor powers to
completed exterior powers, § = ®"« and recall that a: A — M is the canonical
projection. To prove (4.1) it is sufficient to show that ker § is torsion, since this implies
that ker y is torsion, hence kery ®7, Q, = 0 and so (4.1) holds.
We show that ker f3 is torsion by induction on #n. Consider the canonical epimor-
phisms
~n-1  —~n-1 ~n-1
9=8" a:®; A— &, M,
(X@(p = @na: @ZPA — @ZPM.
Since a®g is the composition (18¢) o (a®1), we have that ker(a®¢) is the im-
age of (ker a@zp((@;;lA)) ® (A®z, ker¢) in A@Zl,(@;;lA) = @ZPA. By induc-
tive hypothesis, ker ¢ is torsion and by construction ker & = tor(A) is torsion. So
(ker a@zp(@)g;lA)) ® (A®z, ker ) is torsion. Thus ker(a®g) is torsion. This fin-
ishes the induction step and so the proof of the claim.
(ii) The case i = 0 follows from (i), so we can assume from now on that i > 1.
Consider the spectral sequence E; j = Hi(tor A, Hj(A/ tor A, Z,)) associated with
the short exact sequence 0 — tor(A) - A — A/tor(A) — 0. By the proof of (i)
H;(A,Z,) has a filtration 0 = A_; € Ag € A; € --- € Aj = Hj(A,Z,) such that
Ai/A;y = E E7,_; is torsion for i # jand ET) ®z, Qp ~ (KJZPA) ®z, Qp. Thus

i,j—i> i,
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Aj_, istorsion and by the long exact sequence in homology applied for the short exact
sequence 0 ~ Aj_y — H;(A, Zy) » E ~ 0

(L%} l;i oo
~— Hi(Q,Aj.1) — Hi(Q,Hj(A,Zy)) — Hi(Q, Efp)
0;
— H;1(Q,Ajy) — -
Then there is an exact complex
0 —> H(Q, Ajr)/ kera; —> Hi(Q, Hy(A, Zp)) = Hi(Q, ES5) — imd; — 0,
Since Aj_; is torsion, both H;(Q, Aj_;) and H;_;(Q, Aj_;) are torsion, hence
H,‘(Q, A]-,l)/keroci
and im 9; are torsion. Hence the map f3; induces an isomorphism
(4.2) Hi(Q,H;(A,Zy)) ®z, Qp ~ Hi(Q, Ejy) ®2z, Q).

On other hand E7 is a subquotient of E]Z-’0 and

N
Ejo = Hi(Altor(A), Z,) = )\; (A]tor(4)).
Furthermore, by the proof of Lemma 4.1 (i) EJZO/ E7 is torsion. Note that the short

exact sequence 0 — Efg, — Ej, — Ej,/E7, — 0 gives a long exact sequence in
homology

e —> HI(Q,E;OO) e H;‘(Q) Eio) - HI(Q>E]2,0/E]°,°O)
— Hi(Q,ESy) — -

Applying the exact functor ®z,Q,, we obtain another long exact sequence

e— H,-(Q,E;)OO) ®ZP QPlTaH,'(Q,EJg’O) ®Zp QP —
H;i(Q, Ejo/ESy) ®z, Qp — Hi1(Q, ESy) ®2, Qp — -+
Since E]?)O [E, is torsion, H;(Q, E];)O /E%) is torsion, too; hence in the above long

exact sequence H;(Q, EJZ-’O/E;"O) ®z, Qp = 0 for every i > 0. Thus there is an isomor-
phism

(43) Hi(Q)Ei(])@ZP Qp gI_Il'(Q)E';?’G())@Zp Qp

By the proof of Lemma 4.1 (i) the epimorphism y: KQPA - Kép (A/tor(A)) and
the canonical isomorphism §: KJZPA/ tor(A) - H;j(A/tor(A),Z,) = E?,o induce
isomorphisms

(ﬂéPA) ®z, Qp = (KépA/ tor(A)) ®z, Q) =~ Eio ®z, Q).

