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ESTIMATES FOR THE HEAT KERNEL
ON SL(n.R)/ SO(n)

P. SAWYER

ABSTRACT. In [1], Jean-Philippe Anker conjectures an upper bound for the heat
kernel of a symmetric space of noncompact type. We show in this paper that his
prediction is verified for the space of positive definite n x nreal matrices.

Introduction. Our notation will reflect that used in [7]. Given a symmetric space
G/K of noncompact type, let P;(e") be the fundamental solution of the heat kernel where
H € a, aCartan subalgebraof the Lie algebraof G.

In [1], Jean-Philippe Anker gives an upper bound for the heat kernel P; for the
symmetric space U(p. q) /U(p) x U(q). He showsthat there exists a constant C such that
fort >0andH € a*, then
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wherer?(H) = (H, H), p isthe half-sum of the positiveroots, 2 = (p, p) and q = | +2| |
(“the dimension at infinity”). Here | is the rank of the symmetric space and Zj is the set
of positiveindivisible roots. The inner product (- . -) defined on a is a fixed multiple of
the Killing form of the Lie algebra of G. We use the corresponding inner product on the
set of linear functionalson a.

Anker then conjectures that this upper bound holds for all symmetric spaces of
noncompact type. Thisistrue in the complex case as can be seen from the expression of
the heat kernel as given by R. Gangolli in [5]. It also holds for all symmetric spaces of
rank 1 as pointed out in [1] by Anker.

At the conference in Nancy in the honour of Pierre Eymard (May 1994), Anker
gave an overview of the state of affairs in regard to his conjecture. Some general but
weaker results have been obtained in the normal real case using the work of Mogens
Flensted-Jensen in [6] (see also the doctoral dissertation of Maurice Chayet in [3]). In
[2], Anker gives upper bounds that apply to all symmetric spaces of noncompact type
but are weaker than his conjecture. In [8], we prove Anker’s conjecture for the spaces
SU*(2n)/Sp(n) and Eg(_26) / F4. In[7], we show that for the spacesSL (2, R) / SO(2) and
SL(3.R)/ SO(3), P:(H) is bounded above and below by constant multiples of the right
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hand side of (2). The corresponding result for the heat kernel of areal hyperbolic space
has been obtained by E. B. Davies and N. Mandouvalos (see [4, Theorem 5.7.2]). This
hasled Anker to a further prediction that alower bound of the same type will also hold.
He announced that he could verify hisinitial conjecture and this new prediction for all
symmetric spaces of noncompact type in the casewhen ||H|| < C(1 +t).

This paper is concerned with proving the upper bound given in (2) for the space
SL(n,R)/ SO(n). In [7], we give arecursive formula for the inverse of the Abel trans-
form for SL(n, R)/ SO(n). Our strategy is inspired from the one Anker usesin [1]. In
Theorem 3.1 of this paper, we show that the spherical functions as given by equation (2),
can be extended analytically to the complex domain Q, = {H € ac : |Sa(H)| < = for
each root o} (Rzisthe real part of zand 3z is the imaginary part of 2). This result is
interesting in itself. The corresponding result is easily seento betruein the complex case
and cannot be improved there. Using the spherical Fourier transform and an appropriate
bound for the spherical functions, we show in Proposition 3.2 that the derivatives of the
heat kernel by invariant differential operators are also analytic in the same domain.

Wethen use the expression for the heat kernel givenin [7] to give an explicit formula
for the heat kernel (and derivatives) on Q; = {H € ac : [Sa(H)| < n,Ra(H) > 0
for each root o} with 0 < 5 < . Choosing ¢ > 0 small enough, we prove our
estimate on Q) = {H € ac ! [Sa| < n,Ra(H) > 0,[a(H)| > e for each root o}
(Proposition 3.9). Using symmetry and continuity, these estimates are also valid on
Q,={H € ac : [Sa| < n.|a(H)| > € for each root o}. These detours allow us to
avoid the difficulty when estimating the heat kernel near the boundary of aWeyl chamber
of a. Indeed, by extending the function to an analytic one, we can use the maximum
modulus principle for polydisksto prove the estimateon Q, = {H € ac : [Sa(H)| <17
for each root o} and thus circumvent the problem.

| would like to thank the referee for his comments to improve the readability of the
paper and my colleague Professor Les Davison for the many fruitful discussions| had
with him over this article.

1. Preliminaries. The symmetric space SL(n,R)/ SO(n) can be redlized as the
space of positive definite n x n matrices of determinant 1 over the real numbers. We
consider instead Pos(n, R), the space of positive definite n x n matrices over the real
numbers. The correspondence between the results that interest us about the former space
and the later one is straightforward.

