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A planet centroid is an important observable object in autonomous optical navigation. A
high-accuracy algorithm is presented to extract the planet centroid from its raw image.
First, we proposed a planet segmentation algorithm to segment the planet image block to
eliminate noise and to reduce the computation load. Second, we developed an effective algo-
rithm based on Prewitt-Zernike moments to detect sub-pixel real edges by determining pos-
sible edges with the Prewitt operator, removing pseudo-edges in backlit shady areas, and
relocating real edges to a sub-pixel accuracy in the Zernike moments. Third, we proposed
an elliptical model to fit sub-pixel edge points. Finally, we verified the performance of this al-
gorithm against real images from the Cassini-Huygens mission and against synthetic simu-
lated images. Simulation results showed that the accuracy of the planet centroid is up to 0·3
pixels and that of the line-of-sight vector is at 2·1 × 10−5 rad.
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1. INTRODUCTION. Traditional spacecraft navigation uses Earth-based
resources and has proved to be very reliable and robust in many successful space mis-
sions (Iess et al., 2009). However, this technology requires continuous observation, and
since the maximum signal delay can be up to six hours in a solar exploration, it cannot
meet the needs of real time navigation, especially during the planetary, rendezvous, and
landing phases. Meanwhile, the cost of Earth-based navigation is very high, lagging
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behind the navigation requirement of controlling deep space exploration missions in
real time; a less expensive and more reliable alternative is emerging in autonomous
optical navigation technology (Betto et al., 2006).
Autonomous optical navigation has the advantages of independence, high accuracy,

and real-time performance, and has become a hotspot for research in recent years (Yu
et al., 2014; Ning and Fang, 2009; Ma et al., 2013). Autonomous optical navigation
reduces the complexity of operation and mission costs, simplifies the Earth-based
support system, and greatly enhances the efficiency of deep space exploration. Even
in conditions where the detector and ground communications are interrupted, it is
still capable of completing orbit determination, orbit keeping, and attitude control.
At present, the feasibility of optical navigation has been preliminarily validated in
many deep-space missions. In the Voyager missions, key techniques for deep space
navigation, including the celestial centroid-extracting algorithm, were developed
(Rudd et al., 1997). Later, optical navigation was successfully conducted in the
Galileo spacecraft’s approach to and crossing of an asteroid. The first full application
of autonomous navigation technology, though, was not realised until the Deep Space 1
mission. The main idea of autonomous optical navigation in this mission was in deter-
mining the craft’s position and velocity via the optical measurement of an asteroid and
background stars. In addition, the European Space Agency (ESA) used Smart-1 to
verify an autonomous navigation system in deep space missions. The ESA test used
an AMIE camera to take pictures of certain celestial bodies or navigation stars so
as to determine the line-of-sight direction of the celestial body or astral, and then cal-
culated the orbit of the probe (Marini et al., 2002; Rathsman et al., 2005).
With rapid technological developments of high-resolution cameras, image size has

become increasingly larger, as has the complexity of image processing algorithms. It
is challenging to develop image-processing algorithms to meet the demands of real-
time high-accuracy navigation. Traditional image processing algorithms cannot be
applied directly by an autonomous navigation system because of the low on board
computation capacity and the particularity of deep space (Owen, 2011). Recently,
papers have been published on the subject of autonomous optical navigation; most
of them are about navigation measurement modelling and navigation filters,
and few focus on image processing and extraction of navigation observables
(Giannitrapani et al., 2011; Thompson et al., 2012; Shuang and Cui, 2008). Owen
(2011) pointed out that useful navigation observables include the apparent diameter
and centroid of the planet, the line-of-sight vector, and the angle between the
horizon and the reference star. (Christian and Lightseys, 2012) used binaryzation, dila-
tion, erosion, and image closing, analysed the interconnected components and then
fitted an ellipse to the planet in order to extract the planet centroid. Li et al. (2013)
presented a detailed procedure for the extraction of navigation observables, used the
Canny operator to extract planet edges, and then fitted the planet ellipse with edge
points. The accuracies achieved by these methods are able to meet the requirements
of deep-space autonomous navigation. However, higher accuracy navigation observa-
bles are needed to achieve a more reliable optical navigation, and less computation in
the image-processing algorithm is necessary to implement a faster optical navigation.
In this study, we developed a simple and effective image-processing algorithm for

