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Abstract

An algorithm called UNLABEL is devised to uniquely label an unlabelled transitive
digraph. This is used to construct a one-one correspondence between homeomorphism classes of
finite nondiscrete 7^-topologies and certain generalised Young tableaux of shape-type a. For sets
of cardinality 2, 3, 4 and 5 these,classes are enumerated and classified in several ways. The notion
of a generalised descriptor graph is then introduced to enumerate the homeomorphism classes of
all topologies on these sets.

Introduction

Topologies on a finite set Xn = {1,2, • • •, n} can be interpreted as
transitive digraphs (see Krishnamurthy (1966), Evans, Harary and Lynn
(1967)). The counting series for unlabelled transitive digraphs and therefore
also for homeomorphism classes of finite topologies is known (see Sharp
(1966)) only up to the fifth term and is

(1) x +3x 2 + 9x3 + 33x4+ 139x5 + •••.

But, starting from the time of Davis (1953), who constructed a formula for the
number of non-isomorphic reflexive relations, it appears no one has yet
published a formula for enumerating the subfamily of transitive relations,
which is the family of finite topologies. For n =2,3 the problem is easy. For
n = 4 the homeomorphism classes have been enumerated, for TI,-topologies
by Shiraki (1969) and for all topologies by Sharp (1966). Neither of these
papers set up, however, an algorithm which can be pursued for higher values
of n. In this paper we construct a one-one correspondence (see Theorem 1)
between homeomorphism classes of non-discrete Tropologies on Xn and
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\2] The enumeration of finite topologies 321

certain generalised Young tableaux (GYT, in short) of shape-type a (for
precise formulation, see Sections 1 and 2). The central tool for setting up this
correspondence is an algorithm, called UNLABEL, constructed in Section 1,
which is a combination of the descriptor graph of Das (1973), the techniques,
regarding 7^-topologies, of Krishnamurthy (1975) and the algorithm INSERT
3 and DELETE 3 of Burge (1974). The latter two algorithms set up a one-one
correspondence between certain two-line arrays and GYT of shape-type a.
The algorithm UNLABEL operates on a GYT of shape-type a and produces
a GYT of shape-type a. If a GYT is invariant for this operation, we say it is
topogeneous. A list of all topogeneous tableaux for n = 4 (they are 15 in
number) is given in Table 2. The topogeneous tableaux are precisely the ones
that correspond to the homeomorphism classes mentioned in Theorem 1.
Essentially, the success of our method is in the prescription of a unique
labelling of the vertices of an unlabelled transitive digraph.

For a detailed enumeration, however, of the homeomorphism classes, we
need to anatomise the above correspondence. In fact we construct (in
Theorem 2) a succession of three correspondences (not necessarily one-one)
from Ti.-topologies on Xn to ordered partitions of n (called level partitions of
n), from ordered partitions of n to formal expressions kAk^ (which are typical
terms of products of homogeneous symmetric expressions), and finally, from
such expressions to tableau-shapes {/3} of shape-type a. We thus obtain, for
n = 2,3,4,5 the following results. If Cn = £ Np {/3} is the counting series for
homeomorphism classes of 7Vtopologies on Xn, with Np representing the
number of such classes that correspond to the shape {/3}, then,

C \= l+{1 2 } ;

C,= 1+{12} + 3{212}, from Table 1;

C4 = 1 + {I2} + 4{212} + 6{313} + 2{23}

(2) + 2{3221}, from Table 3; and

C5 = 1 + {I2} + 4{212} + 7{313} + 4{2S} + 17{3221}

+ 12{414} + 7{3222} + 5{422l2}

+ 1{34} + 4{43221}, from Table 5.