In that context, a denotesthe n x n diagonal matriceswith real entries, a* the diagonal
matrices with strictly decreasing entries and ac represents the diagonal matrices with
complex entries. If H € a, then H; will denote the i-th diagonal entry of H. We will use
£ to denotea (n — 1) x (n — 1) diagona matrix with diagonal entries &;1....,&-1. A
function f defined on a set of diagonal matrices is said to be symmetric if the values f
takes do not depend on the order of the diagonal entries.

If X isalinear functional on a, then the corresponding spherical functionis

@ or(e = [ &P IHEW) g
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The Abel transform of f is F¢(e) = e f f(e™n) dn.
In [7], we introduce a new transform.

DerINITION 1.1. The“Fase Abel Inverse Transform”: if H € a* then
G(Lf;H)=f(") and, forn>2

G(n.f;H) = / /G(n—lan,i)Hsnh(H. Hj)
1<J

L[ sinh /2 — &) TT sinh 2 — Hy)] i
=1 j=i

where firp(€f) = f (exp(diag[¢. tr H — tr ¢])).

Theinterest of this transform comesfrom the following results ([7, Corollary 6.2 and
Corollary 6.3]).

THEOREM 1.2. If f isa smooth K-invariant function on Pos(n, R) of compact support
thenthereexistsaconstant C suchthatf = CG(n. a (m)Fy; -). Herea () = Ti<i (Gt — 3#)-

PROCF. Sincethisisprovenin detail in an earlier paper ([7, Corollary 6.2]), we only
give here a brief sketch of the argument. The first step is to show that for a smooth
function f that decreases sufficiently quickly at infinity, AG(n f;) = G(n, I (Q)f; )
where A is the radial part of the Laplacian and I'(4) = XL, 82H2 — 2. The next step
is to show that there exists a positive constant independent of the linear functional iv,
v real, such that G(n. Sscw(dets)es; &) = C(w(v))71|c(y)|*2¢y(e”) where W is the
Wey! group and c is Harish-Chandra c-function (9 (r)é" = n(iv)d"™) = Kr(v)e"™)).
Finally, if f is a smooth Weyl-invariant function then using the Euclidean Plancherel
formulaf(H) = C f, f()e"®) dv (a* is the dual space of a over R) we observe that

f(s —1 .H) = fv elz/(SlH)d
w%‘ )= i 5 L g

/ f( )eIS/(H) dv.

f(H) =

|W| seW

(a(mf)(H) =C’ / ) (v) 3 (det9)ed> ™ dv.
a seEW
Hence, writing f for the spherical transform of K-invariant function f,
G(n.a(n)Fs;€e) = C/ar Fi ()0 (€)|c)|* dv
=C /a T (@) 2 dv = C'

(we used the fact that F; is Weyl-invariant, that F; = f and the Plancherel formula for
the symmetric space).

COROLLARY 1.3. Wewrite Wi(H) = e t~2 T, ((Hi — H;)/t) exp(—r2(H) / (41)).
Then G(n, W; -) is a nonzero multiple of the fundamental solution of the heat equation
for Pos(n, R).
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Proor. The Abel transform of the heat kernel is known to be
Ce"t™"/2 exp(—r2(H)/ (4t)) (see for instance [1]). The result follows then from the
previous theorem.

2. General results and definitions. In this section, we put together the technical
results and definitions we will need in the rest of the paper.

DEFINITION 2.1. For any nonzero complex number z, z = |z|é @92 with —r < argz <
7. If zis not a negative number, then ,/z is the principal branch of the square root:
JZ = |7Y/2e@92/2,

The next result will be used extensively in our estimates.

LEMMA 2.2. The function (sinhz)/zis analytic in the domain |3z < 7 (more pre-
cisely, it has a removable singularity at 0). In that domain, it is nonzero and does not
take negative values. Thereexists C = C, > O such that if [3z] < < mand Rz > 0
then C‘ll'%\g exp(R2) < |sinhz| < Cl‘%ﬂz\ exp(R2). If inaddition, |z > € > 0, thenthere

exists C = C, . suchthat Ctexp(R2z) < |sinhz < Cexp(X2).

