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Growth of Homology of
Centre-by-metabelian
Pro-p Groups

Dessislava H. Kochloukova and Aline G. S. Pinto

Abstract. For a centre-by-metabelian pro-p group G of type FP2m , for some m ≥ 1, we show that
supM∈A rk H i(M,Zp) < ∞, for all 0 ≤ i ≤ m, whereA is the set of all subgroups of p-power index
in G and, for a ûnitely generated abelian pro-p group V , rk V = dimV ⊗Zp Qp .

1 Introduction

J. S. Wilson proved that the Golod–Shafarevich inequality holds for ûnitely presented
soluble pro-p groups. Using this, he proved that, for ûnitely presented soluble pro-p
group G with a normal pro-p subgroup H such that G/H ≃ Zp , the pro-p group H is
ûnitely generated [24, Corollary A, (iii)].

In the context of pro-p groups, the properties of being ûnitely generated andûnitely
presented can be translated as the homological properties FP1 and FP2, respectively. A
pro-p group G has homological type FPm if Zp , considered as a trivial Zp[[G]]-mod-
ule, has a projective (free) resolution of pro-p Zp[[G]]-modules, where the modules
in dimension up to m are ûnitely generated or, equivalently, if the homology groups
H i(G ,Fp) are ûnite for i ≤ m. So G is ûnitely generated if and only if G is FP1 and G
is ûnitely presented if and only if G is FP2. _us, Wilson’s result can be stated as: for
soluble pro-p groups of type FP2, every normal pro-p subgroup with quotient Zp is
FP1.

Little is known for ûnitely presented soluble pro-p groups. C. Corob Cook [7]
showed that every virtually torsion-free, soluble, pro-p group of type FP∞ is of ûnite
rank (for groups of ûnite rank see [8]). J. King [13] classiûed the ûnitely presented
metabelian pro-p groups. _is was later generalized by Kochloukova in [14], where
all metabelian pro-p groups of type FPm were classiûed in terms of King’s invari-
ant (_eorem 2.4). Using this classiûcation of metabelian pro-p groups of type FPm ,
Kochloukova and Pinto proved [16] that every ûnitely generated metabelian pro-p
group embeds in a metabelian pro-p group of type FPm . _e case m = 2 was proved
earlier by Remeslenikov [21], much before King’s classiûcation of ûnitely presented
metabelian pro-p groups was established. _e abstract case of the same embedding
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result for ûnitely generated metabelian discrete groups when m = 2 was proved by
G. Baumslag [1] and for general m was proved by Kochloukova and da Silva [18]. In
the case of Lie algebras, the embedding property ofmetabelian Lie algebras holds, too,
and was established by J. Groves and Kochloukova in [10].

Groves proved that a ûnitely presented abstract centre-by-metabelian group is abel-
ian-by-polycyclic [9]. In particular, it has the maximal condition on normal sub-
groups, thus the central part is ûnitely generated. Kochloukova and Pinto [17] showed
that this holds for ûnitely presented, centre-by-metabelian pro-p groups, i.e., the cen-
tral part is a ûnitely generated, abelian, pro-p group. _is, togetherwithKochloukova’s
classiûcation ofmetabelian pro-p groups of type FPm , gives classiûcation of centre-by-
metabelian pro-p groups of type FPm . Our ûrst result generalizes Wilson’s result [24,
Corollary A, (iii)] whenG is a centre-by-metabelian pro-p group of homological type
FP2m .

_eorem A Let G be a centre-by-metabelian pro-p group of type FP2m , where m ≥ 1
is an integer. If H is a normal pro-p subgroup of G such that G/H ≅ Zp , then H is of
type FPm .

In the following result, we give an example of ametabelian pro-p group of type FP3
with a normal pro-p subgroup that is not FP2 and the quotient is Zp . _is justiûes
our hypothesis on G in _eorem A. _e example was based on King’s examples of a
ûnitely generated metabelian pro-p group H that is not ûnitely presented [13].

Proposition B Let p > 2 be a prime number. Let Q0 be the free abelian pro-p group
on the set {s, t} and k = Fp or k = Zp . Let A = k[[Q0]]/(s + s−1 + t + t−1 − 4), and
Q = ⟨s, t, y⟩ = Z3

p is generated as an abelian pro-p group by s, t and y, where y acts on
A (via conjugation) by multiplication with (s+ s−1)/2. _en G = A⋊Q is a pro-p group
of type FP3, with a pro-p normal subgroup H = A⋊ Q0 such that G/H ≅ Zp and H is
not of type FP2.

M. R. Bridson and Kochloukova [4] generalizedWilson’s result in the following di-
rection. For a ûnitely generated pro-p group H, let d(H) be the minimal number of
generators of H. _ey showed [4, Proposition A] that for a ûnitely presented soluble
pro-p groupG, one has supG/H≅Zp

d(H) < ∞. Using this, they then proved [4, Corol-
lary D] that for a ûnitely presented nilpotent-by-abelian-by-ûnite pro-p group, one
has supM∈A rkH1(M ,Zp) < ∞, where A is the set of all pro-p subgroups of ûnite
index in G and, for an abelian pro-p group B, rk B ∶= dimQp B ⊗Zp Qp is the torsion
free rank of B. Observe that in a pro-p group, a subgroup of ûnite index always has
a p-power index. _ey also gave an example of a ûnitely presented metabelian pro-p
group where this fails when one changes the ûeld of coeõcients from Qp to Fp , i.e.,
supM∈A dimFp H1(M ,Fp) = ∞.

_enext result generalizes [4, CorollaryD] for centre-by-metabelian pro-p groups.
Recall that, by a result of Kochloukova and Pinto, the central part of a ûnitely pre-
sented centre-by-metabelian pro-p group is ûnitely generated [17]. _e same is known
to hold for the category of Lie algebras by a result of Bryant and Groves [5].
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_eorem C Let G be a centre-by-metabelian pro-p group of type FP2m , where m ≥ 1.
_en supM∈A rk H i(M ,Zp) < ∞, for all 0 ≤ i ≤ m, whereA is the set of all subgroups
of p-power index in G.

We also show that for m = 2, the condition in _eorem C that G is of type FP2m is
necessary.

PropositionD Let p > 2 be a prime number. For the groupG deûned in Proposition B
for k = Zp , we have that supM∈A rk H2(M ,Zp) = ∞,whereA is the set of all subgroups
of p-power index in G.

Finally, based on _eorems A and C we suggest the following conjecture.

Conjecture _ere is a function ρ ∶ {1, 2, 3, ⋅ ⋅ ⋅}×{1, 2, 3, ⋅ ⋅ ⋅} → {1, 2, 3, ⋅ ⋅ ⋅} such that
for every soluble pro-p group G of soluble class k and of homological type FPρ(k ,n) and
for every normal pro-p subgroup H of G such that G/H ≃ Zp , we have that H is of type
FPn .

2 Preliminaries

2.1 Homological Finiteness Properties of Pro-p Groups

Recall that for a pro-p group G and k = Fp or k = Zp , the completed group algebra
k[[G]] is the inverse limit of (k/pik)[G/U] over all i ≥ 1 and open normal subgroups
U of G. _e completed group algebra k[[G]] is a local ring whose unique maximal
ideal is the kernel of the canonical map k[[G]] → Fp that sends G to 1 and k to k/pk ≃
Fp .
A pro-p groupG is of homological type FPn if there is a projective resolution (in the

category of pro-p modules, thus all diòerentials should be continuous) of the trivial
Zp[[G]]-module Zp P ∶ ⋅ ⋅ ⋅ → Pi → Pi−1 → ⋅ ⋅ ⋅ → P0 → Zp → 0, where all Pi are
ûnitely generated for i ≤ n. It is worth mentioning that by [25, Lemma 7.2.2] any
abstract homomorphism ρ ∶ V → W of pro-p R-modules, where R = k[[G]], k a
pro-p ring, and V and W are ûnitely generated pro-p R-modules, is automatically
continuous.
By [20, _eorem 1.6] a pro-p group G is of type FPn if and only if the pro-p ho-

mology H i(G ,Fp) is ûnite for all i ≤ n. _us G is FP1 if and only if G is ûnitely gen-
erated as a pro-p group (we say simply ûnitely generated). And both H1(G ,Fp) and
H2(G ,Fp) are ûnite if and only if G is ûnitely presented as a pro-p group [22, §7.8],
i.e., G ≃ F/ ⟨SF⟩, where F is a free pro-p group with a ûnite basis, S is a ûnite subset
of F, and ⟨SF⟩ is the normal pro-p subgroup generated by S.

2.2 Metabelian Pro-p Groups

Let F be the algebraic closure of Fp and F[[T]] be the formal power series algebra
with a group of units F[[T]]×. Let Q be a (topologically) ûnitely generated abelian
pro-p group and T(Q) be the set Hom(Q ,F[[T]]×) of continuous homomorphisms
from Q to F[[T]]×. By the universal property of Zp[[Q]], each v ∈ T(Q) extends to a
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unique continuous algebra homomorphism fromZp[[Q]] toF[[T]], which we denote
by v.