We thus also recover the counting series for the number of 7^-topologies on
Xn as

(3) 2X2 + 5JC'+ 16X4

known to Sharp (1966).
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Recall (see Theorem 3 of Stanley (1977)) that once the number of
homeomorphism classes of ^-topologies of all orders up to n is known, it is
possible to find the number of homeomorphism classes of all topologies of
order n. In order to enumerate them, however, we introduce the concept of a
generalised descriptor graph. Using this and the Table 2 of Krishnamurthy
(1975), we give, in Tables 6 and 7 of Section 6, a detailed enumeration and
classification of the homeomorphism classes of all non-T0-topologies up to
order 5, thereby also resulting in the counting series (1). Incidentally, this
confirms that the counting series of Harary and Palmer (1962), (page 218,
P2.4) is in error.

The detailed classification, in terms of kxk,, and the descriptor graphs,
that is presented in Table 4 for the homeomorphism classes of non-discrete
7^-topologies on X-, and the summaries presented in the other tables, in terms
of tableau-shapes and partitions, contain possibly more information than
what this paper has attempted to read from them. A generating function for
the series (2) perhaps lies hidden in these tables, but the author does not yet
know how to construct it.

1. Topogeneous tableaux

A generalised Young tableau, shortly, a GYT, or still briefly a tableau, of
shape {pipi pm} with p, g p : ^ • • • g/?„ 1 l j s an arrangement of
positive integers in m rows with p, entries in the ith row, with the property
that the entries are non-decreasing from left to right in each row and strictly
increasing from top to bottom in each column. The shape can also be
described in Frobenius notation as

CL\ a 2 • • • a,

b , b 2 ••• b r

where a, is the number of entries to the right of the ;'th element of the leading
diagonal and b, is the number of entries below it. If the shape of a tableau is
expressible in Frobenius notation as any one of the forms

a a b a b c

a + I, a + l b+\, a + \ b+\ c + 1, etcetera

where the a 's, /?'s, c's • • • • are non-negative integers, we say the tableau is of
shape-type a. Note that the shapes that occur in the expressions for C2, Ci, C4

and C5 in (2) are all of shape-type a.
Any finite set of tableaux shall be considered to have been sequenced by

the 'first letter sequence" defined as follows. Fill each of these tableaux with
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[4] The enumeration of finite topologies 323

sufficient number of zeros so that all the tableaux, thus extended, have the
same number of rows and columns. Read each such extended tableau as one
string of numbers by reading it row after row in continuation. Sequence these
strings of numbers lexicographically according to the natural order among the
numbers {(), 1, 2, • • •. n). For example, the set

1 2 1 1 5 1 1 4 1 2 2

A: 2 3 B: 2 2 C: 2 3 D: 2

3 4 3 3 3 4 3

5 4

would be sequenced as C, B, A, D.

We shall also be considering two-line arrays

M, u2 • • • ud

V, V2 • • • Vd

where the M'S and u's are positive integers. The two-line array is said to be in

standard form if

(i) uk > vk for all k ;

(ii) uk =S uk. i for all k ; and

( i i i ) uk = u k . t = > vk > Vk-,.
All our two-line arrays shall be taken to be in standard form, unless otherwise
mentioned or constructed.

An algorithm of Burge (1974) known as INSERT 3 converts such
two-line arrays into tableaux of shape-type a. This algorithm and its inverse
DELETE 3 depend on a knowledge of the algorithms INSERT and DELETE
of Knuth (1970).

A tableau whose parts belong to {1, 2, •••,«} and include 1 and n shall be
called a tableau of order n. We shall now define an algorithm called
UNLABEL which operates on a tableau A of order n and shape-type a and
ultimately produces a tableau B. also of order n and shape-type a.

UNLABEL:
Step I. Using DELETE 3. convert A into a two-line array

U\ U: • • • Un,

V:
V, V: • • • Vm

Burge (1974) shows that this will be in standard form.
Step 2. (Removal of Transitivity). Form the sets T(a) = {vk '• uk = a} for
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each a = n, n - 1, , 3 . Start with T{n). Check, whether, for j , y 6 T{n),

with x > y, there is, in F, a chain of pairs

( U i , v , ) , ( u , , V j ) , ••-, ( u k , v k ) , ( u , , V i )

such that

x = w,-, v, = uh • • •, vk = u, and u, = y.