Thus, the map y = §y: RJZPA - EJZ-’0 has torsion kernel and torsion co-kernel. Thus y
induces an isomorphism

(4.4) H;(Q,Az,A) ®z, Qp = Hi(Q,E} ) ®2, Qpfori 2 0,j>1.
Finally (4.2), (4.3), and (4.4) complete the proof. [ |
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Lemma 4.2 Let G be a pro-p group, Gy a pro-p open, normal, subgroup in G, and V
a pro-p Z,[[G]]-module. Then H,(G, V) ®z, Qp = Ho(G/Go, Hy(Go, V)) ®z, Q).

Proof Consider the Lyndon-Hochschild-Serre spectral sequence

E2 :H,’(G/Go,Hn_i(GO) V))

in—i

converging to H,(G, V). Note that every open subgroup in a pro-p group has a
p-power index. In particular, G/Gy is a finite p-group. Thus H;(G/Gq,-) is tor-
sion for every i > 0, hence E} ,_; is torsion for i > 0. Then E{?,_; is torsion for every
i > 0. By the convergence of the spectral sequence, H, (G, V') has a filtration with
quotients E{5,_; for 0 < i < n. Since ®7,Q, is an exact functor, H, (G, V) ®z, Q, has

i,n—i

filtration with quotients E{5, ; ®z, Qp, but E7,_; ®z, Q, = 0 for i > 0. Hence

i,n—i
(4.5) H,,(G, V) ®z, Qp = E[(;?n ®z, Qp-

Note that all differentials that start at Ej , finish in the second quadrant, hence are

zero. And all differentials that end at Ej , start at Eg ., , and E{ ,,,  is torsion,

hence Ej') = E§ ,/im(ds ;) and E§ , ®z, Q, = E') ®7, Q, for every s > 2. Thus,
(4.6) Ho(G/Go, Hu(Go, V)) ®z, Qp = Ej , ®2, Qp = E¢°, ®z, Q).
Finally (4.5) and (4.6) complete the proof. |

5 Growth of Homology: Proof of Theorem C in the
Metabelian Case

We observe that a version of Theorem C works for a discrete, finitely presented, centre-
by-metabelian group G, since by a result of Groves [9] the central part of G is finitely
generated and for discrete metabelian groups Theorem C holds [15].

Lemma 5.1 Let Q be a finitely generated abelian pro-p group and B a finitely gener-
ated pro-p 7, [[ Q]]-module such that B®z, B is a finitely generated pro-p Z,[[ Q]]-mod-
ule via the diagonal Q-action. Then sup ;. , dimg, B ®z,m] Qp < o0, where A is the
set of all subgroups of p-power index in G = B x Q and we view B as a Z,[[ G]|-module
via the canonical epimorphism G — Q.

Proof By Theorem 2.4, since B®B is a finitely generated pro-p Z, [[ Q]]-module via
the diagonal action, G = B x Q is finitely presented. By [4, Proposition A, Theorem C]
Sup e tk Hi(M,Z,) < 0o and sup . 4 dimg, B ®z,1m7 Qp < 00. [ |

In the following lemma, 'I"o\r? denotes the derived functor of ® 4 in the category of
pro-p A-modules [22, §6.1].

Lemma 5.2 Let Q be the abelian pro-p group ) = (q1, .., qn), A = Zp[[Q]l/T a
pro-p ring, and for every positive integer m, denote by A, the closed ideal of A generated
by the image of {q —1,...,q5 -1} in A. Suppose that

(i) Sup,,.»; dim@p (A/Am) ®Zp QP < 005
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(il) form >1, V,, is a finitely generated, right pro-p A| A ,-module and W, is a finitely
generated, left pro-p AJA,,-module such that

a = supdimq, (Vi, ®z, Qp) <o and b =supdimg,(W, ®z, Q,) < co.

m>1 m>1

Then for every j > 0,

. —A
(5.1) fnug dimg, Tor; (Vin, Win) ®z, Q) < 00
and
(5.2) U Gy, is finite,
m>1

where C,, is the set of isomorphism classes of abstract simple (A/ Ay, ) ®z, Q,-modules.