PROOF. The power series for f(2) = (sinh2)/z, ¥2, 2%/ (2k + 1)!, converges for all
z In particular, f(0) = 1. In what follows, z= x +iy with x, y € R and |y| < 7. We now
show that f(2) is nonzero and does not take negative values. Since f is an even function
with f(x) > 0if x € R, we may assumethat 0 < y < . The equation (sinhz) /z= —c?,
¢ > 0, can be written as sinhx cosy + i coshxsiny = —c¢?x — ic?y which is not possible
since coshxsiny > 0. Now assumethatx > 0Oand —7 < —np <y <p <m If x < 1,
the inequality C*ll—‘fllg‘ exp(R2) <|sinhz < Cll%l‘zl exp(Rz) isimplied by the inequality
C ! < |(sinh2)/Z < C over the compact set 0 < x < 1, |y| < 5 which is clear since
(sinh2)/zis analytic and nonzero on that set. If x > 1 then sinhz = (1/2)e(1 — e %)
with |&] =& [1—e & <1+|eZ=1+ePZ2 < 2and|l-eZ >1—|e? =
1—e2>1_e2> 0. Therefore, if x> 1, 1’—§4éﬁz < |sinhz < €% Thetwo cases
put together prove the result. The last part of the lemmais straightforward.

_ DEFINITION2.3. Letr > Oand z € C. Define D(zr) = {w € C : [w—7 <},
D(zr)={weC:|w—Z <r}andSzr)={weC:|w—2 =r}.

DEFINITION 2.4. Letn > Oande > 0. WedefineQ, = {H € ac : |S(Hi—H;j)| < nfor
ali,j}, Qe ={HeQ, :[Hi—Hj| > eforali#j},Q ={H € Q, : R(Hi —Hix1) >0
foreachi}and Q' = Q; NQ,..

1,€

PROPOSITION 2.5. Supposen > 2,7 > 0and 0 < e < 1/(2™n!). Writer, = 2"nl e
for simplicity. For H € Q,_» , thereexist sy, .. ., S, such that

1. 0< s <ryfor eachi.

2. IIL, SHi,s) C Q..

Note that i — 2r, > 0 and that (2) implies that [T, D(Hi. s) C Q,,.
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PrOOF. Weuseinductiononn.Letn=2andH € Q,_u,. If [H1 —Hz| > 2¢, wetake
s1=S=€/2.1f [Hi —Hp| < 2¢, wetakes, =¢/2ands, = 7 /2 < rp. If Fj € SH;. s)
then [F1 — F2| > e and [S(F1 — F2)| < [S(F1 — Hy)| +[S(H1 — Hp)| +[S(F2 — Hp)| <
€/2+(n—2rp) +7e/2 <.

Suppose the result is true for n — 1, n > 3. We will use the symbol ~ to distinguish
the sets that for n — 1 correspond to Q, and Q, .. Let H € Q,_5; since r,—1 < rp,
diag[H>. . . .. Hn] € Q, 2, ,. Thereforethere exist sp. . . ., S, such that

1. 0<s <rpforeachi > 1.

2. I, SHi,s) € Q..

Letl; = {i > 1: D(Hi.s) " D(H1,3¢/2) # 0}. 1f I, = 0, put 51 = €/2 and stop;
otherwise, let I, = {i > 1 : D(Hi,s) N D(H1.2rh—1 + 7¢/2) # 0}. If I, = Iy, then
put s; = 2rh_1 + 5¢/2 and stop. In general, if Iy # l1, then set g = {i > 1:
D(Hi.s)ND(H1, 2krn_1+(4k+3)e /2) # 0}. If liq = I, thenput s, = 2kr_1+(4k+1)e /2
and stop. Otherwise continue. Clearly the process must stop with k at most n — 1. In any
case, 51 <2(Nn—Drp-1+(An—1)+1)e/2 <rn. LetF € YH;.s) fori=1,..., n. The
condition |Fi — Fj| > e fori # ] is satisfied by theinduction hypothesisifi > 1andj > 1
and by constructionif i = 1,j > 1.If i > 1,j > 1 then by the induction hypothesis,
IS(Fi — F)| < . Finally, if j > 1, then |S(Fy — Fj)| < |S(F1 — Hy)| + [S(Hy — Hy)| +
IS(Hj — Fj)l <s1+(n—2rp) +5 <.

PROPOSITION 2.6. Lets; >0, ..., $ > 0. Supposethat f is analytic on ITL; D(X;, S)
and continuous on A = H“lD(xI S). Let 9A = T, S(%.s). Then maxz€A|f(z)| =
maXzea ) [f(2)].

PROOF. We need only to use Cauchy’sintegral formulafor the polydisk.
The following lemma and its proof are inspired from the result stating that the roots
of the derivative P’ of acomplex polynomial P are in the convex hull of the roots of P.

LEMMA 2.7. Suppose zi, .. ., .z € C. Let P(2) = X0 Bp ljp(z — ) where 31 >
..... Bn > 0arenot all zero. Then the zerosof P belong to the convex hull of zy, . . . , z,.