If so, remove the pair (n, y) from T. Do this for every x, y 6 7~(n) with x > y.
Repeat the process for T(a), with a = n - 1, n - 2, • • •, 3. Call the resulting
array

y-

Step 3. (Level partition). Write U(y) (respectively, V(y)) for the set of
integers from 1 to n that occur among the u 's (respectively, v 's) of y. With y0

standing for y, recursively define sets S,(y), i = 1,2, •••,/ and 'truncated'
arrays yh / = 1,2, •••,/— 1 as follows:

S,(/3) = {1,2, •••,n}\C/(/3) for any array /3;

s . - ( 7 ) = s . ( y . - . ) \ s . ( y - 2 ) , « = 2 , • • • , / ;

and for j = 1,2, •••,/— 1, y, is the array that remains after the removal of
those pairs (uk, vk) from y,--i for which vk £ 5,(y). Note that / is to be
determined so that y,-, is the trivial array without any pairs and y,-2 is
non-trivial. Finally,

5,(yi_,) = {1,2, ••- ,«}

Thus we have an ordered decomposition of the set {1,2, • • •, n) into / sets
S,(y), i — 1, 2, • • •, / with j S,(y)| = p,, say. (p,p2 • • •, f>/) is an ordered partition
of n. We shall call it a 'level partition' of n. St(y) is said to be the set of 'points'
at level i.

Step 4. (Ordering the level decomposition). Rename the set S =
{1,2, ••- ,«} by a suitable permutation of S and form a revised array 8, in
standard form, such that the ordered set

{S,(5),S2(«), 5,(5)}

s a t i s f i e s

S.-(8) = { £ - . + l , £ , + 2 , • • • , £ _ , + />,}

w h e r e
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C = 1 p t , i = 1,2, ,/ and £„ = 0.
k - 1

The array 8, with its level paritition is called a descriptor array.
Step 5. (Construction of symmetric expression). Construct the formal

expression:

(4) n *:• n y?

where x, and y, stand for the integer i appearing in 5; and a, (respectively, /3,)
is the number of times i appears among the v's (respectively, u's) in 8.

Step 6. (Towards standardization of symmetric expression). Check
whether (4) has the property:

At any level f,

i > T ^> a, ^ a, ; and

i > i', a, = a, => (3, g /3, .

If not, renumber the 'points' within the same level suitably so that (*) is
ensured. Call the so renumbered array (again put in standard form) 8'.

Step 7. (Check for ambiguity in standardization). Check whether, in 8',
at any level t, there are points i and i' such that a, = a,- and (i, = f3, • If there is
none, go to step 9. Otherwise, go to step 8.

Step 8. (All possible choices for the ambiguities). Form all the sets
S,(a, /3) = {/, at level t: a, = a and /3, = /3} for various levels t and for possible
values a, /3. For every possible reassignment of numbers to the points of the
sets S,(a, /3), revise the array 8' and put it in standard form.

Step 9. (Unique choice of tableau). Using INSERT 3, convert 8' and
each of the revised arrays, if any, obtained in step 8, into tableaux of
shape-type a. Among the tableaux so obtained, choose the earliest one,
according to the 'first letter sequence', and call it B.

DEFINITION 1. The result of applying UNLABEL on A is B.

EXAMPLE. Let us apply the algorithm on

1 1 2 3

2 2 3

A: 3 4 4

5 6 6

6
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We only indicate the results after each step.

Step 1.

2 3 4 5 6 6 6
T:

1 2 1 3 4 3 2

Step 2.

2 3 4 5 6 6

1 2 1 3 4 3

Step 3.

S,(y) = {l}, S2(y) = {2,4},

5,(y) = {3} and S4(y) = {5,6}.