Proof 1. We first show (5.2). Observe that A/A,, is a quotient of S,, = Z,[Q/Q?"]
and S,,, is a finitely generated Z,-module. Thus R,, = (A/A.,) ®z, Q, is a Q,-algebra
that is finite-dimensional over Q,.

Let D be an abstract simple R,,-module. Then D is a simple quotient of R,,,, i.e., a
finite field extension of QQ,, thus a local field. Note that D is generated by the image
Q of Q in D and Q, and Q is a finite abelian p-group. Any finite subgroup in the
multiplicative group of a field is cyclic, hence Q = («) and « is a primitive p*-root of 1
for some s < m. Then the minimal polynomial of a over Q,, is (xP" - 1)/(x"57l -1)and
sodimg, D = p*-p*! <sup,, ., dimg, (A/A,,) ®z, Q, < co. Then there exists s > 0
such that s < s for every D, and D is a simple quotient of Dy = Q, [x]/(xF" - 1). Fi-
nally since Dy is finite-dimensional over Q,, we deduce that Dy is an Artinian Q,-al-
gebra, hence has only finitely many maximal ideals. This completes the proof of (5.2).

2. Consider filtrations of pro-p A/A,,-modules

OZFO,mCFl,mC"'CFt—l,mth,m:Vms
OZEO,m CEl,m C"'CEt’—l,m CEt’,m = Wa,

of V,, and W,,, respectively, such that the quotients V; ,, := Fs yn/Fs_1,m and Wy, :=
Eg m/Es—1,m are non-trivial and each one is either finite or, after tensoring with
®7,Q,, is a simple abstract R, = (A/A,,) ®z, Qp-module. This is possible since
we can assume that V; , and W, ,, are simple A/A,,-modules. This implies that
Ve,m and Wy, are both cyclic A/A,,-modules, so can be considered as ring quo-
tients of A/A,, and by the simplicity condition both V; ,, and W ,, are fields. Fur-
thermore, since A/A,, is a finitely generated Z,-module, we deduce that V; ,, and
Wr,  are finitely generated Z,-modules, i.e., finitely generated abelian pro-p groups.
If Vi, (resp. Wy ,,) is an infinite field, then this infinite field contains Q,, hence
Vem ®z, @p = Vim (reSP- Werm ®z, Qp = I’vs’,m)-

Now we will need to combine abstract and pro-p Tor functors. Recall that Tor,
denotes the pro-p Tor functor (as mentioned before Lemma 5.2) and Tor? denotes
the abstract Tor functor, i.e., the derived functor of the abstract tensor product ® 4 in
the category of abstract A-modules.
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Note that the short exact sequence 0 - Fs_j; = Fsm — Vi, m — 0 gives rise to a
long exact sequence

A —A A
L —> Torj (Fs—l,m» Wm) — Torj (Fs,mr Wm) — TOI'j (Vs,m) Wm) — .,

Then, after applying the exact functor ®7,Q,, we obtain a long exact sequence

— A —A
RN TOI‘j (stl,m) Wm) ®z, Qp — TOI‘J- (Fs,m, Wm) ®z, QP —

—A

Tor; (Vo,ms> W) ®7, Qp —> -+,
hence for every j > 0,

. —A . — A
dimg, Tor; (Fsm> W) ®z, Qp < dimg, Tor; (Fs-t,m> W) ®2, Q,
. —A
+dimg, Tor; (Vsm> W) ®z, Qp.

Then by induction on s we obtain

. —A . — A
dimg, Tor; (Fs,m> Wm) ®z, Q) < Z dimg, Tor; (Visms> W) ®z, Q.

1<j<s

In particular, for s = ¢, we get that

. A ) —A
(5.3) dimg, Tor; (Vins W) ®z, Q) < Z dimg, Tor; (Vo,m> W) ®z, Q.