Deûnition 2.1 ( [13, DeûnitionA]) LetQ be a ûnitely generated abelian pro-p group
and A a ûnitely generated pro-p Zp[[Q]]-module. King’s invariant is deûned as

∆(A) = {v ∈ T(Q) ∣ AnnZp[[Q]](A) ≤ Ker v} ∪ {1},

where AnnZp[[Q]](A) = {λ ∈ Zp[[Q]] ∣ Aλ = 0} is the annihilator of A in Zp[[Q]].

Kochloukova and Zalesskii [19] associated an invariant that is a subset of T(Q)
with any ûnitely generated pro-p group G . _is invariant and the above invariant
∆(A) are quite hard to calculate in concrete examples.

We state below an important property of ∆(A). A similar result holds for the Bieri–
Strebel invariant ΣcA(Q) deûned for a ûnitely generated ZQ-module A [3].

Lemma 2.2 ( [13, 2.3]) Let B be a pro-p Zp[[Q]]-submodule of A. _en ∆(A) =
∆(B) ∪ ∆(A/B).

We say that A is m-tame overZp[[Q]] (or is m-tame as a pro-pZp[[Q]]-module) if
whenever v1 , . . . , vm ∈ ∆(A) satisfy v1 ⋅ ⋅ ⋅ vm = 1, then v1 = ⋅ ⋅ ⋅ = vm = 1. From Lemma
2.2 we see that if A is m-tame and B is a pro-p Zp[[Q]]-submodule of A, then B is also
m-tame.

King showed [13, Corollary G] that 2-tameness of A ûnitely characterizes presen-
tation of any extension of A by Q. Using this he showed the following.

Proposition 2.3 ( [13, Proposition H]) Suppose that p > 2. Let Q0 be a free abelian
pro-p group on the set {s, t} and let A = Fp[[Q0]]/(s + s−1 + t + t−1 − 4). _en the split
extension A⋊ Q0 is not of homological type FP2, i.e., is not ûnitely presented.

_e classiûcation of the metabelian pro-p groups of type FPm is presented in the
following theorem. _e casem = 2 was done by King [11, _eorem C] and the case of
a general natural number m was proved by Kochloukova [14].

_eorem 2.4 ( [14, _eorem D]) Suppose that 1 → A → G → Q → 1 is an exact
sequence of pro-p groups, where G is ûnitely generated, and A and Q are abelian, and
consider Aas a pro-pZp[[Q]]-module via the action of Q induced by conjugation. _en
the following are equivalent:

(i) G is of type FPm over Zp ;
(ii) the completed m-th exterior power ⋀̂

m
Zp(A) of A is a ûnitely generated pro-p

Zp[[Q]]-module via the diagonal Q-action;
(iii) the completed m-th tensor power ⊗̂

m
ZpA of A is a ûnitely generated pro-p

Zp[[Q]]-module via the diagonal Q-action;
(iv) the completed m-th symmetric tensor power Ŝm

Zp
(A) of A is a ûnitely generated

pro-p Zp[[Q]]-module via the diagonal Q-action;
(v) A is m-tame over Zp[[Q]].
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Completed tensor powers, completed symmetric powers, and completed exterior
powers of pro-pmodulesAover pro-p rings can be deûned by the appropriate univer-
sal properties or can be constructed by taking inverse limits of the tensor, symmetric,
and symmetric abstract powers of the ûnite p-quotients of A (for more properties on
completed tensor product see [22, §5.5]). Note that by [6, Lemma 1.1] if k is a pro-p
ring, V is a right pro-p k-module, andW is a le� pro-p k-module, then there is a nat-
ural isomorphism V ⊗k W ≃ V⊗̂kW provided either V or W is a ûnitely presented
pro-p k-module.

3 Pro-p Subgroups of G With G/H ≃ Zp

_eorem 3.1 Let G be a metabelian pro-p group of type FP2m , where m ≥ 1 is an
integer. If H is a normal pro-p subgroup of G such that G/H ≅ Zp , then H is of type
FPm .

Proof Let A be an abelian normal pro-p subgroup of G such that the quotient Q =
G/A is abelian. Set A0 = H ∩ A, Q0 = H/A0 and note that Q0 is a pro-p subgroup of
Q. _us there is a short exact sequence A0 → H → Q0 of pro-p groups with A0 and
Q0 abelian. Observe that A0 is normal in G, hence A0 is a pro-p Zp[[Q]]-submodule
of A. Since G/H ≃ Zp , there are two cases:

● [A ∶A0] < ∞ and Q/Q0 ≃ Zp ,
● A/A0 ≃ Zp and [Q ∶Q0] < ∞.
In the ûrst case, since G is of type FP2m , by _eorem 2.4 we have that A is 2m-

tame over Zp[[Q]]. Hence, by Lemma 2.2, A0 is 2m-tame over Zp[[Q]] and so, using
again _eorem 2.4, ⊗̂

2m
Zp A0 is a ûnitely generated Zp[[Q]]-module via the diagonal

Q-action. Let B = ⊗̂
m
ZpA0 and consider G̃ = B ⋊ Q, where Q acts diagonally on B.

Since B⊗̂ZpB is ûnitely generated as a Zp[[Q]]-module via the diagonal action, by
_eorem 2.4 we obtain that G̃ is of type FP2. Now note that H̃ ∶= B ⋊ Q0 is a normal
pro-p subgroup of G̃ such that G̃/H̃ ≅ Zp . _en, by Wilson’s result [24, Corollary A,
(iii)], H̃ is ûnitely generated and so B = ⊗̂

m
ZpA0 is ûnitely generated as a Zp[[Q0]]-

module. By_eorem 2.4 this implies that A0 is m-tame as aZp[[Q0]]-module and so,
by_eorem 2.4 again, any extension of A0 by Q0 is of type FPm . In particular, H is of
type FPm as required.

In the second case, let H0 be the preimage of Q0 in G, so there is a short exact
sequence of groups A → H0 → Q0. _us H0 has ûnite index in G and so is of type
FP2m . _en by _eorem 2.4 we have that A is 2m-tame as a Zp[[Q0]]-module. Since
A0 is Zp[[Q0]]-submodule of A, by Lemma 2.2, A0 is also 2m-tame as aZp[[Q0]]-
module. _en by _eorem 2.4, H is FP2m , hence is FPm .

Proof of_eorem A Let C → G → G/C be a central extension with G/C meta-
belian. By [17, Corollary 3.5], C is a ûnitely generated abelian pro-p group, hence
H ∩ C is a ûnitely generated abelian pro-p group, hence of type FP∞. Consider the
short exact sequence of pro-p groups C0 → H → H/C0, where C0 = H ∩ C. Since
C0 is of type FP∞ we have that H is of type FPm if and only if H/C0 is of type FPm
(the abstract case is proved in [2], the pro-p case is [12, _eorem 2]). Note that H/C0
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is a normal subgroup of the metabelian pro-p group G/C. Furthermore, since C is
a ûnitely generated abelian pro-p group and G is a pro-p group of type FP2m , the
quotient group G/C has type FP2m . Finally (G/C)/(H/C0) ≃ G/HC is a quotient of
G/H ≃ Zp , hence is either Zp or ûnite. In the ûrst case we can apply _eorem 3.1 to
deduce that H/C0 is of type FPm . In the second case H/C0 has ûnite index in G/C,
hence has the same homological type as G/C, i.e., H/C0 is FP2m , so is FPm .

_eorem 3.2 Let p > 2 be a prime number. Let Q0 be the free abelian pro-p group
on the set {s, t} and k = Fp or k = Zp . Let A = k[[Q0]]/(s + s−1 + t + t−1 − 4) and
Q = ⟨s, t, y⟩ ≃ Z3

p generated by s, t, and y, where y acts on A (via conjugation) by
multiplication with (s + s−1)/2. _en the split extension A⋊ Q is of type FP3.

Proof Observe that (s + s−1)/2 is not an element of the unique maximal ideal of the
local ring k[[Q0]], hence is invertible in k[[Q0]]. _us the pro-p group A⋊ Q is well
deûned.