Step 4.

2 3 4 5 6 6
<5:

1 1 2 4 4 3

5,(5) = {1}, S2(S) = {2,3}, 5,(8) = {4} and S4(S) = {5,6}.

Step 5.

Step 6.
After an interchange of 5 and 6 we get

2 3 4 5 5 6
8':

1 1 2 4 3 4

Step 7.
There is ambiguity at level 2; for, both 2 and 3 have a = 1 = (3.

Step 8.
The different arrays for 8' are:

2 3 4 5 5 6 2 3 4 5 5 6
and

1 1 2 4 3 4 1 1 3 4 2 4
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Step 9.
The corresponding tableaux are:

4 41
1

3
X:

5

6

By the first letter

1 2 3

4

5

sequence,

4

and

B = X.

1

2

3
Y:

4

5

6

1 2

3

5

DEFINITION 2. A tableau of shape-type a is said to be a topogeneous
tableau if it is invariant for UNLABEL.

Clearly, the tableau A of the previous example is not topogeneous. But
it can be verified that the tableau B is topogeneous. In fact, we have:

PROPOSITION 1. The range of the algorithm UNLABEL is the set of all
topogeneous tableaux.

2. Main theorem

THEOREM 1. There is a constructive one-one correspondence between
homeomorphism classes of non-discrete T,-topologies on Xn = {1, 2, • • •, n) and
topogeneous tableaux of order n.

PROOF. Given a topogeneous tableau of order «, form the associated
two-line array by DELETE 3. The digraph G corresponding to this array
satisfies: (a) it is trivially transitive, because a topogeneous tableau is invariant
for UNLABEL and in particular, for step 2 of UNLABEL; and (b) it has no
cycles, because, in the array, uk > vk for all k. Thus G is an acyclic transgraph
and as such (see Evans, Harary and Lynn (1967), Krishnamurthy (1975)) leads
to a Tlrtopology and also to its homeomorphism class.

Conversely, given any homeomorphism class .J" of nondiscrete Tu-
topologies on X,,. take any such topology r e ST. Construct the transgraph
G = G(T) associated with T and remove all edges which are the result of
transitivity; that is, whenever there is a chain {(a,b), {b,c), •• -,(fc,/)} and also
(a,/) in the graph, remove (a, I). Find the level decomposition 17(G') of the
vertex set of the resulting graph G'= G'(T) as in Krishnamurthy (1975).
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Order the level decomposition as in step 4 of UNLABEL. The resulting
digraph, now called G"(T), along with the level partition of n, is essentially a
descriptor graph in the sense of Das (1973). In other words it satisfies and is
defined by the following:

(DG1) There are p< vertices at level i, i = l,2, , / and
p, + P2+ + p, = n;

(DG2) The edges are always directed from 'higher' to 'lower' levels;
(DG3) Each vertex at level z + 1, / = 1,2, •••,/— 1 is joined to at least

one vertex at level /; and
(DG4) If x is at level i + 1 and y is at level /, / < /, and there is a

directed path from x to y, then there is no edge (x, y).

Note that DG2 implies no two vertices at the same level are joined.
Isomorphism of descriptor graphs is defined in an obvious way by requiring
the correspondence of vertices to preserve adjacencies as well as levels.

The two-line array corresponding to the descriptor graph so obtained
can be put in standard form without affecting the level decomposition,
because this is the effect of mimicking step 4 for G'(T). Applying steps 5 to 9
of UNLABEL to this array we get a topogeneous tableau. That the resulting
tableau is independent of the choice of r G 3C follows from the fact that
homeomorphic topologies have isomorphic descriptor graphs and that the
steps 5 to 9 of UNLABEL just relabel the vertices, within each level, of the
descriptor graph in a canonical way. This completes the proof of the theorem.

