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Abstract

Consider a compact zero dimensional (profinite) monoid. While the group of units must be
open, a regular D-class need not be open in the ideal it generates. This is the case if and
only if the semigroup contains infinitely many copies of a certain semilattice composed of an
increasing sequence of idempotents converging to an upper bound.

Using compactifications of free products, two generator compact monoids with these prop-
erties are constructed.

1980 Mathematics subject classification (Amer. Math. Soc.): 22 A 15.

This note is in part a continuation of [2] and [5] where finitely generated compact
zero dimensional semigroups were studied via the semigroup of continuous en-
domorphisms. (A compact semigroup is finitely generated if it contains a dense
finitely generated (abstract) semigroup.)

In a compact finitely generated compact monoid, the group of units is both
open and closed. This is easy to see and it would seem plausible that this prop-
erty is local. (A property of a semigroup S is called local if it is appropriately
held by each subsemigroup of the form eSe where ¢ is idempotent.) It is some-
what surprising that this is not the case. Questions concerning the openess of
a maximal subgroup in the monoid it generates or of a D-class in the ideal it
generates arise naturally in the factoring of homomorphisms into those of special
type and in questions on the continuity of certain endomorphisms.
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In this note we establish two results on the local structure of the semigroups
considered. For completeness and because of its importance we present a self
contained short proof of Numakura’s result that any compact zero dimensional
semigroup is profinite. This will be done through a simple application of the
syntactic (or principal) congruence.

It will be convenient to have some notation: let Iy denote the natural num-
bers with oo adjoined in the usual way with the multiplication zy = min(z, y).
Thus I is a simple sequence of idempotents e, es, €3,... converging to e with
g1 <er<ez< -,

Let Ty denote the usual Cantor set with the multiplication zy = minimum

~ (z,y) and let B denote {0,1} with the same minimum multiplication.

If S is finitely generated compact and zero dimensional then S is the inverse
limit of a sequence of finite semigroups Sy, S2,Ss,...,Si,... where each S; is
obtained from S by a congruence which is invariant under the semigroup of
continuous endomorphisms. Of course S is, in particular, metric.

The principal results are contained in the following two theorems.

THEOREM A. Let S be a finitely generated compact zero dimensional semi-
group. Then S contains a copy of Iy if and only if some regular D-class outside
of the minimal ideal fails to be open in the ideal it generates. If S contains
one copy of Iy it contains an infintte collection of copies any two of which are
1somorphic in such a way that corresponding elements are D equivalent.

THEOREM B. There exists a two generator profinite inverse monotd which
contains copies of Iy and Ty and, in fact, contains a copy of B¥ the cartesian
product of a countable number of copies of B.

THEOREM C (NUMAKURA [6]). A compact zero dimensional semigroup is
the inverse limil of finite semigroups.

We begin with lemmas which may be of independent interest.

Let S be a compact (or stable [1]) semigroup and let D be a regular D-class.
If 2 = ¢ € D then eSenN D = H, = the maximal subgroup of e ([1}). This
immediately yields

LEMMA 0. If the compact semigroup S contains a copy of Iy then the mazi-
mal subgroup at e 13 not open in eSe and the D-class at e 13 not open in the ideal
it generates.

LEMMA 1. Let S be a metric profinite monoid whose group of units is not
open. Then Iy ts imbedded as a submonoid.
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PROOF. Let V be any open set containing G the group of units. Since S
is profinite there exists an open and closed submonoid M with V > M D G.
Since G is not open the minimal ideal of W is disjoint from G. Thus there is a
descending sequence of submonoids M; D My D M3 D --- closing down on G.
Let K; denote the minimal ideal of M;. If f; is an idempotent of K; there exist
idempotents f; € K; for j < i such that f;, < f; if and only if jo < ;. Thus, for
eachi = 1,2,3,... there is a chain of idempotents e} < €} <€) <---<el_, <el
where efl € K,. Denote this chain of idempotents by E*. Now the sequential
limiting set E* of a subsequence of {E*} contains an idempotent e; from each
K;. Moreover ¢) < e < --- < ¢; < €;41 < ---. Finally, the identity element 1
being the only idempotent in G also belongs to E*°.