1<s<t
—A
Note that if V ,, is finite, then Tor; (Vs,u, W) is torsion, hence
—A
Tor; (Vo,m> Win) ®z, Q, = 0.
Then from (5.3) we obtain
. —A . — A
(5.4)  dimg, Tor; (Vins Wi) ®2, Q < ag -{gaémm(@? Tor; (Vo,ms Win) ®z, Qp,
where g is the number of the factors V; ,, such that V; ,, is infinite. Thus
ag < dimg, (Vi ®2, Q) < a.
— A
In a similar way, using the long exact sequence in Tor, , we can show that
) —A ) —A
(5.5) dimg, Tor; (Vo,m> Win) ®z, Q) < by - 12?3' dimg, Tor; (Vo,ms Werm) ©z, Qp,
where by is the number of the factors Wy, such that Wy, is infinite. Thus

by < dimQP(Wm ®z, Qp) <b.
By (5.4) and (5.5) we obtain that

A —A
dimg, Tor; (Vin, Win) ®z, Q) < ab - max max dimg, Tor; (Vo,m> Worm) ®z, Q5.

1<s<t 1<s/<t!

We claim that
— A
(5.6) Tor; (Ve,m Wer,m) = Torf (Ve ms Wer,m).

Indeed, since V; ,, and Wy ,, are finitely generated Z,-modules and A is a Noetherian
ring (both as a pro-p and an abstract ring), we deduce that there are free resolutions
of Vs m and Wy ,,, as abstract A-modules with all free modules finitely generated. All
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finitely generated free A-modules are free pro-p A-modules and all differentials in
the above free abstract resolutions are automatically continuous since the modules
are finitely generated [25, Lemma 72.2]. Then using these resolutions to compute

— A —
both Tor, and Tor? and the fact that for every k > 1, we have A¥®,— ~ A¥ ®4 — and
~®aAF = — ®4 AF, imply (5.6).
Since - ®z, Q, is an exact functor, we deduce that

T()rf‘(Vs’m, ng’m) ®ZP Qp ~ TOI‘?(VS’m ®ZP Qp; I/vs’,m ®ZP Qp)

Finally, since V;, », ®2, Qp and Wy, ®7, Q) are abstract simple R,,,-modules, by (5.2)
there are only finitely many possibilities for V »,, ®z, Q, and Wy, ®7, Q,. Then

sup dimg, Tor?(Vs,m ®z, Qp, Wyr,m ®2, Q) < 0.

s,s',m

This completes the proof. ]
Recall that for a pro-p group Q and a pro-p Z,[[Q]]-module A,
H(Q,A) = Tor, "1 (a,2,).
By definition Q"' is the pro- p subgroup of Q generated by { qu | q€Q}.

Lemma 5.3 LetQ = Zg and 0 - A; - A — A, — 0 be a short exact sequence of
pro-p Z,[[ Q]]-modules such that sup,, ., dimg, Hi(QP",A;) ®z, Qp < oo for j=1,2.
Then sup,,,., dimg, Hi(QF", A) ®z, Q, < 0.

Proof By the long exact sequence in homology
- — Hi(QM, A1) — Hi(QM, 4) — Hi(QP", A)) — -
we get that

dimg, H;(Q", A) ®7, Q, < dimg, H;(Q?", 4;) ®z, Q,
+dimg, Hi(QF", A;) ®2, Q,. ]

Let Q = Zj = (q1,--->qn) and so Q" =(q’",...,q5"). There is a pro-p version
of the Koszul complex in the abstract case [23, Corollary 4.5.5]. It is obtained from the
abstract version after applying the functor Z,[[Q]|®z[q,], where Qo = Z" is an ab-
stract group with pro-p completion Q. Thus the pro-p version of the Koszul complex
is

Ok,m O1,m 90,m
ﬂjm: "'—’Pk,m—>Pk71,m_’"'—>P1,m—’P0,m_’Zp_’0,
where Py, = ZP[[QPm]], Pe,m = Prciy<<ipsn Zp[[QPm]]e,-ln-eik for k > 1and 9o,
is the augmentation map. The differential 0 p: Pk, — Pk-1,m> Where k > 1 and
1<) <ip <--- < i <m,is given by