3. Topogeneous symmetric expressions

The interest of this and the next section is to anatomize the enumeration
of the homeomorphism classes in order to have a glimpse of a possible
generating function for the same. With this end in view, we introduce

DEFINITION 3. A Topogeneous Symmetric Expression (TSE, for short)
(of order n) is a formal expression that arises by the application of steps 1 to 5
of UNLABEL on a topogeneous tableau (of order n).

Clearly, a TSE has properties (*) of step 6 of UNLABEL.
Knowing that topogeneous tableaux and certain canonically labelled

descriptor graphs are in one-one correspondence, we see that every TSE
arises from such descriptor graphs by formation of products of the type

https://doi.org/10.1017/S1446788700020358 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020358


• |10] The enumeration of finite topologies 329

where x, and y, stand for the vertex i, a, (respectively, /3,) is the indegree
I (respectively, outdegree) of the vertex i. Once we have this interpretation of a
'.-;•' TSE, all the properties stated in the Proposition below follow automatically:

PROPOSITION 2. Every TSE of order n is of the form kxk,,, where,
1. n = p , + p2 + • • • + p,.
2. d is an integer not less than n - pt.
3. fi is a partition (/3,) of d into n - p , parts.
4. A is a partition (a,) of d into q parts where I — 1 3= q S n — p,.

Let (, = SUi ps, i = 1,2, • • •, / and £„ = 0. Then,

. - l y = i

with

£ = n x r \ j = 1,2, • • • , / - i .

6. For each j = 1,2, , / - 1, af,_, + 1 > 0 .
«i i

7. *„= n yf = n<A,

wifh

and all /3,'s>().
8. For each / = 1,2, • • • • , / - 1, ?ne power of any x in £, is not greater than

i - i

p , + ^ max (p,• - 1,1), if j / I - I
I - J - M

and p,, ;'// = / - 1.

9. F o r eac/ i / = 2 , 3 , •••• , / f/ie power of any y in i\>, is not greater than

p , + ^ m a x (p, - 1,1) , i f / > 2

a n d p , , if j = 2 ; a n d finally,

10. / n euery ^ and (//„ / = 2 , 3 , • • • , / - 1,
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and i > ;', a, = a, => /3< § /3, ; in £1, i > i' =̂> a. = av tf«d in IA;, i > i' => /3, S

Note that d is the number of edges in the descriptor graph. It would be
interesting to find an upper bound for d. Such an upper bound will help,
perhaps, in characterising TSE's. In spite of the above properties being
insufficient to characterise TSE's, we shall find in the next section they are
sufficient for the purpose of enumeration, at least up to n = 5, of unlabelled
descriptor graphs with n vertices.

4. Three correspondences for enumeration purposes

THEOREM 2. Let Xn = {1,2, • • •, n}. Then,

(a) with every homeomorphism class of T(,-topologies on Xn, there is associated a
level partition of n ;
(b) given a level partition of n, with every homeomorphism class of T()-topologies
on Xn belonging to it, there is associated a TSE of order n; and
(c) given a level partition of n and a TSE of order n, with every homeomorphism
class of Ta-topologies on Xn belonging to them, there is associated a tableau-
shape of shape-type a.

Further, none of these three correspondences is one-one.

PROOF. The proof of (a) is already contained in the latter half of the
proof of Theorem 1. Given a level partition, every unlabelled descriptor
graph, labelled in an arbitrary way but still satisfying the requirement of step 4
of UNLABEL, finally gets a unique labelling on application of steps 5 to 9 of
the algorithm. Correspondingly, a unique TSE can be constructed by applica-
tion of steps 1 to 9 on the relabelled descriptor graph and its array. This
proves (b). To prove (c) it is enough to note that every topogeneous tableau
has a unique shape.