If k = Zp note that by_eorem 2.4 A⋊Q is FP3 if and only if V = ⊗̂
3
ZpA is ûnitely

generated as a Zp[[Q]]-module via the diagonal Q-action. Since Zp[[Q]] is a local
ring, V is ûnitely generated as aZp[[Q]]-module if and only if V/pV is ûnitely gener-
ated as a Fp[[Q]]-module (and these two conditions are equivalent to V⊗̂Zp[[Q]]Fp is
ûnite). Finally since V/pV ≃ ⊗̂

3
Zp(A/pA), we reduce to the case where k = Fp . _us

henceforth we can assume that k = Fp and to prove the theorem it is enough to show
that (⊗̂

3
FpA)⊗̂Fp[[Q]]Fp has ûnite dimension over Fp .

Since Q0 is a free abelian pro-p group on the set {s, t}, we have that Fp[[Q0]] is
isomorphic to the formal power series algebra Fp[[S , T]] over Fp in the commutative
indeterminates S , T , where S = s − 1 and T = t − 1. _us, (A⊗̂ZpA⊗̂ZpA)⊗̂Fp[[Q]]Fp is
isomorphic to B = Fp[[S1 , S2 , S3 , T1 , T2 , T3]]/L, where

L = (s1s2s3 − 1, t1 t2 t3 − 1, y1 y2 y3 − 1, s i + s−1
i + t i + t−1

i − 4 ∣ 1 ≤ i ≤ 3),

S i = s i − 1, Ti = t i − 1, and y i = (s i + s−1
i )/2 for 1 ≤ i ≤ 3. _us to prove that B is ûnite,

it is enough to show that the images of s i , t i in B are algebraic over Fp , for 1 ≤ i ≤ 3.
Deûne α i ∶= s i + s−1

i and β i ∶= t i + t−1
i , for 1 ≤ i ≤ 3. So y i = α i

2 , 1 ≤ i ≤ 3.
Henceforth, for a, b ∈ Fp[[S1 , S2 , S3 , T1 , T2 , T3]], we write a ≡ b for a − b ∈ L, i.e., the
images of a and b in B are the same. Since y1 y2 y3 ≡ 1, we get α1α2α3 ≡ 8. Moreover,
α i + β i ≡ 4 for 1 ≤ i ≤ 3. _us

(3.1) 8 ≡ α1α2α3 ≡
3
∏
i=1

(s i+s−1
i ) = s1s2s3+

1
s1s2s3

+ s1s2
s3

+ s1s3
s2

+ s2s3
s1

+ s1
s2s3

+ s2
s1s3

+ s3
s1s2

.

Since s1s2s3 ≡ 1 ≡ s−1
1 s−1

2 s−1
3 ,

s1 s2
s3
+ s1 s3

s2
+ s2 s3

s1
≡ s21 s

2
2 + s21 s

2
3 + s22s

2
3 ,

s1
s2s3

+ s2
s1s3

+ s3
s1s2

= s21 + s22 + s23
s1s2s3

≡ s21 + s22 + s23 ,
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and by (3.1), we get

s21 s
2
2 + s21 s

2
3 + s22s

2
3 + s21 + s22 + s23 ≡

s1s2
s3

+ s1s3
s2

+ s2s3
s1

+ s1
s2s3

+ s2
s1s3

+ s3
s1s2

≡ 8 − s1s2s3 −
1

s1s2s3
≡ 8 − 1 − 1 = 6.

_en, since s1s2s3 ≡ 1,

(3.2)
3

∑
i=1
α2

i =
3

∑
i=1

(s i +
1
s i
)2 =

3

∑
i=1

s2i +
3

∑
i=1

1
s2i
+ 6

= s21 + s22 + s23 +
s21 s

2
2 + s21 s

2
3 + s22s

2
3

s21 s22s23
+ 6

≡ s21 + s22 + s23 + s21 s
2
2 + s21 s

2
3 + s22s

2
3 + 6 ≡ 12.

Now since α i + β i ≡ 4 and α1α2α3 ≡ 8, we have by (3.2)
3
∏
i=1

(4 − β i) ≡ α1α2α3 ≡ 8 and
3

∑
i=1

(4 − β i)2 ≡
3

∑
i=1
α2

i ≡ 12.

Developing the le� side in the above equations, we obtain

(3.3) 16(β1 + β2 + β3) − 4(β1β2 + β1β3 + β2β3) + β1β2β3 ≡ 56
and

(3.4) 8(β1 + β2 + β3) ≡ β2
1 + β2

2 + β2
3 + 36.

Using that t1 t2 t3 ≡ 1, we will rewrite equations (3.3) and (3.4) in terms of t1, t2, and
t3. For this, denote a ∶= ∑3

i=1 t i and b ∶= t1 t2 + t1 t3 + t2 t3 ≡ ∑3
i=1

1
t i
. Note that since

t1 t2 t3 ≡ 1,∑i /= j/=k/=i t2i t
2
j tk ≡ ∑i /= j t i t j . _us,

β1 + β2 + β3 =
3

∑
i=1

(t i + t−1
i ) ≡ a + b,

β1β2 + β1β3 + β2β3 = ∑
i /= j

( t i +
1
t i
)( t j +

1
t j
) = ∑

i /= j/=k/=i

(t2i + 1)(t2j + 1)
t i t j tk

tk

≡ ∑(t2i t2j tk + tk + t2i tk + t2j tk)

≡ ∑
i /= j

t i t j +
3

∑
k=1

tk + (∑
i /= j

t i t j)(
3

∑
i=1

tk) − 3t1 t2 t3

≡ b + a + ba − 3,

β2
1 + β2

2 + β2
3 = (

3

∑
i=1
β i)2 − 2(β1β2 + β1β3 + β2β3)

≡ (a + b)2 − 2(b + a + ab − 3) = a2 + b2 − 2a − 2b + 6,

and

(3.5) β1β2β3 =
3
∏
i=1

( t i +
1
t i
) ≡

3
∏
i=1

(t2i + 1)

≡ t21 t
2
2 t

2
3 + 1 + t21 + t22 + t23 + t21 t

2
2 + t21 t

2
3 + t22 t

2
3 .
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But

(3.6)
3

∑
i=1

t2i = (
3

∑
i=1

t i)2 − 2(t1 t2 + t1 t3 + t2 t3) = a2 − 2b

and so

(3.7) (
3

∑
i=1

t2i )(
3

∑
i=1

t2i ) = 2(t21 t22 + t21 t
2
3 + t22 t

2
3) +

3

∑
i=1

t4i .

Note that, since t i is a root of the polynomial (x−t1)(x−t2)(x−t3) = x3−ax2+bx−1,
we have that t3i − at2i + bt i − 1 = 0 and t4i − at3i + bt2i − t i = 0. _us

3

∑
i=1

t4i = a∑ t3i − b∑ t2i +∑ t i

= a(a∑ t2i − b∑ t i + 3) − b∑ t2i +∑ t i
= (a2 − b)∑ t2i + (1 − ab)∑ t i + 3a

≡ (a2 − b)(a2 − 2b) − a2b + 4a

and so by (3.6) and (3.7)

(3.8) 2(t21 t22 + t21 t
2
3 + t22 t

2
3) = (∑ t2i )2 −∑ t4i

≡ (a2 − 2b)(a2 − 2b) − [(a2 − b)(a2 − 2b) − a2b + 4a] = 2(b2 − 2a).
_erefore by (3.5), (3.6), and (3.8) β1β2β3 ≡ 2 + a2 − 2b + b2 − 2a. _us, in terms of
a, b, equations (3.3) and (3.4) are, respectively,

(3.9) a2 + b2 − 4ab + 10a + 10b ≡ 42 and a2 + b2 − 10a − 10b ≡ −42,
from which, by summing the above equations, we conclude that 2a2 + 2b2 − 4ab ≡ 0,
that is, 2(a − b)2 ≡ 0, so a ≡ b. Substituting in (3.9), we obtain 2a2 − 20a + 42 ≡ 0.
_us a and b are also algebraic over Fp , from which we get t1, t2, t3 algebraic over Fp .
_is implies β i = t i + t−1

i and so α i ≡ 4− β i , for i = 1, 2, 3, are algebraic over Fp . Since
α i = s i + s−1

i is algebraic over Fp and (x − s i)(x − s−1
i ) = x2 − α ix + 1, 1 ≤ i ≤ 3, we also

have that s1 , s2 , s3 are algebraic over Fp .

_e following corollary completes the proof of Proposition B.

Corollary 3.3 Let Q0, A, and Q be as in_eorem 3.2. _enG = A⋊Q is ametabelian
pro-p group of type FP3 with a pro-p normal subgroup H = A⋊Q0 such that G/H ≅ Zp
and H is not of type FP2.

Proof By_eorem 3.2 we have that G = A⋊Q is of type FP3 and by Proposition 2.3
H = A⋊ Q0 is not of type FP2.

Proof of Proposition D Recall that p > 2. We show ûrst that it suõces to show that

(3.10) sup
k≥1

rk(⋀̂
2
A)⊗̂Zp[[Q pk ]]

Zp = ∞.