extracting a planet centroid. The planet centroid is an important parameter with
which the spacecraft state can be estimated after the navigation filter and system dy-
namics equations are established. It is assumed that the perspective projection of a
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target planet body forms an ellipse on the image plane. In the remainder of this paper,
Section 2 briefly presents the principle of autonomous optical navigation and the
image processing algorithms. Section 3 presents a method for segmenting the planet
image block from the whole image so as to eliminate noise and to reduce the compu-
tation burden. Section 4 introduces an algorithm to extract sub-pixel real edge points.
Section 5 describes the method used for ellipse fitting based on a set of real edge points
and the centroid computation formula. Section 6 validates the algorithm with experi-
ments for detection accuracy. Section 7 gives the conclusions.

2. PRINCIPLE OFAUTONOMOUS OPTICAL NAVIGATION. Here, autono-
mous optical navigation is based on the extraction of the planet centroid from the
planet images captured by image sensors. The principles of autonomous optical navi-
gation are described as follows.
The position of a planet in celestial coordinate system OXYZ is described by right

ascension α and declination δ (Figure 1). The planet unit vector eI in an inertial frame
can be expressed as:

eI ¼
cos α cos δ
sin α cos δ

sin δ

2
4

3
5 ð1Þ

The planet image captured by a detector (usually a Charge-Coupled Device (CCD)
or Complementary Metal-Oxide Semiconductor (CMOS) array in this case) can be
described by a set of [xp, yp] in the image plane frame Oxy (Figure 2). According to
the geometric relations shown in Figure 2, the line-of-sight direction to an object is
given by the following equation (Christian and Lightsey, 2012):

ec ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þ y2p þ f 2

q �xp
�yp
f

2
4

3
5 ð2Þ

where f is the camera focal length and ec is the unit vector of the line-of-sight described
in the camera coordinate system O′xcyczc. The line-of-sight vector is then rotated from
the camera frame to the inertial frame:

eI ¼ TI
BT

B
CeC ð3Þ

in which TB
C rotates a vector from the camera frame to the spacecraft body frame, and

TI
B rotates a vector from the spacecraft body frame to the inertial frame. The trans-

formation matrices TB
C and TI

B include information on the attitude and position of
the spacecraft. The unit vector eI can be obtained by referring to the ephemeris.
Because the camera’s focal length f is known to be fixed for a known camera, the
main challenge to acquiring the line-of-sight unit vector ec is to define the centroid
(x, y) of the planet (Owen et al., 2008).

3. PLANET SEGMENTATION. On a deep-space image, a planet accounts for a
part of the whole image, as does the noise of other stars and objects. To process only a
planet image block can save computation load and time.
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First, conducting threshold segmentation to simplify a raw image into a binary
image helps speed up the subsequent image processing. Assuming that a threshold
value τ is selected, creating a binary image would check the pixel value at each pixel
point. Each pixel in intensity above τ is set to 255 (white) and below τ is set to 0
(black) (Javidi et al., 1995). The pixels with a value of 255 are considered to be in
the “foreground” in which the planet information is contained. Figure 3(b) shows
the binary image of the planet Mars with a threshold value τ= 30.
Second, morphological opening is operated to remove the noise of secondary stars

and objects. This operation uses erosion first and then dilation (Haralick et al., 1987).

Figure 2. Geometry of planet imaging.

Figure 1. The planet coordinates in celestial coordinate system.
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In general, an opening operation can smooth the outline of an object in the image,
and it eliminates zigzags. When applied in deep space images, small stars/objects can be
removed effectively, and the edges of a planet become smooth.
Using a structure element S, one can carry out the opening on image A according to

Kemper (1998):

A ○S ¼ A⊖Sð Þ⊕ S ð4Þ

where ○ is for the opening operator, ⊖ is the erosion operator, and ⊕ is the dilation
operator.
Figure 3(c) shows the opening operator’s result. It can be seen that the background

stars have been cleared up. Figure 4 is the local planetary binary image resulting from
an opening operator. Figure 4(a) shows noise in the background at the edge of the
planet. Figure 4(b) shows the result of the opening operation, in which the noise is
cleaned out and the edges become smooth.
Third, a planet image block is segmented from the whole image. As shown in

Figure 3(c), noise has been cleaned up on the image. The segmentation includes the
following steps.