That none of these is a one-one correspondence can be seen from the
following example. Consider the level partition 221 of 5. Corresponding to
this, with d = 4, take the TSE,

There are two distinct topologies on Xs corresponding to this, as shown below
by their descriptor graphs, descriptor arrays and topogeneous tableaux. Note
that the shapes of the tableaux are the same.
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Figure 1.
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Descriptor
graph

/A

Descriptor
array

3 4 5

2 1 3

3 4 5

1 1 3

5

1

5

2

Topogeneous
tableau

1
2

3
5

1
3
4
5

1 5
3
4

1 2
3
5

Tableau-
Shape

{32M}

{3221}

5. Enumeration of homeomorphism classes of TVtopologies

The enumeration of unlabelled TI,-topologies can now be systematically
done. Tables 1, 3, and 4 summarise these results showing the numbers Ne,p of
homeomorphism classes corresponding to the shape {/3} and level partition p,
for n =3,4 and 5 respectively. These lead to the counting series C,, C4, C5 of
(2). In addition, the 15 topogeneous tableaux of order four are listed in Table
2. Finally, the results for n = 5 are given in more detail, but, in order to
conserve space, without the tableaux themselves, in Table 4. The 62 descrip-
tor graphs corresponding to the descriptor arrays of Table 4 are given serially
in Table 4A. In all our tables the shape {/3} is written, for convenience, just (3.

Table 1
.V,,, for n = 3

12

21

111

d = 1

I2

1

1

d = 2

21"

1

1

1

3

1

l

4
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Table 2.

List of Topogeneous Tableaux
of order four

[13]

1
4

1

3

4

1

3

4

1
2

3

4

1

3

1 2

3

4

1 4
2

4

1 2

3

4

1 3 3
2

3

4

1 2 2
2

3

4

1
2

3

4

1

2

3

1

3

4

I
2

3

4

4 4

1

3

4

2

3

4

2 3

1
2

3

4

1

2

3

4

1

2

3

4

1

1
2

3

1

1

4

2

Table 3.

o for n = 4

13

31

22

112

121

211

1111

d = 1

1-

1

1

d = 2

212

1

2

1

4

d = 3

31'

1

1

1

1

1

1

6

1

1

d = 4

3221

1

1

2

K

l

3

4

1

->

3

1

15
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Table 4.
Enumeration and Classification of Homeomorphism Classes of T0-Topologies for n = 5

(Note: There are 62 entries in this table. In order to economise space only sample entries are
given. The complete table can be obtained from the author)

Serial
Number

Level
parti-
tion k.K

TSE

Actual expression
Descriptor

Array
Tableau-

Shape

14 4

41 1 k,k,

K ,!

2 3 4 5
1 1 1 1

5
1

5 5
2 1

5 5 5
3 2 1

5 5 5 5
4 3 2 1

414

I 2

212

31 '

41"

21 212 3 k21fc,M

22

23

24 ^221^221

3 4 5
1 3 3

3 4 4 5
1 3 2 3

3 3 4 5
2 1 3 3

3 4 4 5 5
2 3 1 3 1

3 1 '

3221

41 4

3222

62 11111 4 (cul,»
2 3 4 5
1 2 3 4

414
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Table 4.4.
Descriptor graphs corresponding to the descriptor

arrays of Table 4 (n = 5)

IO 19 28 37 46

A
55

2O

12

13

21

X
22

29 38

3O 39

(l
31 4O

47 56

A\
48 57

4 9

14 23 32 41

A\ X
15 24 33 42

5O

51 6O

16 25 34 43 52

Y
61

17 26 35 44

18 27 36

53 62

45 154
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Table 5.
Nao for n = 5

335

\ li
P ^ \

14
41
23
32

221
212
122
311
131
113

1112
1121
1211
2111

11111

%

d= 1

1-

1

1

d = 2

21;

1

1

4

d = 3

31'

1
1

1

1

1

7

1

1

4

d = 4

3221

6
1
1

•)