PROOF. Let Q(2) = I14(z — ). We have £ = > sz =0, ‘Z“;plz(z Z).
B 72n(Z - 7) and, taking

n
p=1 |z—z

conjugates, -0_; = Zp|2z o1 = Zp|2zp which implies the result.

If zis a zero of P but not a zero of Q then O

DEFINITION 2.8. The elementary symmetric polynomials in the n — 1 variables
Yi,---:¥n-1 € C are gy) = Yi<.<ig¥, 'Y, where g = 1,....n — 1. Given
Zi.. ... 7, € C, wewill denote el (2) = ey(z. . .. , Zo-1.Zp1s - - -+ Zn).

0 such that

COROLLARY 2.9. Suppose 7, ..., .z, € C. Fix g1 > 0...., On
Yp-10p = 1. If we define, modulo the order, yi. ... . Yn-1 Dy eq(y)
then eachy; belong to the convex hull of z, . . . . z,.
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PrROOF. It suffices to expand both sides of the equality =7, 8p Ilix(z — 3) =
11z — vi) in powers of z and use Lemma 2.7.

The proof of the following result was communicated to us by Professor A. M. Davie
from the University of Edinburgh.

LEMMA 2.10. Suppose D is a symmetric domain in C" (i.e. invariant under any
per mutation of the coordinates) and supposef: D — C" is analytic and symmetric (i.e.
invariant under any permutation of itsvariables). ThenthereexistsadomainE in C" and
an analytic function F: E — C" suchthat f(z,...,z) = F(ey..... &) whereey, ..., €n
are the elementary symmetric polynomialsinz, . . . . Zn.

PrOOF. Let E be the image of D under the mapping (z..... z) — (er,..., )

and define h(ey, . . ., &) =f(z,....2z) where z, ..., Z, are the roots of the equation
2" — e 1+ 6772 — ... +(—1)"e, = 0. Since the roots depend continuously on the
coefficients, h is continuous. It is also analytic when the roots are distinct. Thus h is

continuous on E and analytic outside a proper subvariety and is therefore analytic on E.

3. Estimates.

THEOREM 3.1. For every linear functional A on a, the spherical function ¢, can be
extended analytically to Q. It is then symmetric in that domain. If 0 < n < 7 and
A(H) = XL, aHi with & € R for eachi, then there exists a positive continuous function
C, independent of A such that |¢, (e")| < C,(H) exp(— XL, aSHi) exp(Ti<j nla — 1)
onQ,.

PrROOF. We prove the result using induction. The result is clearly true for n = 1
since then ¢, (e") = €*™). Suppose A\(H) = T, ajH; with g € C for all i. Let A\o(¢) =
Y& — an)¢i and let

f(g. H) — eian(H1+...+Hn)¢>\0(eE) H % fi:[l
i<j [ ] i=1

If we adapt [9, Theorem 5.3] to our situation (m= 1,1 = nand ¢, (e"') = d5(e') with
5 = 212 andlet Hy > Hp > - -+ > Hy, wethen have

PN CA- LT L/Z)é%(H1+~~~+Hn) ‘/H':“ .. /H':l 620 (€) [T SinN(& — &)

(r(l/z))n i<j
TH[ITsr/2 &) TT sinn/2(6 — H] déa - ds
i=1 %=1 j=i+l

_ /2 s Tig(E =€) A dén g
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Now f (&, H) is asymmetric function of & and of H which is analyticin £ and H as

long as
©) S = §) <mand [S(& —Hy)| <m forali,j.
Let Bp = TT5H(& — Hp)/ Thigp(Hi — Hp) forp=1,.....n. Then ., 3, = 1 and
H o 1 (0/2) 3 o) 5 o0 dBy--- dBn1
s dh) (r(l/z))n/gF(p;lﬂpel (). 3 552y (H). H) = et

where o = {(G1, . ... Bn) i B1>0,....0, > 0and 7 Bp = 1} and F correspondsto f
by virtue of Lemma2.10. Thisformulaallows usto give an analytic continuation of ¢, to
Q. Indeed, forany H € Q, (X0, BpeP(H). ... s, 3pe®  (H)) correspondsto ¢ with
each &; in the convex hull of Hy, ..., H, by the corollary to Lemma2.7. This meansthat
the conditionsin equation (3) are satisfied. It isalso clear that ¢, isasymmetric function.
Suppose now that a, € R for each k and let 0 < n < 7. By the induction hypothesis,

there exists a positive continuous function C, (&) such that whenever H € Q,,

|eian(H1+"'+Hn) ¢k0(ef)|

) n—1
< Cy ()|t )| exp(— Chy an)¢i) exp( > nla — &)

i<j<n

n n—1
C, (€) exp(— ;a%Hi)exp( > nlai — al) exp(— ;(eu — an)S(& — Hy))

i<j<n

&,(6) exp(— 21 a,SHy) exp( nlay — a).

i<j

IN

If we use this with Lemma 2.2, we find that

16 H) < &, (€ H)exp(—ia%Hi)exp(z nla — &)

i<j
where C,] (&, H) iscontinuous. Thisis all we need.