(1) To find the start line x1 and end line x2 with pixel value 255 at direction x in the
whole image;

(2) To find the start column y1 and end column y2 with pixel value 255 at direction y
in the whole image;

Figure 3. Image of Mars and the results of a planet segmentation (a) Image of Mars; (b) Mars’
binary image; (c) background stars removed by an opening operator; (d) foreground Mars’ area
found in the whole image.
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(3) The area surrounded by point (x1, y1) and point (x2, y2) is defined as the planet
image block represented by the white frame in Figure 3(d).

Now, a planet image block is successfully segmented. Next, edge detection will be
applied on just the block. All unwanted information is discarded, and the image pro-
cessing load and time can be greatly reduced.

4. SUB-PIXEL EDGE DETECTION. Edge detection employs local operators to
compute approximately the first derivative of grey level gradient on an image in the
spatial domain. Locations in the local maximum of the first derivative will be considered
to be the edge points. Ideally, an edge detection algorithm will be able to determine all
edges and edge points accurately in the position. At present, many such algorithms
have been developed at the pixel or sub-pixel level. Pixel-level edge detections, including
Prewitt, Sobel, Laplacian of Gaussian (LOG), andCannyoperators are capable of detect-
ing edges quickly but with low accuracy (Ding and Goshtasby, 2001; Wang 2007; Hou
andWei, 2002). Li et al. (2013) detected the edges at pixel level with the Canny operators.
All the edges may be detected in this way, but the position accuracy is low. Sub-pixel level
methods, such as interpolation and the Zernike method, can enhance the accuracy but
require a longer runtime (Wee and Paramesran, 2007). Ying-Dong et al. (2005)
propose an approach combining the pixel-level method with the sub-pixel level method
to detect an object edge using the Sobel-Zernike moments operator.
We propose an algorithm of Prewitt-Zernike moments edge detection and apply it in

planet-containing images. The Prewitt-Zernike moments edge detection is an algo-
rithm that first detects possible edges with the Prewitt operator and then relocates
them with possible edges to sub-pixel accuracy determined by the Zernike moments.
To save computation while retaining real edges, and before possible edges detected
by the Prewitt operator are relocated to sub-pixel accuracy by Zernike moments,
pseudo-edges in the backlit shade areas are removed. Our proposed edge detection al-
gorithm consists of three steps. First, the Prewitt operator is used to detect approxi-
mately all possible edge points. Second, pseudo-edges in the backlit shade areas are
removed. Third, the Zernike moments operator is used to relocate the real edge
points to sub-pixel accuracy.

4.1. Prewitt Edge Detection. A Prewitt operator detects edges by calculating
partial derivatives in 3 × 3 neighbourhoods and by smoothing out noise. It is relatively
simpler than other operators such as the LOG operator, Canny operator, and so on. In

Figure 4. Local planetary binary image and the result of the opening operation (a) local planetary
binary image (b) the result of the opening operator.
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our example, the planet image block is very simple (Figure 5(a)), in which the Prewitt
operator was used to detect edges. The pre-processing steps (the procedure listed in
Section 3) eliminate noise and segment the planet image block. After pre-processing,
the Prewitt operator is used to detect the edge. The partial derivatives in horizontal dir-
ection Fh and vertical direction Fv are given according to Kuo et al. (1997):

Fh x; yð Þ ¼ f xþ 1; y� 1ð Þ þ f xþ 1; yð Þ þ f xþ 1; yþ 1ð Þ
� f x� 1; y1ð Þ � f x� 1; yð Þ � f ðx� 1; yþ 1Þ ð5Þ

Fvðx; yÞ ¼ f x� 1; yþ 1ð Þ þ f x; yþ 1ð Þ þ f xþ 1; yþ 1ð Þ
� f x� 1; y� 1ð Þ � f x; y� 1ð Þ � f ðxþ 1; y� 1Þ ð6Þ

Then, the edge gradient magnitude M(x, y) and direction θ(x, y) are determined as
follows:

M x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
h x; yð Þ þ F2

v ðx; yÞ
q

ð7Þ
θ x; yð Þ ¼ arctanðFvðx; yÞ=Fhðx; yÞÞ ð8Þ

Then the threshold value t is selected, if it is satisfied that

M x; yð Þ> t ð9Þ
Hereafter, a point means an edge point. All the points must be marked. Figure 5(b)
shows the result from Prewitt edge detection, which obviously includes the pseudo-
edges. The next section describes removal of these pseudo-edges.