Fem(en ) = B (Digh ~Dey 8,

1<j<k
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where the hat in e;, -+ €;, -+ ;, means that the term e;; is erased in the product. Let
A be a right pro-p Z, [[Q?" J-module. Applying the functor (A@ZP [y ~) to the
complex P,,, we obtain the complex

— 5 ,m
Sm = A8z 1@ Pm: > Skum =8 Sktym —>

Fo,m

o= Som — AQZP[[QP'"]]ZP — 0,

where 5k,m = ida®0k,m> So,m = A, and Sk, = D1y <cip<n Aeiy - - €5, for k > 1. Note
that since all modules P; ,, in P, are finitely presented pro-p Z,[[ Q]]-modules, we
have that A@ZP[IQ]] Pim= A®ZP[[Q]]Pi,m-

Lemma 5.4 Let Q =Zp =(qu,...,qn), A = Zy[[Q]]/I for some ideal I in Z,[[Q]],
and let A,, be the ideal of A generated by qu -1L..., qﬁm - 1. Assume that
supdimg, A/A,, ®z, Q, < co.

m>1

Then for every i > 0 and j > 0

(5.7) sup dimg, Tor; (A/Ap, Ker(3;,m)) ®z, Qp < 00
m>1

and

(5.8) supdimg, H;(8,) ®z, Q) < co.
m>1

Proof Since Z,[[Q]] is an abstract Noetherian ring, every abstract ideal in Z,[[Q]]
is finitely generated and so is automatically closed. In particular, A,, is a closed ideal
in A.
1. We show first that (5.8) follows from (5.7). Observe that
—7Z,[[Q""]
H;(8) = Tor;” (A, Zp)

isan A-module, where Q?" acts trivially, so is an A/A ,,-module. Note that H;(S,,) =
Ker(0;,mm)/Im(0;41,m ), hence A, Ker(0;,,) € Im(0;+1,m ) and so there is a surjective
map "fo\rg(A/Am, Ker(9:.m)) = Ker(9;.;m)/Am Ker(9i.m) — H;(8 ). This induces a
surjective map "far:(A/Am, Ker(9i.m)) ®z, Qp = Hi(8n) ®z, Qp, hence

. ) —A ~
supdimg, H;(8,) ®z, Q, < supdimq, Tory (A/A,,, Ker(9i,m)) ®z, Qp.
m>1 m>1

2. To prove (5.7) we first consider the case i = 0; but then Ker(é\o,m) = A,,. The
following exact sequence is a part of the long exact sequence in pro-p homology

0 = Totjy, (Af Ay A) = Tot sy (Af Ay AfA ) > Tor; (Al Ay Am)
— Tor; (A/Am,A) =0 for j>1.

Thus for j > 1
— A — A —A =
(5.9)  Tor;,(A/Am, AlAp) = Tor; (A/Am, Ap) = Tor; (A Am, Ker(do,m))-
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By our assumption sup,,., dimg, A/A,, ®z, Q) < co. Then by (5.1) from Lemma 5.2
sup,,,; dimg, T/‘o\r?H(A/Am,A/Am) ®z, Q) < co. Hence by (5.9)

sup dimg, "f(?r?(A/Am,Am) ®z, Qp<oo forj>1
m21

Finally for j = 0, observe that A,,/A2, is an A/A,,-module generated by the images
ofg’ -1,...,45 -1, hence

—A
dimg, Tory (A/Am, Am) ®z, Qp = (Am/A2,) ®2, Qp < n. dimg, (A/A ®2, Qp).