PrROPOSITION 3.2. Let p be a skew-symmetric polynomial in n variables. Then
G(n, pe*fz/ (49:.) can be extended analytically on Q, and is a symmetric function there.

PrROOF. For A(H) = S0, aHy, let m(\) = Tlij(a — a). Let g0\, t)e >t be the
Euclidean Fourier transform of pe/@). It is clear that q is a polynomial which is
skew-symmetric in the variables ay, . . . , an,. We have, for H € a* (see[7, (19)]),

G(n.pe /@ Hy=C [ A1) ot Myl da
a m(\)
where C isaconstant and a* isthe set of real-valued linear functionalson a. Theorem 3.1
allows us the analytic continuation of the right hand side of this equation.

LEMMA 3.3. If pisa skew-symmetric polynomial in nvariablesthen (pe*’z/(‘“))trH =
exp(—(trH — tr )2/ (41)) Py (£)e™ O/ and pyy is a skew-symmetric polynomial in
thevariables¢;. . . ., én-1.
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PROOF. Recall that fyy14(€°) = f(exp(diag[¢. tr H — tr £])). Therefore

(pe /@) (e =

|
°
—~
Sy
i

..... En-1,rH—1r¢)

~exp(—(EF+ -+ 5+ (trH = r€)*)/(40))
exp(—(trH — tr&)?/(41))p(éa. . . . . Eno1.trH —tr¢)
-exp(—(EF+ -+ €51)/(4D).

Thatpyn(€) = p(&a, - - -, En—1. tr H—tr &) isaskew-symmetrix polynomial inthevariables
E1pens &n—1 iSClear.

Now, we need an explicit formula for G(n. pe~*/“); H) on a suitable portion of Q.
in order to compute our estimates. We will proceed in several steps. Lemma 3.4 will
give us aformula which is a natural extension of Definition 1.1. This formula involves
integrating over the path from H; to oo and, for 2 < i < n— 1, over the path from H;
to Hi_y. It is however rather difficult to estimate. Lemma 3.5 gives a modified version
of the formula which will be easier to handle. Finally, after giving the construction
of the appropriate paths in Lemma 3.6, we will be ready to compute our estimates in
Proposition 3.9.

LEMMA 3.4. Supposen > 2and 0 < < 7. For H € Q;, choose continuous simple
paths=;. ..., = satisfying the following conditions (we denote a point of the path =y
by k).

1. Thepath =; startsat H; and itsreal part increasesto oo.

2. For2 <k <n-—1, =isapathfromHy to Hy_;.

3. Fori<j, ¢ —Hje{zeC:|37 <n}—[0,00) (unlessi =j and & = H;).

4. Forj <i,Hj—¢& €{ze C: |3z < n}—[0,00) (unlessj =i —1and & = Hi_y).

5. [S(& — &)| < nfor eachi, j.

Letf = pe~"/4) wherep is a skew-symmetric polynomial in n variables and suppose
that on these paths, we have

(4) 19(6. H)| < CH)P(Ens .. .. En_q)e imt RE—H)

where C does not depend on &, P is bounded by a polynomial and

'hi_.n—li—lI H—¢ =0 f i — H;
g6 H) = G(n — Ly ) [ T —8) 110 s 11 s

i<j i — ¢ i=1Lj=1 j=i
i

Thenfor H € Q;, we have

G(n,f;H) = / . ./51 g(s. H)anl[ ITi<i(&i — &) de.

En IS H = &L /6 — H]

Wewill seein Proposition 3.9 that the conditionin equation (4) is necessarily satisfied
(it is aconsequence of the induction step in the proof of that result).
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PrOCF. If werefer to Definition 1.1, we only haveto show that the above expression
is analytic in Q; for any choice of paths satisfying the above conditions. Note that
Lemma 2.2, Proposition 3.2 and Lemma 3.3 ensures that g(£, H) is analytic along these
paths.

For each k > 2, the integration over the path = can be written as

dék
VHi1 — &/ €k — Hk
where h(¢, H) is analytic in H and &. This is clearly differentiable and, by Cauchy’s

theorem, does not depend on the particular choice of path. A similar argument can be
given for k = 1 (the factor e (€=H1) plays an important role there).