4.2. Pseudo-edges removal. Pseudo-edges usually occur at the border between a
sunlight face and backlit face (Thompson et al., 2012). In order to extract a planet cen-
troid to high accuracy, real edges must be distinguished from pseudo-edges. Pseudo-
edges can be detected by calculating the angle between the solar direction and the gra-
dient direction of edges. In fact, the angle between the gradient direction of edges and
the solar direction is within 90°. The main difficulty is to determine the direction to the
sun, which may be measured directly by an instrument such as a Sun sensor. Given the
planet’s edge gradient vector g and the direction n to the Sun, the following equation
can be satisfied (Li et al., 2013):

g�n
jgjjnj> 0 ð10Þ

which can be simplified as:

g � n> 0 ð11Þ
Figure 5(c) shows successful removal of pseudo-edges; the green arrows stand for the
edge gradient vectors and the red ones are the solar light direction.

4.3. Sub-pixel edges relocated. In Section 4.2, real edges are detected to just
pixel-level accuracy. In order to reach a higher accuracy of planet centroid, a
Zernike moments operator is used to relocate edges to sub-pixel accuracy among all
the real edge points.
Edges of a continuous ideal image can be seen in a step model as shown in Figure 6,

in which h is the background grey level, k is the step height, l is the perpendicular
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distance between the actual edge and the centre, and θ is the angle between the edge

and horizontal line and satisfied as θ ∈ ð� π

2
;
π

2
Þ.

Zernike moments for an image f(x, y) are defined as per Ghosal and Mehrotra
(1993):

Anm ¼ nþ 1
π

∫∫x2þy2�1 f x; yð ÞV�
nm ρ; θð Þdxdy ð12Þ

where (n+ 1)/π is a normalisation factor. In discrete form, Anm can be expressed as

Anm ¼
X
x

X
y

f x; yð ÞV �
nm ρ; θð Þ; x2 þ y2 � 1 ð13Þ

Equation (13) shows that in a discrete image, the neighbourhood of an image point
should be mapped onto the interior of a unit circle for evaluating Zernike moments
Anm of the point. The complex polynomials Vnm (ρ, θ) can be expressed in polar

Figure 6. The two-dimensional sub-pixel step-model.

Figure 5. Edge detection algorithm applied to planet image block (a) planet image block; (b) result
by Prewitt operator; (c) pseudo-edges removal; (d) relocating the edges with sub-pixel accuracy.
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coordinates as

Vnm ρ; θð Þ ¼ RnmðρÞe jmθ ð14Þ
where V�

nm and Vnm are conjugate and Rnm (ρ, θ) is a radial polynomial defined as

Rnm ρð Þ ¼
X �1ð Þsðn� sÞ!ρn�2s

s!ðnþ mj j
2

� sÞ!ðn� mj j
2

� sÞ!
ð15Þ

If the image is rotated by an angle φ counterclockwise, the Zernike moments of the
rotated image would be

Anm ¼ A0
nme

jmφ ð16Þ
Therefore, Zernike moments require a phase shift on rotation while their magnitudes
remain constant. For calculating edge parameters l and θ, the two masks A11 and A20

should be deduced. According to Equations (14) and (15), the orthogonal complex
polynomials can be written as:

V11 ¼ xþ jy;V20 ¼ 2x2 þ 2y2 � 1 ð17Þ
The unit circle in Figure 7 is divided into 5 × 5 grids, and masks are calculated when
integrating V�

11;V
�
20 on a dashed area of every grid (Ying-Dong et al., 2005).