Indeed, consider the Lyndon–Hochschild–Serre spectral sequence

E2
i , j = H i(Q pk

,H j(A,Zp)) ⇒ H i+ j(A⋊ Q pk
,Zp).
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Note that E2
i , j depends on k, but we do not put an extra index k to E2

i , j in order not
to confuse the notation.
By deûnition

E2
0,2 = (⋀̂

2
A)⊗̂Zp[[Q pk ]]

Zp ,

E2
3,0 = H3(Q pk

,Zp) ≃ ⋀̂
3Z3

p ,

E2
2,1 = H2(Q pk

,A).

Note that since A⋊ Q is FP3, it is FP2, and by [4, Proposition A + Proposition B]

sup
k≥1

dimQp(A⊗Zp[[Q pk ]]
Qp) < ∞.

_en, by _eorem 5.5 from the next section, supk≥1 dimQp H i(Q pk
,A) ⊗Zp Qp < ∞,

for all i. In particular, this holds for i = 2, and so supk≥1 rk(E2
2,1) < ∞. Observe that

by the description of E2
3,0 above we have that supk≥1 rk(E2

3,0) < ∞. _en, since all
possible nonzero diòerentials that ûnish at E∗0,2 should start at E2

2,1 or E
3
3,0, we deduce

that supk≥1 rk(E∞0,2) = ∞ if and only if (3.10) holds. Suppose now supk≥1 rk(E∞0,2) =
∞. Since E∞0,2 is a subgroup of H2(A⋊ Q pk

,Zp), one has

sup
k≥1

rk(H2(A⋊ Q pk
,Zp)) ≥ sup

k≥1
rk(E∞0,2) = ∞,

as required.
To prove (3.10)) consider the decomposition of Zp[[Q]]-modules ⊗̂

2
A = V1 ⊕ V2,

where the completed tensor product is over Zp , Q acts diagonally, and for θ ∶ ⊗̂
2
A→

⊗̂
2
A given by θ(a1⊗̂a2) = a2⊗̂a1, we set

V1 = {v − θ(v) ∣ v ∈ ⊗̂
2
A} and V2 = {v + θ(v) ∣ v ∈ ⊗̂

2
A}.

_en V1 is isomorphic to ⋀̂
2
A via the canonical map ⊗̂

2
A → ⋀̂

2
A, where the com-

pleted exterior product is over Zp .
Consider the epimorphism of pro-p rings

ρ ∶ ⊗̂
2
A = Zp[[S1 , S2 , T1 , T2]]/(s1 + s−1

1 + t1 + t−1
1 − 4, s2 + s−1

2 + t2 + t−1
2 − 4) Ð→ A

sending s2 and s−1
1 to s−1 and sending t2 and t−1

1 to t−1. Note that the diagonal action
of the generators ofQ on ⊗̂

2
A is given bymultiplication by s1s2, t1 t2, and

s1+s−1
1

2
s2+s−1

2
2 .

_en the map ρ induces an epimorphism of pro-p groups

ρk ∶ (⊗̂
2
A)⊗̂Zp[[Q pk ]]

Zp Ð→ A/((s + s−1)2pk
− 22pk

) =Wk .

Note that

(⊗̂
2
A)⊗̂Zp[[Q pk ]]

Zp = (V1⊗̂Zp[[Q pk ]]
Zp) ⊕ (V2⊗̂Zp[[Q pk ]]

Zp),

and s i1 − s i2 ∈ V1 ⊆ ⊗̂
2
A. _en α i = s i − s−i = ρk((s i1 − s i2)⊗̂1) ∈ ρk(V1⊗̂Zp[[Q pk ]]

Zp),
where s i − s−i denotes the image of s i − s−i in A. Note that {α i}1≤i≤2pk−1 generates a
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free Zp-submodule ofWk of rank 2pk − 1. Hence,

rk(⋀̂
2
A⊗̂Zp[[Q pk ]]

Zp) ≥ rk (V1⊗̂Zp[[Q pk ]]
Zp) ≥ 2pk − 1.

4 Some Homology Groups Classified up to Torsion

Recall that H i(G ,V) denotes the pro-p homology of the pro-p group G with coeõ-
cients in a pro-p Zp[[G]]-module V . By deûnition, pro-p modules over pro-p rings
are compact, hence V /= Qp . Even in the case when A is an abelian pro-p group that
is not torsion-free and i ≥ 3, the homology H i(A,Zp) has a complicated structure,
though there is a natural embedding ⋀̂

i
ZpA→ H i(A,Zp), as shown byKing [12,_eo-

rem B]. _e following lemma shows that H i(A,Zp) ⊗Zp Qp can be easily described.
As pointed out at the beginning of the paragraph, we cannot resolve the problem by
moving Qp inside the homology functor. Recall that ⋀̂

i
ZpA denotes the completed

exterior power of A over Zp .

Lemma 4.1 Let A be an abelian pro-p group.

(i) H i(A,Zp) ⊗Zp Qp ≃ (⋀̂
i
ZpA) ⊗Zp Qp for all i ≥ 1;

(ii) if Q is a ûnitely generated pro-p abelian group and A a ûnitely generated pro-p
Zp[[Q]]-module, we have

H i(Q ,H j(A,Zp)) ⊗Zp Qp ≃ H i(Q , ⋀̂
j
ZpA) ⊗Zp Qp

for i ≥ 0, j ≥ 1.

Proof (i) If B is an abelian, torsion-free, pro-p group, then H i(B,Zp) ≅ ⋀̂
i
ZpB for

all i ≥ 1 [12,_eorem B]. So the lemma follows trivially for torsion-free abelian pro-p
groups.

Now let torA be the torsion pro-p subgroup of A. From the short exact sequence
of abelian pro-p groups torA↪ A

α→ M, whereM = A/ torA, we obtain the Lyndon–
Hochschild–Serre spectral sequence

E2
i , j = H i(M ,H j(torA,Zp)) Ô⇒ H i+ j(A,Zp).

Since, for j /= 0, H j(torA,Zp) is torsion, we have E2
i , j is also torsion for j /= 0. Also,

the spectral sequence says that Hn(A,Zp) has a ûltration with factors isomorphic to
each E∞i , j such that i + j = n, i.e., there is a ûltration of abelian pro-p groups

∆−1 = 0 ⊆ ∆0 ⊆ ⋅ ⋅ ⋅ ⊆ ∆ i ⊆ ∆ i+1 ⊆ ⋅ ⋅ ⋅ ⊆ ∆n = Hn(A,Zp),

such that ∆ i/∆ i−1 ≃ E∞i ,n−i for every 0 ≤ i ≤ n. Moreover, E∞i , j is a subquotient of E2
i , j ,

so it is also torsion for j /= 0, so E∞i , j ⊗Zp Qp = 0 for j /= 0. _erefore, since − ⊗Zp Qp
is an exact functor, we obtain a ûltration ofQp-vector spaces

V−1 = 0 ⊆ V0 ⊆ ⋅ ⋅ ⋅ ⊆ Vi ⊆ Vi+1 ⊆ ⋅ ⋅ ⋅ ⊆ Vn = Hn(A,Zp) ⊗Zp Qp ,

where Vi = ∆ i ⊗Zp Qp . Using again that − ⊗Zp Qp is an exact functor, we get that
Vi/Vi−1 ≃ (∆ i/∆ i−1)⊗Zp Qp ≃ E∞i ,n−i ⊗Zp Qp , for 0 ≤ i ≤ n and hence Vi/Vi−1 = 0 for
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0 ≤ i ≤ n − 1 and so 0 = V−1 = V0 = ⋅ ⋅ ⋅ = Vn−1. _en

Hn(A,Zp) ⊗Zp Qp = Vn = Vn/Vn−1 ≅ E∞n ,0 ⊗Zp Qp .

Moreover, from the diòerential map d r
n ,0 ∶ Er

n ,0 → Er
n−r ,r−1, since E

r
n−r ,r−1 is torsion,

we have that Er
n ,0/Er+1

n ,0 = Er
n ,0/Ker(d r

n ,0) ≃ Im(d r
n ,0) ⊆ Er

n−r ,r−1 is torsion for all r ≥ 2.
So E2

n ,0/E∞n ,0 is torsion and, since − ⊗Zp Qp is exact, we obtain

E∞n ,0 ⊗Zp Qp ≅ E2
n ,0 ⊗Zp Qp .

_us

Hn(A,Zp) ⊗Zp Qp ≅ E2
n ,0 ⊗Zp Qp

= Hn(M ,H0(torA,Zp)) ⊗Zp Qp ≅ Hn(M ,Zp) ⊗Zp Qp

and, since M is torsion-free, Hn(M ,Zp) ≅ ⋀̂
n
ZpM.

We claim that

(4.1) (⋀̂
n
ZpM) ⊗Zp Qp ≅ (⋀̂

n
ZpA) ⊗Zp Qp .