J. heH.©)

LEMMA 3.5. Supposen > 2and 0 < i < 7. For H € Q7, choose continuous simple

paths=;. ..., = satisfying the following conditions (we d]enotea point of the path =y
by k).

1. For 1 <k < n-—1,thepath = startsat H, and itsreal part tendsto oco.

2. Fori<j, & —Hje{zeC:|3z <n}—[0.00) (unlessi = j and & = H;).

3. Forj<i,Hj—¢& e{zeC: |37 <n}—[0,00).

4. |S(& — &) < nfor eachi, j.

Letf = pe"/“) wherepis a skew-symmetric polynomial in n variables and suppose
0(¢, H) isasin Lemma 3.4 and satisfies condition (4). Then

. _ ITi<j (& — §J)
© GO L N T - T /6 A

PrOOF. We start by the formula obtained in Lemma 3.4 with the paths described
there.

If weassumefor amoment that £, — Hy isnever apositivereal number and replacethe
path =, by the path =, U =; then the result remains the same. Indeed, the integration on
the additional portion is zero since the integrand is skew-symmetric in &; and &,. Using
Cauchy’stheorem, the path =, U =3 can be replaced by any path satisfying the conditions
of the lemma. For the same reason, the condition that £; — Hj is never a positive real
number can berelaxed (it was put there so that H; — &, would not be anegative number).

We repeat the processfor i = 3,...,n— 1using the fact that =;_; isapath from H;_;
to oo and that the integrand is skew-symmetric in & and &;_.

Finally, we make a specific choice of paths. In addition to take care of the conditions
set in Lemma 3.5, the shape of the path will address the condition raised in Lemma 3.7.

de.

LEMMA 3.6. Letn > 2. Suppose0 <7 < 7,0<e <nandH € Q; . For agivenk,
1<k<n-—11letb=—n/4if S(Hc—Hn) > 0and 6 = 7/4 otherwise. It is possible
to choose 7 such that e /(10n) < 7V < €/2 and such that the path = composed of the
segment from H, to Hy + 7%, followed by the horizontal line Hy +7v,&% +t, t > 0 does

not intersect any balls D(Hi, e /(10n)) for i # k (see Figure 1 below).

https://doi.org/10.4153/CJM-1997-018-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-018-1

ESTIMATES FOR THE HEAT KERNEL 369

PrRoOF. Consider the ball D(Hy, ¢/2) with k < n: this ball does not intersect any
ballsD(Hi. e /(10n)) withi # ksinceH € Q7 .

In Figure 1, the corridor between the two horizontal lines Hy + eei"k/(10n) +t,t>0
and Hy +e€’ /2 +1,t > 0 has awidth of ¢(1/2 — 1/(10n))/2/2. There are at most
n— 2ballsD(Hi.€/(10n)) that could possibly intersect with this corridor since we must
havei < k < n. Thetotal width of n — 2 balls of radius ¢ /(10n) is 2(n — 2)e /(10n) <
e(1/2—1/(10n))v/'2/2. Itis then clearly possible to draw aline Hy + 7% +t,t > 0
that will not intersect any such balls.

Hk.\ Hy + €€’ /(10n) +t,t > 0

Hk+WéWk<———————Hk+Wéw+LtZO————————

He +e€%/2+1,t>0

FIGURE 1: From Hy to oo

LEMMA 3.7. Supposethat, for eachi, & = Hj or | arg(¢i—Hi)| < /4. ThenR(r3(H)—
r2(€) — (tr H — r€)?) < —2R & — Hj)(Hj — Hn).

PrOOF. Observe that
r(H) — r3(€) — (trH — tr ¢)?

n—1 k

= =23 (6 — Hie) (G — HY)
k=1 =1
n—1 k n—1 k

= =23 (He— He) (2(& — H)) — 220 (6 — HY(2o (G — HY)
k=1 =1 k=1 =1

n—1 n—1 n—1 k
= 22— Hi) (X (Hk — Hie)) — 25 (6~ Hk)(z;(ﬁj —H))
j= =] = i=

k=j

n-1 n-1 k
= =23 (& — H)(H — Hn) =23 > (& — H( — H))-
=1 k=1 j=1

Notethat if z# 0, then Rz > 0if and only if |argz] < /2. Therest follows easily.

LEMMA 3.8. Let p(H) = XL, ajH; + b. Then there exists a constant C independent of
H and ¢ (but which dependson p) such that |y (€)] < C(1+|p(H)|) IIH (1 +|& — Hil).