Convolving these masks with the image points can obtain Zernike moments as
shown in Figures 8 and 9. The relationship between the Zernike moments of the ori-
ginal image A11, A20 and rotated image A′11, A′20 can be given as

A0
11 ¼ A11e jφ ð18Þ
A0

20 ¼ A20 ð19Þ

The following equations can be deduced in the theory of Zernike moments (Ghosal
and Mehrotra, 1993):

A0
11 ¼∫∫x2þy2�1 f 0 x; yð Þ x� jyð Þdxdy ¼ 2k 1� l2

� �3�2

3
ð20Þ

A0
20 ¼∫∫x2þy2�1 f 0 x; yð Þ 2x2 þ 2y2 � 1

� �
dxdy ¼ 2kl 1� l2

� �3�2

3
ð21Þ

where f′(x, y) is the rotated image. When the edge is rotated by an angle −θ, it could be
aligned in parallel to the y-axis so that ∫∫x2þy2�1 f

0 x; yð Þydxdy ¼ 0; and it becomes the
imaginary component of A′11 and can be expressed as

Im A0
11

� � ¼ sin θð ÞRe A11½ � � cos θð ÞIm A11ð Þ ¼ 0 ð22Þ
So,

θ ¼ tan�1
�
Im½A11�
Re½A11�

	
ð23Þ
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Solving Equations (20) and (21), the edge parameter l can be given as:

l ¼ A20

A0
11

ð24Þ

And the sub-pixel edge detection formula is given as:

xs
ys


 �
¼ x

y


 �
þ l

cosθ
sinθ


 �
ð25Þ

where (xs, ys) is the sub-pixel point of the edge.

Figure 8. Mask of A11.

Figure 9. Mask of A20.

Figure 7. Circular kernel defined for a 5 × 5 pixel area.
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5. ELLIPSE FITTING. The perspective projection of a sphere or ellipsoid forms
an ellipse on an image plane. Once candidate edge points are found, an ellipse must
be fitted to this data set. The details of this ellipse fitting process are discussed below.

5.1. Robust model fitting. The first useful ellipse fitting is a direct least-square al-
gorithm developed by Fitzgibbon et al. (1999). Any conic section may be described by
the following implicit quadratic equation:

F a; xið Þ ¼ aTxi ¼ Ax2i þ Bxiyi þ Cy2i þDxi þ Eyi þ F ¼ 0 ð26Þ
where [xi, yi] is a point on the conic section, a= [A B C D E F]T, and xi =

x2i xiyi y
2
i xi yi 1

� �T
. The conic will be an ellipse if the coefficients of the equation

satisfy 4AC−B2 > 0. The form allows the constants to be scaled arbitrarily such
that the ellipse inequality constraint may be rewritten as an equality constraint:

4AC � B2 ¼ 1 ð27Þ
In general, a point detected by the edge detection algorithm mentioned in
Section 4 does not lie exactly on the ellipse, and F(a, xi)≠ 0 because of imaging
noise. Therefore, Fitzgibbon et al. (1999) proposed an optimisation method using
the square of model-fit residuals:

min J ¼
Xn

i¼1
½Fða; xiÞ�2 ¼ aTGTGa ð28Þ

where G = [x1 x2…xn]
T, the equality constraint of Equation (28) can be rewritten in

vector form

4AC � B2 ¼ aT

0 0 2
0 �1 0
2 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2
6666664

3
7777775
a ¼ aTHa ¼ 1 ð29Þ

If the equality of Equation (29) is adjoined to an objective function with a Lagrange
multiplier, then

min I ¼ aTGTGaþ λð1� aTHaÞ ð30Þ
The solution to this optimisation problem is the following rank-deficient generalised
eigenvalue problem

GTG
� �

a ¼ λHa ð31Þ
Substituting this solution into the objective function shows that

J ¼ aTGTGa ¼ λaTHa ¼ λ ð32Þ
which means that the optimal solution occurs at the minimal positive eigenvalue
(Fitzgibbon et al., 1999). The solution to Equation (32) yields exactly a positive eigen-
value. This positive eigenvalue corresponds to the eigenvector that is the solution to a.
As noise may exist at the edge points, it is difficult to determine exact analytic solutions
directly. Christian and Lightsey (2012) used the M-Estimator Sample Consensus
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(MSAC) algorithm to eliminate outliers in the edge points set using least-square
ellipse-fitting and found that it was a robust method for fitting the elliptical model
to the edge points. We adapted the MSAC algorithm to eliminate outliers so as to
fit the elliptical model at the edge points.