Consider the commutative diagram

ker γ ⋀̂
n
ZpA ⋀̂

n
ZpM

ker β ⊗̂
n
ZpA ⊗̂

n
ZpM

γ

β

where the vertical maps are the canonical maps from completed tensor powers to
completed exterior powers, β = ⊗̂

n
α and recall that α ∶ A → M is the canonical

projection. To prove (4.1) it is suõcient to show that ker β is torsion, since this implies
that ker γ is torsion, hence ker γ ⊗Zp Qp = 0 and so (4.1) holds.

We show that ker β is torsion by induction on n. Consider the canonical epimor-
phisms

φ = ⊗̂
n−1
α ∶ ⊗̂

n−1
Zp AÐ→ ⊗̂

n−1
Zp M ,

α⊗̂φ = ⊗̂
n
α ∶ ⊗̂

n
ZpAÐ→ ⊗̂

n
ZpM .

Since α⊗̂φ is the composition (1⊗̂φ) ○ (α⊗̂1), we have that ker(α⊗̂φ) is the im-
age of (ker α⊗̂Zp(⊗̂

n−1
Zp A)) ⊕ (A⊗̂Zp kerφ) in A⊗̂Zp(⊗̂

n−1
Zp A) = ⊗̂

n
ZpA. By induc-

tive hypothesis, kerφ is torsion and by construction ker α = tor(A) is torsion. So
(ker α⊗̂Zp(⊗̂

n−1
Zp A)) ⊕ (A⊗̂Zp kerφ) is torsion. _us ker(α⊗̂φ) is torsion. _is ûn-

ishes the induction step and so the proof of the claim.
(ii) _e case i = 0 follows from (i), so we can assume from now on that i ≥ 1.
Consider the spectral sequence E2

i , j = H i(torA,H j(A/ torA,Zp)) associated with
the short exact sequence 0 → tor(A) → A → A/ tor(A) → 0. By the proof of (i)
H j(A,Zp) has a ûltration 0 = ∆−1 ⊆ ∆0 ⊆ ∆1 ⊆ ⋅ ⋅ ⋅ ⊆ ∆ j = H j(A,Zp) such that
∆ i/∆ i−1 = E∞i , j−i , E

∞

i , j−i is torsion for i /= j and E∞j,0 ⊗Zp Qp ≃ (⋀̂
j
ZpA) ⊗Zp Qp . _us
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∆ j−1 is torsion and by the long exact sequence in homology applied for the short exact
sequence 0→ ∆ j−1 → H j(A,Zp) → E∞j,0 → 0

⋅ ⋅ ⋅ Ð→ H i(Q , ∆ j−1)
α iÐ→ H i(Q ,H j(A,Zp))

β iÐ→ H i(Q , E∞j,0)
∂ iÐ→ H i−1(Q , ∆ j−1) Ð→ ⋅ ⋅ ⋅

_en there is an exact complex

0Ð→ H i(Q , ∆ j−1)/ker α i Ð→ H i(Q ,H j(A,Zp))
β iÐ→ H i(Q , E∞j,0) Ð→ im ∂ i → 0.

Since ∆ j−1 is torsion, both H i(Q , ∆ j−1) and H i−1(Q , ∆ j−1) are torsion, hence

H i(Q , ∆ j−1)/ker α i

and im ∂ i are torsion. Hence the map β i induces an isomorphism

(4.2) H i(Q ,H j(A,Zp)) ⊗Zp Qp ≃ H i(Q , E∞j,0) ⊗Zp Qp .

On other hand E∞j,0 is a subquotient of E2
j,0 and

E2
j,0 ≃ H j(A/ tor(A),Zp) ≃ ⋀̂

j

Zp
(A/ tor(A)).

Furthermore, by the proof of Lemma 4.1 (i) E2
j,0/E∞j,0 is torsion. Note that the short

exact sequence 0 → E∞j,0 → E2
j,0 → E2

j,0/E∞j,0 → 0 gives a long exact sequence in
homology

⋅ ⋅ ⋅ Ð→ H i(Q , E∞j,0) Ð→ H i(Q , E2
j,0) Ð→ H i(Q , E2

j,0/E∞j,0)
Ð→ H i−1(Q , E∞j,0) Ð→ ⋅ ⋅ ⋅

Applying the exact functor ⊗ZpQp , we obtain another long exact sequence

⋅ ⋅ ⋅ Ð→ H i(Q , E∞j,0) ⊗Zp Qp lraH i(Q , E2
j,0) ⊗Zp Qp Ð→

H i(Q , E2
j,0/E∞j,0) ⊗Zp Qp Ð→ H i−1(Q , E∞j,0) ⊗Zp Qp Ð→ ⋅ ⋅ ⋅

Since E2
j,0/E∞j,0 is torsion, H i(Q , E2

j,0/E∞j,0) is torsion, too; hence in the above long
exact sequence H i(Q , E2

j,0/E∞j,0)⊗Zp Qp = 0 for every i ≥ 0. _us there is an isomor-
phism

(4.3) H i(Q , E2
j,0) ⊗Zp Qp ≃ H i(Q , E∞j,0) ⊗Zp Qp .

By the proof of Lemma 4.1 (i) the epimorphism γ ∶ ⋀̂
j
ZpA → ⋀̂

j
Zp(A/ tor(A)) and

the canonical isomorphism δ ∶ ⋀̂
j
ZpA/ tor(A) → H j(A/ tor(A),Zp) = E2

j,0 induce
isomorphisms

(⋀̂
j
ZpA) ⊗Zp Qp ≃ (⋀̂

j
ZpA/ tor(A)) ⊗Zp Qp ≃ E2

j,0 ⊗Zp Qp .

_us, the map µ = δγ ∶ ⋀̂
j
ZpA→ E2

j,0 has torsion kernel and torsion co-kernel. _us µ
induces an isomorphism

(4.4) H i(Q , ⋀̂
j
ZpA) ⊗Zp Qp ≃ H i(Q , E2

j,0) ⊗Zp Qp for i ≥ 0, j ≥ 1.

Finally (4.2), (4.3), and (4.4) complete the proof.
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Lemma 4.2 Let G be a pro-p group, G0 a pro-p open, normal, subgroup in G, and V
a pro-p Zp[[G]]-module. _en Hn(G ,V) ⊗Zp Qp ≃ H0(G/G0 ,Hn(G0 ,V)) ⊗Zp Qp .

Proof Consider the Lyndon–Hochschild–Serre spectral sequence

E2
i ,n−i = H i(G/G0 ,Hn−i(G0 ,V))

converging to Hn(G ,V). Note that every open subgroup in a pro-p group has a
p-power index. In particular, G/G0 is a ûnite p-group. _us H i(G/G0 ,−) is tor-
sion for every i > 0, hence E2

i ,n−i is torsion for i > 0. _en E∞i ,n−i is torsion for every
i > 0. By the convergence of the spectral sequence, Hn(G ,V) has a ûltration with
quotients E∞i ,n−i for 0 ≤ i ≤ n. Since⊗ZpQp is an exact functor, Hn(G ,V)⊗Zp Qp has
ûltration with quotients E∞i ,n−i ⊗Zp Qp , but E∞i ,n−i ⊗Zp Qp = 0 for i > 0. Hence

(4.5) Hn(G ,V) ⊗Zp Qp ≃ E∞0,n ⊗Zp Qp .

Note that all diòerentials that start at Es
0,n ûnish in the second quadrant, hence are

zero. And all diòerentials that end at Es
0,n start at Es

s ,n+1−s , and E
s
s ,n+1−s is torsion,

hence Es+1
0,n = Es

0,n/ im(d s
s ,n+1−s) and Es

0,n⊗Zp Qp ≃ Es+1
0,n ⊗Zp Qp for every s ≥ 2. _us,

(4.6) H0(G/G0 ,Hn(G0 ,V)) ⊗Zp Qp = E2
0,n ⊗Zp Qp ≃ E∞0,n ⊗Zp Qp .

Finally (4.5) and (4.6) complete the proof.

5 Growth of Homology: Proof of Theorem C in the
Metabelian Case

Weobserve that a version of_eoremCworks for a discrete, ûnitely presented, centre-
by-metabelian group G, since by a result of Groves [9] the central part of G is ûnitely
generated and for discrete metabelian groups _eorem C holds [15].

Lemma 5.1 Let Q be a ûnitely generated abelian pro-p group and B a ûnitely gener-
ated pro-pZp[[Q]]-module such that B⊗̂ZpB is a ûnitely generated pro-pZp[[Q]]-mod-
ule via the diagonal Q-action. _en supM∈A dimQp B⊗Zp[[M]] Qp < ∞, whereA is the
set of all subgroups of p-power index in G = B⋊Q and we view B as a Zp[[G]]-module
via the canonical epimorphism G → Q.

Proof By _eorem 2.4, since B⊗̂B is a ûnitely generated pro-p Zp[[Q]]-module via
the diagonal action,G = B⋊Q is ûnitely presented. By [4, Proposition A,_eoremC]
supM∈A rk H1(M ,Zp) < ∞ and supM∈A dimQp B ⊗Zp[[M]] Qp < ∞.