PROOF.
n—1
IPer(©) = | 20 &&j +an(trH —tré) +b|
]:

- 1

T
N

n—1
aHj+b+ Z;(ai —an)(§ — H))
=
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n

<23 +b|+|2(q an)(§j — Hy)l

=1

IZl H1+b|)(1+|2(a, an)(& — H)))

| A

< C(1+|¥aiHj +bJ) _Hl(l+ € — Hi)-
]= 1=

We are now at the heart of the matter.

PROPOSITION 3.9. Suppose 0 < i < 7. Let p be a skew-symmetric polynomial in n
variables. Writep = py - - - py Wherep(H) = Ej":l ajjH; + b;. Then there exists a constant
C, > Osuchthat for H € Q,,

CH Y2
e/ E9G (n, pe /4 H)| < c,,H(1+ |p.(H)|)H( PR H")
i<j

e—R ZKJ‘(HI_ J)/z‘

PrROOF. We prove the result by induction on n. The result is clearly true for n = 1.
Supposen > 2 and let i be such that 0 < n < w. Choosen’ suchthat n < n’ < 7. We
prove first our inequality on Q;, . where ¢ > 0 is chosen so that 1" — 2™Inle >y and
n +e <.

We construct our paths according to Lemma 3.6. As usual &; denotes a point on the
path =j. The choice of 6 will ensure that for some K > 0, R(¢x — H)(Hk — Hp) >
KR (éx — Hi)|Hk — Hn| on the first part of the path and that (¢ — H)(Hk — Hn) >
K|Hk — Hn| on the second part of the path. Also, we have | — Hj| > €/(10n) for k # .
Moreover, either £ = Hy or | arg(&k — Hy)| < /4. Thisis acondition we need to apply
Lemma3.7: R(r2(H) — r2(¢) — (trH—tr 5)2) /(4) < —2R Y1 — H)(H —Hy) < 0.

By the induction hypothesis, Lemma 3.3 and Lemma 3. 8 there exists a constant C
such that whenever [3(&i — &j)| < 1’ +¢, acondition which is satisfied on our paths, we
have

‘erZ(H)/(4t)G(n —1 (pe—rz/(4t))t " {)‘
= exp(R(r(H) — r%() — (rH — tr &) )/(4t))|ef2“>/<4"G(n — Lpene™ /@ g)|

(r
< Cexp(R(r2(H) — r(€) — (trH — r&)?) /(41) 1:]1<1 + (P

—1/2
(1+1+|§. ) /e—ﬁzi<j(5|—5j)/2

i<j
n—1

N n-1
(6) = Cexp(—R 3 (6 — H)(Hj — Hn)/(20) TT(1+Im(H) [T+ — HiD"

j=1 =1

—-1/2
(1+ 1+ |£| - ) / effREKj(Eiffj)/z'

i<
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Repeated applications of Lemma 2.2 show that

7)) e RDalE- ﬁ.)/Z‘HMhl[ﬁ\}sn?Hj . ﬁ\}snh(ﬁl HjHi)”

i<j £J i=1+j=1 I j=i
1
<CI———— [T |e ¥ T /1+|H - & 1+|¢& —Hll.
1 e §J||Hl[ IN Hy §.|j1]i¢ & — Hy]
If we now use equations (5), (6), (7) and the fact that |, — Hj| > €/(10n) whenever
j # k, we see that we only need to show that

/EH...‘/E H(1+M)yz

L (L+ € — Hi)V/2
H{ |§I_Hi|

i=1

e 6= exp(—R(& — H)(H; — Hn)/ (2t))} |d¢]

is bounded by a constant multiple of ITj<;(1 + 1+‘H+HL|)*1/ 2 on Q, ., (of course, this
constant will depend on e and ).

Fixk<n. Letg =H;ifi <kandag = ¢ otherwise (i <n—1). Leth =H;ifi <k
and by = ¢ otherwise (i < n— 1). If we suppose that the corresponding inequality has
been proven for k < k, it sufficesto show that for some constant C,

12 _ +
/_ H(1+ 1+ ajl) (L+ |k — Hi)N*2/2
i< t |€k — Hyl

e M6 exp(—R(& — Hid(Hk — Hn) /(21)) [déi|

+ A . 71/2
§Cmax[H(1+ M) ,
i< t

H(1+ 1+ |bi — bi|)_1/2. (1+ _1+|Hk_ Hn|)_l/2}
t t

i<j

and to notice that for some constant C,

e P s o (e — Hi(H — o) /@)l < C.

1€k — Hyl

Observe that for H € QF, andk <i <j <j < n, [Hc—Hn| > CHi — H;j] for
some constant C > 0. Therefore given K > 0, e KIHHl/@) < @K Diciq M-I/ () =
Tkeicj € <RI/ < ATR (1 + HH%”") 1/2 for some constant A.