5.2. Centroid calculation. Transformation from coefficients of an implicit conic
equation into the standard ellipse parameters is a well-known classical geometry
and given by:

x ¼ 2CD� BE
B2 � 4AC

y ¼ 2AE � BD
B2 � 4AC

ð33Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 AE2 þ CD2 � BDE þ F B2 � 4AC

� �� �
B2 � 4ACð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Cð Þ2 þ B2

q
� A� C


 �
vuuut ð34Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 AE2 þ CD2 � BDE þ F B2 � 4AC

� �� �
B2 � 4ACð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Cð Þ2 þ B2

q
� A� C


 �
vuuut ð35Þ

f ¼

0 B ¼ 0 and A< C
π

2
B ¼ 0 and A> C

1
2
cot�1 A� C

B

� 	
B ≠ 0 and A< C

π

2
þ 1
2
cot�1 A� C

B

� 	
B ≠ 0 and A> C

8>>>>>>>><
>>>>>>>>:

ð36Þ

where (x, y) is the coordinate of the ellipse centre, a and b stand for the semi-major axis
and semi-minor axis of the ellipse; and ϕ is the angle from the x-axis to the major ellipse
axis. Therefore, an ellipse can be well described with the above five parameters. With
these parameters, we can easily compute the line-of-sight vector from the spacecraft to
the centroid of a target celestial body with Equation (2).

6. EXPERIMENTS. Experiments were performed to validate the detection accur-
acy for the algorithm. First, a computer-generated standard circle with noise was used
to test the accuracy of the edge-detecting algorithm in Prewitt-Zernike moments.
Second, real images obtained from deep-space missions were used for the validation.
Lastly, the synthetic simulated images were applied to test the accuracy of the
image-processing algorithm.
The experiments are shown in Figure 10(a). The size of the image is 256 × 256 in

pixels, the centre of the circle is at (128·0, 128·0), and the radius is 100·0 pixels. To ro-
bustly withstand noise, Gaussian white noise with variance σ = 0·01 was added to the
image. We adapted the method of Li et al. (2013), in which the Canny operator was
used to locate the edge points, then used the sub-pixel edge detection methods of
Polynomial interpolation and the Gauss surface fitting technique to relocate the
sub-pixel edge points for comparing (Ye et al., 2005; Hermosilla et al., 2008). In add-
ition, our method was applied to locate the edge points, including Prewitt-Zernike
moments.
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Figure 11 shows the absolute errors of edge locations detected in Prewitt-Zernike
moments, the Polynomial interpolation method, and the Gauss surface fitting tech-
nique. The Root Mean Square (RMS) of edge detection in the Prewitt-Zernike
moments is 0·14 pixels, while the RMS of the Polynomial interpolation method and
Gauss surface fitting technique are 0·29 and 0·23 pixels respectively. The test result
shows the Prewitt-Zernike moments have a higher accuracy than the other sub-pixel
edge detection methods of Polynomial interpolation and Gauss surface fitting tech-
nique, and is more robust against Gaussian white noise. Although a sub-pixel edge de-
tection in Prewitt-Zernike moments can reach a higher accuracy, the computation load
of Prewitt-Zernike moments is still great. In order to cope with the problem, we seg-
mented the planet image block from the whole image first, processed the edge detecting
algorithm on the block only, removed fake edge points, and relocated the real edge with
Prewitt-Zernike moments at sub-pixel accuracy. In this process, unnecessary sub-pixel
relocating operations are reduced, focusing only on the real edges with the sub-pixel
relocating algorithm in Prewitt-Zernike moments. Therefore, a more accurate planet
centroid can be calculated.
In order to verify the effectiveness of the algorithm proposed, we used real raw image

data that came from the Cassini-Huygens mission. The image was taken in visible light
with the Cassini spacecraft wide-angle camera on 9 October 2008, at approximately
83 000 km (52 000 miles) from Enceladus, the sixth largest moon of Saturn, as seen
in Figure 12(a). First, we isolated the moon image blocks in the whole images adapting
the segmentation algorithm. As seen in Figure 12(b), the image block of the moon has
been successfully shown as a white rectangle. After that, the edge detection method
described in Section 4 was used to extract the sub-pixel edge points of the moon.
The pseudo-edges at the backlit face of the moon were removed by calculating the
angle between the solar direction and the gradient direction of edges. The solar direc-
tion was determined by a sun sensor. However, due to possible lack of data from the
sensor, the solar direction has to be judged by visual inspection. As seen in
Figure 12(c), the real edges of the moon were successfully detected. Finally, ellipses
were fitted to the moon. As the true coordinate of the moon centroid in the real raw
image was unknown, the accuracy could not be evaluated. In the next experiment, syn-
thetic simulated images close to the real flyby raw images are utilised to verify the ac-
curacy of the image-processing algorithm.