This completes the proof when i = 0.
By induction on i we can assume that (5.7) holds for i — 1, i.e.,

— A —~
(5.10) sup dimq, Tor; (A/Am, Ker(di-1,m)) ®z, Q) < 00,
m21

and by case I we have that

(5.11) supdimg, H; 1(8,) ®z, Qp < co.

m>1

Consider the short exact sequence 0 — Ker(9;,,n) = Si.m = Im(9;,m) — 0 of pro-p
A-modules, where S; ,, is a module of the Koszul complex 8,,, so by definition is a
finitely generated free pro-p A-module. Then for j > 2, there is a long exact sequence
in homology

<> 0= Tor; (A/ Ay, Sim) — Tot; (Af/Ap, Im(3im)) —
Tot-1(A/Ams Ker(Di,m)) — Tor, 1 (AfAm, Sign)) =0 — -+,
Similarly, there is an exact sequence
0= 08, (4/ A, Si.m) — Tor; (A/Ap, Im(@;n)) — Tory (A] A, Ker(3,,m))
— Tory (4/ A, S1.n)) — Tory (A] Ay, 1m(3,.)) — 0.

Then for j > 2,
(5.12)
dimg, Tor; (A/Ap, Im(3;,m)) ®2, Qp = dimg, Tty (A/ Ay, Ker(3i,m)) ®2, Q,
and
(5.13)

dimg, Torg (A/Am, Ker(3i,m)) ®z, Qp < dimg, Tot; (A/ Ay, Im(3:,m)) €2, Qp
+dimg, "fc?r?(A/Am, Sim) ®z, Q).

Note that "fo\r:)1 (A/Ap>Sim) = (AJAw)BaSim = (AJA,)(). This together with
(5.13) and (5.12) imply that to complete the proof it remains to show that

sup dimg, f(?r?(A/Am,Im(é\i,m)) ®z, Qp<oo forj>1
m21
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By Lemma 5.2 and (5.11)
(5.14) sup dimg, Tot 1y, (A/ A, Hio1(Sm)) ®2, Qp < 0.
m21
Finally using the short exact sequence
00— Im(é\i,m) —> Ker(/a\i_l,m) — H,‘_l(Sm) — 0
of pro-p A-modules, we have a long exact sequence in homology
—A — A —~
- —> Tor;,(A/Am, Hi~1(8m)) — Tor; (A/ A, Im(9i,m))
— Tor; (Af A, Ker(3io1m)) — -,
and hence we get
. —A = . —A
dimg, Tor; (A/Am, Im(0i,m)) ®z, Q) < dimg, Tor j,;(A/Am, Hi-1(8m)) ®z, Qp
— A I~
+dimg, Tor; (A/Am,Ker(di-1,m)) ®z, Qp.
Hence by (5.10) and (5.14), sup,, ., dimg, T"ar? (A/Anm, Im(gi,m)) ®z,Qy<oc0. H

Theorem 5.5 Let Q be a finitely generated abelian pro-p group and A a finitely gen-
erated pro-p Z,[[Q]]-module. If sup,,, dimg, A ®;, vy Qp < 00, then

sup dimg, H,-(QPI,A) ®z, Qp < oo, foralli.
t>1

Proof By going down to a subgroup of finite index in Q, we can assume that Q =
Zjy = {(q1--->qn). Using induction on the number of generators of A as a Z4[[Q]]-
module and Lemma 5.3, we can reduce to the case when A is a cyclic Z,[[ Q]]-module,
ie., A=7,[[Q]]/Ifor someidealin Z,[[Q]] (since Z,[[ Q]] is an abstract Noetherian
ring, every abstract ideal in Z, [[Q]] is closed). Then we can apply (5.8). [ |

Theorem 5.6 Let G be a metabelian pro-p group of type FP,,,. Then

sup tk H;(M,Z,) < oo, forall0<i<m,
MeA

where A is the set of all subgroups of p-power index in G.

Proof Let A be a pro-p abelian subgroup of G such that G/A = Q is abelian. Let
Gj € A, Qp be the image of G; in Q and A; = An Gy, 50 Gi/A; 2 Q.
The Lyndon-Hochschild-Serre spectral sequence in pro-p homology

E?,s = Hr(Qla Hs(Ab Zp)) g Hr+s(G1: Zp)
implies that

j j
. . =) . 2
dimg, H;(G,Zy) ®z, Qy = Z(:)d1m@P E7 . ®z, Q, < Z;)dlme E;i-r®z, Qp.
r= r=

By [A:A;] < oo and Lemma 4.1 we obtain
(5.15) E}, ®z, Qp 2 H(Q1, Hi(A, Zy)) ®2, Qp.
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Since [Q:Q;] < oo, there is t > 0 such that Q' = (q*" | g € Q) c Q, and, by Lem-
ma 4.2 for every pro-p Z,[[Q;]]-module L,

H,(Qi,L) ®2, Qp = Hy(Qi/Q¥, H,(Q”, 1)) ®2, Q.