In the following lemma, T̂or
A
j denotes the derived functor of ⊗̂A in the category of

pro-p A-modules [22, §6.1].

Lemma 5.2 Let Q be the abelian pro-p group Zn
p = ⟨q1 , . . . , qn⟩, A = Zp[[Q]]/I a

pro-p ring, and for every positive integer m, denote by Am the closed ideal of A generated
by the image of {qpm

1 − 1, . . . , qpm

n − 1} in A. Suppose that
(i) supm≥1 dimQp(A/Am) ⊗Zp Qp < ∞;
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(ii) for m ≥ 1, Vm is a ûnitely generated, right pro-p A/Am-module andWm is a ûnitely
generated, le� pro-p A/Am-module such that

a = sup
m≥1

dimQp(Vm ⊗Zp Qp) < ∞ and b = sup
m≥1

dimQp(Wm ⊗Zp Qp) < ∞.

_en for every j ≥ 0,

(5.1) sup
m≥1

dimQp T̂or
A
j (Vm ,Wm) ⊗Zp Qp < ∞

and

(5.2) ⋃
m≥1

Cm is ûnite,

where Cm is the set of isomorphism classes of abstract simple (A/Am)⊗Zp Qp-modules.

Proof 1. We ûrst show (5.2). Observe that A/Am is a quotient of Sm = Zp[Q/Q pm ]
and Sm is a ûnitely generatedZp-module. _us Rm = (A/Am)⊗Zp Qp is aQp-algebra
that is ûnite-dimensional over Qp .

Let D be an abstract simple Rm-module. _en D is a simple quotient of Rm , i.e., a
ûnite ûeld extension of Qp , thus a local ûeld. Note that D is generated by the image
Q of Q in D and Qp and Q is a ûnite abelian p-group. Any ûnite subgroup in the
multiplicative group of a ûeld is cyclic, hence Q = ⟨α⟩ and α is a primitive ps-root of 1
for some s ≤ m. _en theminimal polynomial of α overQp is (x ps −1)/(x ps−1 −1) and
so dimQp D = ps − ps−1 ≤ supm≥1 dimQp(A/Am)⊗Zp Qp < ∞. _en there exists s0 ≥ 0
such that s ≤ s0 for every D, and D is a simple quotient of D0 = Qp[x]/(x ps0 − 1). Fi-
nally since D0 is ûnite-dimensional overQp , we deduce that D0 is an ArtinianQp-al-
gebra, hence has only ûnitely many maximal ideals. _is completes the proof of (5.2).

2. Consider ûltrations of pro-p A/Am-modules

0 = F0,m ⊂ F1,m ⊂ ⋅ ⋅ ⋅ ⊂ Ft−1,m ⊂ Ft ,m = Vm ,
0 = E0,m ⊂ E1,m ⊂ ⋅ ⋅ ⋅ ⊂ Et′−1,m ⊂ Et′ ,m =Wm ,

of Vm andWm , respectively, such that the quotients Vs ,m ∶= Fs ,m/Fs−1,m andWs′ ,m ∶=
Es′ ,m/Es′−1,m are non-trivial and each one is either ûnite or, a�er tensoring with
⊗ZpQp , is a simple abstract Rm = (A/Am) ⊗Zp Qp-module. _is is possible since
we can assume that Vs ,m and Ws′ ,m are simple A/Am-modules. _is implies that
Vs ,m and Ws′ ,m are both cyclic A/Am-modules, so can be considered as ring quo-
tients of A/Am and by the simplicity condition both Vs ,m andWs′ ,m are ûelds. Fur-
thermore, since A/Am is a ûnitely generated Zp-module, we deduce that Vs ,m and
Ws′ ,m are ûnitely generated Zp-modules, i.e., ûnitely generated abelian pro-p groups.
If Vs ,m (resp. Ws′ ,m) is an inûnite ûeld, then this inûnite ûeld contains Qp , hence
Vs ,m ⊗Zp Qp ≃ Vs ,m (resp. Ws′ ,m ⊗Zp Qp ≃Ws′ ,m).

Now we will need to combine abstract and pro-p Tor functors. Recall that T̂or
A
j

denotes the pro-p Tor functor (as mentioned before Lemma 5.2) and TorAj denotes
the abstract Tor functor, i.e., the derived functor of the abstract tensor product ⊗A in
the category of abstract A-modules.
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Note that the short exact sequence 0 → Fs−1,m → Fs ,m → Vs ,m → 0 gives rise to a
long exact sequence

. . . Ð→ T̂or
A
j (Fs−1,m ,Wm) Ð→ T̂or

A
j (Fs ,m ,Wm) Ð→ T̂or

A
j (Vs ,m ,Wm) Ð→ ⋅ ⋅ ⋅ .

_en, a�er applying the exact functor ⊗ZpQp , we obtain a long exact sequence

⋅ ⋅ ⋅ Ð→ T̂or
A
j (Fs−1,m ,Wm) ⊗Zp Qp Ð→ T̂or

A
j (Fs ,m ,Wm) ⊗Zp Qp Ð→

T̂or
A
j (Vs ,m ,Wm) ⊗Zp Qp Ð→ ⋅ ⋅ ⋅ ,

hence for every j ≥ 0,

dimQp T̂or
A
j (Fs ,m ,Wm) ⊗Zp Qp ≤ dimQp T̂or

A
j (Fs−1,m ,Wm) ⊗Zp Qp

+ dimQp T̂or
A
j (Vs ,m ,Wm) ⊗Zp Qp .

_en by induction on s we obtain

dimQp T̂or
A
j (Fs ,m ,Wm) ⊗Zp Qp ≤ ∑

1≤ j≤s
dimQp T̂or

A
j (Vj,m ,Wm) ⊗Zp Qp .

In particular, for s = t, we get that

(5.3) dimQp T̂or
A
j (Vm ,Wm) ⊗Zp Qp ≤ ∑

1≤s≤t
dimQp T̂or

A
j (Vs ,m ,Wm) ⊗Zp Qp .

Note that if Vs ,m is ûnite, then T̂or
A
j (Vs ,m ,Wm) is torsion, hence

T̂or
A
j (Vs ,m ,Wm) ⊗Zp Qp = 0.

_en from (5.3) we obtain

(5.4) dimQp T̂or
A
j (Vm ,Wm) ⊗Zp Qp ≤ a0 ⋅max

1≤s≤t
dimQp T̂or

A
j (Vs ,m ,Wm) ⊗Zp Qp ,

where a0 is the number of the factors Vs ,m such that Vs ,m is inûnite. _us

a0 ≤ dimQp(Vm ⊗Zp Qp) ≤ a.

In a similar way, using the long exact sequence in T̂or
A
∗
, we can show that

(5.5) dimQp T̂or
A
j (Vs ,m ,Wm)⊗Zp Qp ≤ b0 ⋅ max

1≤s′≤t′
dimQp T̂or

A
j (Vs ,m ,Ws′ ,m)⊗Zp Qp ,

where b0 is the number of the factors Ws′ ,m such that Ws′ ,m is inûnite. _us

b0 ≤ dimQp(Wm ⊗Zp Qp) ≤ b.
By (5.4) and (5.5) we obtain that

dimQp T̂or
A
j (Vm ,Wm) ⊗Zp Qp ≤ ab ⋅max

1≤s≤t
max
1≤s′≤t′

dimQp T̂or
A
j (Vs ,m ,Ws′ ,m) ⊗Zp Qp .

We claim that

(5.6) T̂or
A
j (Vs ,m ,Ws′ ,m) ≃ TorAj (Vs ,m ,Ws′ ,m).

Indeed, sinceVs ,m andWs′ ,m are ûnitely generatedZp-modules and A is a Noetherian
ring (both as a pro-p and an abstract ring), we deduce that there are free resolutions
of Vs ,m andWs′ ,m as abstract A-modules with all free modules ûnitely generated. All
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ûnitely generated free A-modules are free pro-p A-modules and all diòerentials in
the above free abstract resolutions are automatically continuous since the modules
are ûnitely generated [25, Lemma 7.2.2]. _en using these resolutions to compute
both T̂or

A
∗
and TorA

∗
and the fact that for every k ≥ 1, we have Ak⊗̂A− ≃ Ak ⊗A − and

−⊗̂AAk ≃ − ⊗A Ak , imply (5.6).
Since − ⊗Zp Qp is an exact functor, we deduce that

TorAj (Vs ,m ,Ws′ ,m) ⊗Zp Qp ≃ TorAj (Vs ,m ⊗Zp Qp ,Ws′ ,m ⊗Zp Qp).

Finally, sinceVs ,m⊗Zp Qp andWs′ ,m⊗Zp Qp are abstract simple Rm-modules, by (5.2)
there are only ûnitely many possibilities for Vs ,m ⊗Zp Qp andWs′ ,m ⊗Zp Qp . _en

sup
s ,s′ ,m

dimQp Tor
A
j (Vs ,m ⊗Zp Qp ,Ws′ ,m ⊗Zp Qp) < ∞.