We now dividethe path =, in two parts (see Figure 1): 7y 1 for the oblique segment and
Yk.2 for the horizontal line. Let s = R(¢x — Hy). On the path vy 1, we use the fact that &

iscloseto Hy and also that R(&x — Hi)(Hk — Hn) > Ks¢|Hk — Hn| for someK > 0. Onthe
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path Yy 2, we use the fact that s is not small and that % (¢ — Hi)(Hk — Hn) > K|Hx — Hy|
for someK > 0.

1+ [a — &) 2L+ ek — H)V/2
1+ 23
/ H( t ) V16— Hd
& W& exp(—R(E — HI)(Hi — Hn) /(20)) |déid

_hl\ Y2 N+1/2
§CH(1+1+|b' b1|) /0 (1+s) S KsdH /@) g,

V1i<j

i<j t V&
- C,H(1+ 1+]b — b,»|)1/2(1+ 1+|Hy — Hnl)”z_
i< t t

Finally,

(1+ 1+]a — a,-|)‘1/2(1 * 1€ = HD™™2 g
t V1€ — Hl
-exp(—R(&k — Hi)(Hk — Hn) /(20)) ]

. L2 +1/2
<cql (1+ 1+|Hi — HJ|) /00 (1+sM S KIHHl /@) gg,
i<j<k t 0 VEN

I W N V4
oqfae

i<j

[ 1

k2i<]

This concludesthe proof for H € Q°

We can extend the bound to (ﬁ,',/_f using the symmetry and continuity of
g’ /@G (n, pe /@ H).

Since, n < ' — 2™Inle, if H € Q, then Proposition 2.5 alows us to find s,
1<i<n,suchthat0 < s < 2"nleandIIl, SHi, s) C Q, . By themaximummodulus
principle (Proposition 2.6), this meansthat the maximum of | /@G (n, pe~"*/(“; H)|
on ITL, 5(Hi.3) is attained on ITL; S(Hi, s). The desired inequality is then valid for
every element of Q, with possibly alarger constant (the size of that constant is limited
by the fact that 5 < 2"nl € for eachii).

THEOREM 3.10. Anker’s conjecture, the upper bound given in (2), is valid for the
space SL(n. R)/ SO(n).

PrOOF. According to the corollary to Theorem 1.2 we have Py(e') =
Cett"/2-n(=1/2G (n, pe"*/™); H) with p(H) = Tli<j(Hi — H;) for some constant
C. Moreover, the positive roots are Hi — H; with i < j and their multiplicity is 1. Since
a" C Q, whenever 0 < 5 < , it suffices to apply Proposition 3.9 with any choice of 5
withO < n <.
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4, Conclusion. In addition to confirming the validity of Anker’s conjecture for
the space SL(n, R)/ SO(n), Lemma 3.9 can be used to provide upper bounds for the
derivatives of the heat kernel by invariant differential operators. With the paper [8], we
can now say that Anker’s conjecture on the upper bound has been verified for all the
symmetric spaces of honcompact type corresponding to the root system An—;.

REFERENCES

1. Jean-Philippe Anker, Le noyau de la chaleur sur |es espaces symétriques U(p, d) /U(p) x U(q), Lecture
Notesin Math. 1359, Springer Verlag, New York, 1988, 60-82.

2. Jean-Philippe Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric
spaces, Duke Math. J. (2) 65(1992), 257-297.

3. Maurice Chayet, Some general estimates for the heat kernel on a symmetric space and related problems
of integral geometry, Thesis, McGill University, 1990, 1-76.

4. E. B. Davies, Heat kernels and spectral theory, Cambridge Univ. Press, 1989.

5. R. Gangolli, Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces, Acta
Math. 121(1968), 151-192.

6. Mogens Flensted-Jensen, Soherical functions on a real semisimple Lie group. A method of reduction to
the complex case, J. Funct. Anal. 301948, 106-146.

7. Patrice Sawyer, The heat equation on spaces of positive definite matrices, Canad. J. Math. (3) 44(1992),
624-651.

, On an upper bound for the heat kernel on SU*(2n)/Sp(n), Canad. Bull. Math. (3) 37(1994),
408-418.

9., Spherical functions on symmetric cones, Trans. Amer. Math. Soc. (1995), 1-15.

Department of Mathematics and Computer Science
Laurentian University

Sudbury, Ontario

P3E 5C6

e-mail: sawyer @ramsey.cs.laurentian.ca

https://doi.org/10.4153/CJM-1997-018-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-018-1