Hence dimg, H,(Q1,L) ®z, Q, < dimg, H,(Q", L) ®z, Qp, so applying for L =
H;_,(A,7Zy), we get
(516) dimq, H,(Qi, Hj-1(A, Zp)) ®2, Q, < dimg, H,(Q? , H;_, (A, Z,)) ®2, Q.
Then by (5.15), (5.16), and Lemma 4.1
sup dimg, Ef)j_, ®z, Q) < sup dimg, H,(Q? ,RJZ;rA) ®z, Qp.
[Q:Qi]<eo t21

Thus, to show that sup; . 4 dimg, H;(G1,Z,) ®z, Q) < oo, forall 0 < j < m, it is
sufficient to prove that sup,,, dimg, H,(QY, ﬂ;pA) ®z,Qp < oo, forall0 <7, k < m.
Now, since G is a metabelian pro-p group of type FP,,,, by Theorem 2.4, KZPA is
finitely generated as a pro-p Z,[[ Q]]-module for all k < 2m. So applying Theorem 5.5
with B = KZP A, we see it is enough to show that

sup dimg, HO(Qp’)RZPA) ®z, Qp <00, forall0<k<m.

21

But this follows from Lemma 5.1. |

6 Proof of Theorem C: the General Case

Let C = Z(G); thus G/C is metabelian. Let M € A; consider the short exact sequence
of pro-p groups CnM = M - M/(Cn M) and the associated Lyndon-Hochschild-
Serre spectral sequence

E};=H;(M/(CnM),H;(CNM,Z,)) —> H;, (M, Z,).

Since G is of type FP,,,, m > 1, by [17, Corollary 3.5], C and so C n M are finitely
generated abelian pro-p groups. Also, since C is central, M/(C n M) acts trivially
(via conjugation) on C n M. This implies that

E,ZJ =H;(M/(CnM),H;j(CnM,Z)) = H{(M/(Cn M), Z,)®z,H;(CnM,Zj).
Moreover, since [G:M] < oo, G and M are pro-p groups of the same homological
type [12, Theorem 2]. So, by [17, Theorem 3.6], M/(C n M) is of type FP,,,. Thus
H;(M/(CnM),Z,) is finitely generated as a Z,-module for 0 < i < 2m. Also, since

CnM is a finitely generated abelian pro- p group, H;(CnM, Z, ) is finitely generated as
Z,-module for all j, hence is finitely presented as Z,-module. Then by [6, Lemma 1.1]

H,(M/M n C,Zp)gzPHj(C n M,Zp) = H,(M/M n C’ZP) ®ZP HJ(C n M,Zp),
and so
E};®z, Qp = (Hi(M/MnC,Z,) ®z, H(CNM,Z,)) ®z, Q,
= (H,(M/M nC, Zp) ®z, QP) ®qQ, (Hj(C n M,ZP) ®z, QP)
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Thus, for 0 < i < 2m and any j,

(6.1) rk(E} ;) =tk H{(M/M N C,Zy,) -tk H;(Cn M, Z,)
rkC)

SrkHi(M/MnC,Zp)~(

Finally, by Theorem 5.6, since M/(C n M) has a p-power index in the metabelian
pro-p group G/C of type FPy, sup,,. 4 tk Hi(M/Mn C,Z,) < oo, for 0 < i < m.
Therefore, from the spectral sequence convergence and (6.1), we obtain

sup tk H;(M,Z,) < > sup rkEi)ﬁ <oo, for0<i<m.
MeA a+ﬁ=iMeA
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