17

414

1
1

1
1
1

1
1
1
1
1
1
I

12

d = 5

3222

1
1
4
I

7

42212

1

1

1
2

5

d = 6

y

1

1

432=1

1
1

1

1

4

K

l

4
6
9

13
4
4
6
3
1
1

3

4

1

62

6. Enumeration of homeomorphism classes of non-TV topologies

A transgraph represents a non-77) topology if and only if it contains a
dwicycle (that is, cycles of length two) (see Evans, Harary and Lynn (1967)).
Because of transitivity, the end points of any such dwicycle must either both
be connected in the same direction or both be not connected, to any other
chosen vertex. It follows that the end-points of a dwicycle are equivalent in
the sense of the relation defined by the transgraph. Collapsing all such sets of
equivalent vertices into single vertices we get a smaller number of vertices on
which the resulting graph represents a 71,-topology. Thus in order to construct
non-77, topologies on Xn we proceed as follows:

Take any unordered partition k, + k2+ • • • + kp = n with at least one
k, > 1. Whenever k, > 1, collapse a set k, of vertices of Xn into a single vertex
x'". This gives us a set of p vertices. Construct all non-homeomorphic
7Vtopologies on this set of p vertices by drawing their descriptor graphs.
Treat each descriptor graph as a transgraph by drawing the arrows from
higher to lower levels. Blow up each xU) by recovering the original number of
vertices which collapsed into it and connecting each pair of the kt equivalent
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Table 6.
Non-T, , - topologieson Xn, n = 2 , 3 , 4

[17]

Weight
distri-

bution <J

Descriptor
graph on
p points

gdg's corresponding to
non-7Vtopologies on

X,

Count
of

Total
for
n

I

21 I
o

211 A

22

3!

Y

© o 6 o
© o o

I
I i

I
o

17
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Table 7.
Values of K^ torn =5 wither^ 11111.

<J

2111

221

311

32

41

5

P

4

3

3

2

2

1

p

1111
211
121
112
22
31
13
4

111
21
12
3

111
21
12
3

11
2

11

2
1

No. of Descriptor
graphs on p ver-
tices with level

partition p

1
3

2
1
4

3
1
1
1
2
1
1
1
2

1
1

4

11
7
3

11
8
2
1

3
5
2

1
3
5

2
1
2
1
2
1
1

Count of
gdg's
for

given cr

Al

11

11

3

3
1

Total
for

n

76

vertices by dwicycles. Complete all transitivities. The resulting transgraph
represents a non-7^ topology. Motivated by this discussion, we make the
following

DEFINITION 4. A generalised descriptor graph (gdg) is a graph which
satisfies, in addition to D G 1 , DG2, DG3 and DG4, the following: To each
vertex is attached a positive integer, called the weight of the vertex. If all weights
are 1, the gdg is the same as the descriptor graph.

DEFINITION 5. Two gdg's are isomorphic if there is a one-one correspon-
dence of the sets of vertices, which preserves adjacencies, levels as well as
weights.

Now the proof of the following theorem is clear.
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THEOREM 3. Two topologies on Xn are homeomorphic if and only if their
gdg's are isomorphic.

Table 6 gives the gdg's of the unlabelled non-7;,-topologies on Xn,
n = 2,3,4. In the gdg's the weight of a vertex, whenever it is greater than one,
is indicated by a number placed within the circular dot standing for the vertex.
Note that the descriptor graph corresponding to the discrete topology is a set
of isolated points, all at level 1.

Table 7 gives only a count of the corresponding information for n = 5.
Let Ka.p stand for the number of unlabelled topologies ( = gdg's) on n points
corresponding to the unordered partition cr (= weight distribution) and the
ordered partition p (= level partition) of p § n. If n = 5 and a = 11111, /C,p
is already given by Np in Table 5, except for Knm.s = 1 which is the count for
the discrete topology. If any part of a is greater than one, then Ka.p counts
non-7Jrtopologies. This is the count that is given in Table 7. Note that
S iC.,, = 1 + 62 + 76 = 139, for n = 5.
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