Figure 10. A standard circle with noise and the results of edge detection: (a) Standard circle with
noise; (b) Edge detection result by method of Li et al. (2013); (c) Edge detection by the method
proposed in this paper.
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Figure 12. Planet centroid extracting algorithm applied to real raw image from Cassini-Huygens
mission (a) Raw image of Enceladus; (b) Segmentation; (c) Extract of the real sub-pixel edges;
(d) Earth with best ellipse.

Figure 11. The absolute errors of edge location for standard circle image.

Figure 13. Planet images simulated by Celestial software.
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A synthetic simulated image is simulated by Celestia software, open-source software
for astronomical works supported by NASA Technology. The outer space environ-
ment, the atmosphere of the planet surface, and the texture of the planet simulated
with the software are very similar to the corresponding real ones (Celestia, 2015). In
order to test the accuracy of the planet centroid, five images of Mercury, Uranus,
Venus, Jupiter, and Earth were simulated as shown in Figures 13(a), (b), (c), (d) and
14(a), respectively. The complete image processing algorithms developed in this
study were applied to the five planets at different sun azimuth angles, surface textures,
and lighting and atmospheric conditions. The Earth image was used as an example to
display the procedure of the algorithm we proposed.
As indicated in Figure 14, the planet image block of the Earth is successfully seg-

mented, the pseudo-edges removed, the real edges detected, the edge points relocated
to sub-pixel accuracy, a best ellipse fitted to the planet, and finally, the centroid coord-
inate of the planet obtainedwith Equation (33). As the planet centroid in the simulated
image can be positioned accurately in advance, errors of planet centroid can be
calculated easily. The edge points were detected by Prewitt-Zernike moments, the
Polynomial interpolation method, the Gauss surface fitting technique, and then
were fitted to an ellipse. The errors that occurred in the three methods are shown in
Figure 15.
Figure 15 shows that the maximum errors of the three methods were 0·35, 0·66 and

0·56 pixels, and the RMS were 0·29, 0·51 and 0·43 pixels, respectively. The method in
Prewitt-Zernike moments is more accurate and stable than those in the Polynomial

Figure 14. Simulating the Earth image with the planet centroid extracting algorithm.
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interpolation and Gauss surface fitting. Assuming the focal length of camera
f= 200 mm, the angle of view field θ= 3·5°, and scale factor Kx=Ky= 83·8 pixel/
mm, then the maximum observation error of the line-of-sight vector from camera to
planet centroid in our proposed method is 2·1 × 10−5 rad, which easily meets the
requirements of deep-space autonomous navigation.

7. CONCLUSION. To meet the high accuracy and fast processing demands of
deep-space autonomous navigation, a new image-processing algorithm is proposed
to extract the centroid of a planet. In particular, a simple and effective planet segmen-
tation algorithm was developed to eliminate noise and reduce computation load.
Meanwhile, a sub-pixel edge-detecting algorithm based on the Prewitt-Zernike
moments is developed to detect edge points of planets at the sub-pixel level. Both
real flyby images from the Voyager mission and corresponding simulated images
were used to verify the performance of the algorithm. Simulating a standard circle
with noise shows that the precision of the proposed Prewitt-Zernike moments opera-
tors achieved 0·14 pixels in edge location accuracy. In addition, experiments on a
real raw image proved that the algorithm is effective, as the planet was successfully seg-
mented from the real raw image and an ellipse waswell fitted to the planet. In addition,
experiments on planet image simulations indicate that the accuracy of the planet cen-
troid reached as high as 0·3 pixels and the accuracy of the line-of-sight vector to 2·1 ×
10−5 rad. Therefore, with the higher-accuracy positioning for a planet centroid, the re-
liability of deep-space autonomous optical navigation will be improved.
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