_is completes the proof.

Recall that for a pro-p group Q and a pro-p Zp[[Q]]-module A,

H i(Q ,A) = T̂or
Zp[[Q]]

i (A,Zp).

By deûnition Q p j
is the pro-p subgroup of Q generated by {qp j ∣ q ∈ Q}.

Lemma 5.3 Let Q = Zn
p and 0 → A1 → A → A2 → 0 be a short exact sequence of

pro-p Zp[[Q]]-modules such that supm≥1 dimQp H i(Q pm
,A j)⊗Zp Qp < ∞ for j = 1, 2.

_en supm≥1 dimQp H i(Q pm
,A) ⊗Zp Qp < ∞.

Proof By the long exact sequence in homology

⋅ ⋅ ⋅ Ð→ H i(Q pm
,A1) Ð→ H i(Q pm

,A) Ð→ H i(Q pm
,A2) Ð→ ⋅ ⋅ ⋅

we get that

dimQp H i(Q pm
,A) ⊗Zp Qp ≤ dimQp H i(Q pm

,A1) ⊗Zp Qp

+ dimQp H i(Q pm
,A2) ⊗Zp Qp .

Let Q = Zn
p = ⟨q1 , . . . , qn⟩ and so Q pm = ⟨qpm

1 , . . . , qpm

n ⟩. _ere is a pro-p version
of the Koszul complex in the abstract case [23, Corollary 4.5.5]. It is obtained from the
abstract version a�er applying the functor Zp[[Q]]⊗Z[Q0], where Q0 = Zn is an ab-
stract group with pro-p completion Q. _us the pro-p version of the Koszul complex
is

Pm ∶ ⋅ ⋅ ⋅ Ð→ Pk ,m
∂k ,mÐ→ Pk−1,m Ð→ ⋅ ⋅ ⋅ Ð→ P1,m

∂1,mÐ→ P0,m
∂0,mÐ→ Zp Ð→ 0,

where P0,m = Zp[[Q pm ]], Pk ,m = ⊕1≤i1<⋅⋅⋅<ik≤n Zp[[Q pm ]]e i1 ⋅ ⋅ ⋅ e ik for k ≥ 1 and ∂0,m
is the augmentation map. _e diòerential ∂k ,m ∶ Pk ,m → Pk−1,m , where k ≥ 1 and
1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n, is given by

∂k ,m(e i1 ⋅ ⋅ ⋅ e ik) = ∑
1≤ j≤k

(−1) j(qpm

i j − 1)e i1 ⋅ ⋅ ⋅ ê i j ⋅ ⋅ ⋅ e ik ,
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where the hat in e i1 ⋅ ⋅ ⋅ ê i j ⋅ ⋅ ⋅ e ik means that the term e i j is erased in the product. Let
A be a right pro-p Zp[[Q pm ]]-module. Applying the functor (A⊗̂Zp[[Q pm ]]

−) to the
complex Pm , we obtain the complex

Sm ∶= A⊗̂Zp[[Q pm ]]
Pm ∶ ⋅ ⋅ ⋅ Ð→ Sk ,m

̂∂k ,mÐ→ Sk−1,m Ð→ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ Ð→ S0,m
̂∂0,mÐ→ A⊗̂Zp[[Q pm ]]

Zp Ð→ 0,

where ∂̂k ,m ∶= idA⊗̂∂k ,m , S0,m = A, and Sk ,m = ⊕1≤i1<⋅⋅⋅<ik≤n Ae i1 ⋅ ⋅ ⋅ e ik for k ≥ 1. Note
that since all modules Pi ,m in Pm are ûnitely presented pro-p Zp[[Q]]-modules, we
have that A⊗̂Zp[[Q]]Pi ,m ≃ A⊗Zp[[Q]]Pi ,m .

Lemma 5.4 Let Q = Zn
p = ⟨q1 , . . . , qn⟩, A = Zp[[Q]]/I for some ideal I in Zp[[Q]],

and let Am be the ideal of A generated by qpm

1 − 1, . . . , qpm

n − 1. Assume that

sup
m≥1

dimQp A/Am ⊗Zp Qp < ∞.

_en for every i ≥ 0 and j ≥ 0

sup
m≥1

dimQp T̂or
A
j (A/Am , Ker(∂̂ i ,m)) ⊗Zp Qp < ∞(5.7)

and
sup
m≥1

dimQp H i(Sm) ⊗Zp Qp < ∞.(5.8)

Proof Since Zp[[Q]] is an abstract Noetherian ring, every abstract ideal in Zp[[Q]]
is ûnitely generated and so is automatically closed. In particular, Am is a closed ideal
in A.

1. We show ûrst that (5.8) follows from (5.7). Observe that

H i(Sm) = T̂or
Zp[[Q pm

]]

i (A,Zp)
is an A-module, whereQ pm

acts trivially, so is an A/Am-module. Note that H i(Sm) =
Ker(∂̂ i ,m)/ Im(∂̂ i+1,m), hence Am Ker(∂̂ i ,m) ⊆ Im(∂̂ i+1,m) and so there is a surjective
map T̂or

A
0 (A/Am , Ker(∂̂ i ,m)) = Ker(∂̂ i ,m)/Am Ker(∂̂ i ,m) → H i(Sm). _is induces a

surjective map T̂or
A
0 (A/Am , Ker(∂̂ i ,m)) ⊗Zp Qp → H i(Sm) ⊗Zp Qp , hence

sup
m≥1

dimQp H i(Sm) ⊗Zp Qp ≤ sup
m≥1

dimQp T̂or
A
0 (A/Am , Ker(∂̂ i ,m)) ⊗Zp Qp .

2. To prove (5.7) we ûrst consider the case i = 0; but then Ker(∂̂0,m) = Am . _e
following exact sequence is a part of the long exact sequence in pro-p homology

0 = T̂or
A
j+1(A/Am ,A) → T̂or

A
j+1(A/Am ,A/Am) → T̂or

A
j (A/Am ,Am)

→ T̂or
A
j (A/Am ,A) = 0 for j ≥ 1.

_us for j ≥ 1

(5.9) T̂or
A
j+1(A/Am ,A/Am) ≃ T̂or

A
j (A/Am ,Am) = T̂or

A
j (A/Am , Ker(∂̂0,m)).
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By our assumption supm≥1 dimQp A/Am ⊗Zp Qp < ∞. _en by (5.1) from Lemma 5.2

supm≥1 dimQp T̂or
A
j+1(A/Am ,A/Am) ⊗Zp Qp < ∞. Hence by (5.9)

sup
m≥1

dimQp T̂or
A
j (A/Am ,Am) ⊗Zp Qp < ∞ for j ≥ 1.

Finally for j = 0, observe that Am/A2
m is an A/Am-module generated by the images

of qpm

1 − 1, . . . , qpm

n − 1, hence

dimQp T̂or
A
0 (A/Am ,Am) ⊗Zp Qp = (Am/A2

m) ⊗Zp Qp ≤ n . dimQp(A/Am ⊗Zp Qp).

_is completes the proof when i = 0.
By induction on i we can assume that (5.7) holds for i − 1, i.e.,

(5.10) sup
m≥1

dimQp T̂or
A
j (A/Am ,Ker(∂̂ i−1,m)) ⊗Zp Qp < ∞,

and by case I we have that

(5.11) sup
m≥1

dimQp H i−1(Sm) ⊗Zp Qp < ∞.

Consider the short exact sequence 0 → Ker(∂̂ i ,m) → S i ,m → Im(∂̂ i ,m) → 0 of pro-p
A-modules, where S i ,m is a module of the Koszul complex Sm , so by deûnition is a
ûnitely generated free pro-p A-module. _en for j ≥ 2, there is a long exact sequence
in homology

⋅ ⋅ ⋅ → 0 = T̂or
A
j (A/Am , S i ,m) Ð→ T̂or

A
j (A/Am , Im(∂̂ i ,m)) Ð→

T̂or
A
j−1(A/Am , Ker(∂̂ i ,m)) Ð→ T̂or

A
j−1(A/Am , S i ,m)) = 0Ð→ ⋅ ⋅ ⋅ .

Similarly, there is an exact sequence

0 = T̂or
A
1 (A/Am , S i ,m) Ð→ T̂or

A
1 (A/Am , Im(∂̂ i ,m)) Ð→ T̂or

A
0 (A/Am ,Ker(∂̂ i ,m))

Ð→ T̂or
A
0 (A/Am , S i ,m)) Ð→ T̂or

A
0 (A/Am , Im(∂̂ i ,m)) Ð→ 0.

_en for j ≥ 2,
(5.12)
dimQp T̂or

A
j (A/Am , Im(∂̂ i ,m)) ⊗Zp Qp = dimQp T̂or

A
j−1(A/Am , Ker(∂̂ i ,m)) ⊗Zp Qp

and
(5.13)
dimQp T̂or

A
0 (A/Am ,Ker(∂̂ i ,m)) ⊗Zp Qp ≤ dimQp T̂or

A
1 (A/Am , Im(∂̂ i ,m)) ⊗Zp Qp

+ dimQp T̂or
A
0 (A/Am , S i ,m) ⊗Zp Qp .

Note that T̂or
A
0 (A/Am , S i ,m) = (A/Am)⊗̂AS i ,m = (A/Am)(ni). _is together with

(5.13) and (5.12) imply that to complete the proof it remains to show that

sup
m≥1

dimQp T̂or
A
j (A/Am , Im(∂̂ i ,m)) ⊗Zp Qp < ∞ for j ≥ 1.
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By Lemma 5.2 and (5.11)

(5.14) sup
m≥1

dimQp T̂or
A
j+1(A/Am ,H i−1(Sm)) ⊗Zp Qp < ∞.

Finally using the short exact sequence

0Ð→ Im(∂̂ i ,m) Ð→ Ker(∂̂ i−1,m) Ð→ H i−1(Sm) Ð→ 0

of pro-p A-modules, we have a long exact sequence in homology

⋅ ⋅ ⋅ Ð→ T̂or
A
j+1(A/Am ,H i−1(Sm)) Ð→ T̂or

A
j (A/Am , Im(∂̂ i ,m))

Ð→ T̂or
A
j (A/Am , Ker(∂̂ i−1,m)) Ð→ ⋅ ⋅ ⋅ ,

and hence we get

dimQp T̂or
A
j (A/Am , Im(∂̂ i ,m))⊗Zp Qp ≤ dimQp T̂or

A
j+1(A/Am ,H i−1(Sm))⊗Zp Qp

+ dimQp T̂or
A
j (A/Am , Ker(∂̂ i−1,m)) ⊗Zp Qp .

Hence by (5.10) and (5.14), supm≥1 dimQp T̂or
A
j (A/Am , Im(∂̂ i ,m)) ⊗Zp Qp < ∞.

_eorem 5.5 Let Q be a ûnitely generated abelian pro-p group and A a ûnitely gen-
erated pro-p Zp[[Q]]-module. If supt≥1 dimQp A⊗Zp[[Q pt ]] Qp < ∞, then

sup
t≥1

dimQp H i(Q pt
,A) ⊗Zp Qp < ∞, for all i .

Proof By going down to a subgroup of ûnite index in Q, we can assume that Q =
Zn

p = ⟨q1 , . . . , qn⟩. Using induction on the number of generators of A as a Zq[[Q]]-
module and Lemma 5.3, we can reduce to the case when A is a cyclicZp[[Q]]-module,
i.e., A = Zp[[Q]]/I for some ideal inZp[[Q]] (sinceZp[[Q]] is an abstract Noetherian
ring, every abstract ideal in Zp[[Q]] is closed). _en we can apply (5.8).

_eorem 5.6 Let G be a metabelian pro-p group of type FP2m . _en

sup
M∈A

rk H i(M ,Zp) < ∞, for all 0 ≤ i ≤ m,

whereA is the set of all subgroups of p-power index in G.

Proof Let A be a pro-p abelian subgroup of G such that G/A ≅ Q is abelian. Let
G1 ∈ A, Q1 be the image of G1 in Q and A1 = A∩G1, so G1/A1 ≅ Q1.

_e Lyndon–Hochschild–Serre spectral sequence in pro-p homology

E2
r ,s = Hr(Q1 ,Hs(A1 ,Zp)) Ô⇒ Hr+s(G1 ,Zp)

implies that

dimQp H j(G1 ,Zp) ⊗Zp Qp =
j

∑
r=0

dimQp E
∞

r , j−r ⊗Zp Qp ≤
j

∑
r=0

dimQp E
2
r , j−r ⊗Zp Qp .

By [A ∶A1] < ∞ and Lemma 4.1 we obtain

(5.15) E2
r ,s ⊗Zp Qp ≅ Hr(Q1 ,Hs(A,Zp)) ⊗Zp Qp .
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Since [Q ∶Q1] < ∞, there is t > 0 such that Q pt ∶= ⟨qpt ∣ q ∈ Q⟩ ⊂ Q1 and, by Lem-
ma 4.2 for every pro-p Zp[[Q1]]-module L,

Hr(Q1 , L) ⊗Zp Qp ≅ H0(Q1/Q pt
,Hr(Q pt

, L)) ⊗Zp Qp .

Hence dimQp Hr(Q1 , L) ⊗Zp Qp ≤ dimQp Hr(Q pt
, L) ⊗Zp Qp , so applying for L =

H j−r(A,Zp), we get

(5.16) dimQp Hr(Q1 ,H j−r(A,Zp))⊗Zp Qp ≤ dimQp Hr(Q pt
,H j−r(A,Zp))⊗Zp Qp .

_en by (5.15), (5.16), and Lemma 4.1

sup
[Q ∶Q1]<∞

dimQp E
2
r , j−r ⊗Zp Qp ≤ sup

t≥1
dimQp Hr(Q pt

, ⋀̂
j−r
Zp A) ⊗Zp Qp .

_us, to show that supG1∈A
dimQp H j(G1 ,Zp) ⊗Zp Qp < ∞, for all 0 ≤ j ≤ m, it is

suõcient to prove that supt≥1 dimQp Hr(Q pt
, ⋀̂

k
ZpA)⊗ZpQp < ∞, for all 0 ≤ r, k ≤ m.

Now, since G is a metabelian pro-p group of type FP2m , by _eorem 2.4, ⋀̂
k
ZpA is

ûnitely generated as a pro-p Zp[[Q]]-module for all k ≤ 2m. So applying _eorem 5.5

with B = ⋀̂
k
ZpA, we see it is enough to show that

sup
t≥1

dimQp H0(Q pt
, ⋀̂

k
ZpA) ⊗Zp Qp < ∞, for all 0 ≤ k ≤ m.

But this follows from Lemma 5.1.

6 Proof of Theorem C: the General Case

Let C = Z(G); thus G/C is metabelian. Let M ∈ A; consider the short exact sequence
of pro-p groups C∩M ↪ M → M/(C∩M) and the associated Lyndon–Hochschild–
Serre spectral sequence

E2
i , j = H i(M/(C ∩M),H j(C ∩M ,Zp)) Ô⇒ H i+ j(M ,Zp).

Since G is of type FP2m , m ≥ 1, by [17, Corollary 3.5], C and so C ∩ M are ûnitely
generated abelian pro-p groups. Also, since C is central, M/(C ∩ M) acts trivially
(via conjugation) on C ∩M. _is implies that

E2
i , j = H i(M/(C ∩M),H j(C ∩M ,Zp)) = H i(M/(C ∩M),Zp)⊗̂ZpH j(C ∩M ,Zp).

Moreover, since [G ∶M] < ∞, G and M are pro-p groups of the same homological
type [12, _eorem 2]. So, by [17, _eorem 3.6], M/(C ∩ M) is of type FP2m . _us
H i(M/(C ∩M),Zp) is ûnitely generated as a Zp-module for 0 ≤ i ≤ 2m. Also, since
C∩M is a ûnitely generated abelian pro-p group,H j(C∩M ,Zp) is ûnitely generated as
Zp-module for all j, hence is ûnitely presented asZp-module. _en by [6, Lemma 1.1]

H i(M/M ∩ C ,Zp)⊗̂ZpH j(C ∩M ,Zp) ≅ H i(M/M ∩ C ,Zp) ⊗Zp H j(C ∩M ,Zp),
and so

E2
i , j ⊗Zp Qp ≅ (H i(M/M ∩ C ,Zp) ⊗Zp H j(C ∩M ,Zp)) ⊗Zp Qp

≅ (H i(M/M ∩ C ,Zp) ⊗Zp Qp) ⊗Qp (H j(C ∩M ,Zp) ⊗Zp Qp).
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_us, for 0 ≤ i ≤ 2m and any j,

(6.1) rk(E2
i , j) = rkH i(M/M ∩ C ,Zp) ⋅ rkH j(C ∩M ,Zp)

≤ rkH i(M/M ∩ C ,Zp) ⋅ (
rkC
j

),

Finally, by _eorem 5.6, since M/(C ∩ M) has a p-power index in the metabelian
pro-p group G/C of type FP2m , supM∈A rk H i(M/M ∩ C ,Zp) < ∞, for 0 ≤ i ≤ m.
_erefore, from the spectral sequence convergence and (6.1), we obtain

sup
M∈A

rkH i(M ,Zp) ≤ ∑
α+β=i

sup
M∈A

rk E2
α ,β < ∞, for 0 ≤ i ≤ m.
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