LEMMA 2. Let S be a finitely generated profinite semigroup. Let D be a
D-class such that D/} is finite. Then D 1is open in J(D).

PROOF. Fix an X-class of D, say H, and let zy,zs2,...,Z, denote the gen-
erators. Let T be the union of all translates z; H, and H,z;, (where H, runs
through the ¥-classes of D and z; is a generator), which are contained in the
ideal J(D)\ D. Then T is compact and J(T) is a closed ideal contained in
J(D)\ D.

Let V be an open set about H such that VNJ(T) =, and VND = H.
Suppose that SHS \ H meets V so that for some s,t € S one has sHtNV # <.
Then for w,w’, words in the generators, one has wHw' NV # &. Let w =
y1y2--- Yk and w’ = y1y5 - -y, where the y; and y; are generators. Consider
yeHy;. This is either an ¥-class H' of D or is contained in the ideal J(T). If
the latter, wHw' C J(T) and could not meet the open set V. If the former,
look at yx_1 H'y5. Proceeding in this way, wHw' is either an X-class of D or is
contained in J(T). In either case one has a contradiction.

LEMMA 3. Let S be a compact semigroup and D, a regular D-class of the
tdempotent e. If there are non idempotent X -classes in L. arbitrarily close to H,
then H, is not open in eSe.

PROOF. If 2, — h € H, then ex,e — ehe = h. Moreover if z,Le and H,_ is
not a subgroup it is known (see [1]) that ez, ¢ D.. Hence ez e is an element of
J(D)\ D.

PROOF OF THEOREM A. Suppose S is a finitely generated semigroup and
Iy is a subsemigroup of S. Consider D, the D-class of e the identity of Iy. From
Lemma 2 we know that D, has an infinite number of ¥-classes and thus must
contain an infinite number of L£-classes or an infinite number of R-classes. In
either case, since each L-class or R-class of D, must also contain an idempotent
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there are infinitely many idempotents in D.. Finally if f is another idempotent
of D, then there is an isomorphism z — a’za of eSe onto fSf. Herea € R.NLy
and a’ be the inverse of a in Ry N L. (See Theorem 2.18 of [3].) Thus, at
each idempotent of D, there is a copy of Iy. Finally, the isomorphism is D-class
preserving having as inverse y — aya’.

PROOF OF THEOREM B. For each prime we construct a certain finite semi-
group A,: Let C, denote the cyclic group of order p and let B denote the two
element monoid with e as zero. Form the monoid C, * B, the free product with
the identities amalgamated. Let J, denote the ideal of C, * B generated by
all words in which e appears two or more times. Thus J, is generated by all
elements of the form ege where g # 1. Let A, denote Cp, * B modulo the ideal
Jp. Note that A, is a finite inverse monoid. With an obvious notation the group
of units is Cp and CpeCy, is a regular D-class with idempotents geg™!, g € Cp.

Form the compact zero dimensional inverse monoid X A, where p; runs over
the primes. Within this monoid form M = cl(g,€é) the compact submonoid
generated by § = (g1, 492,93, ...) where g; generates Cp, and & = (e,e,e,e,...).

Since X Cp is a monothetic group it appears as G the group of units in M.
Note that the L-class of € is Gé which has only one idempotent. The existence
of Iy then follows from Lemma 2. To be explicit, let g; denote an element of
G such that the first j coordinates are equal to 1 and all other coordinates are
different from 1. Then €g;€ is a sequence of idempotents converging to € from
below. Thus, there is a copy of Ip.

However, let Z be an element with each coordinate equal to e or 0. Define the
element § by placing an e in each coordinate where it appears as a coordinate
of § and placing eg, (g # 1), in those coordinates where 0 is the coordinate of Z.
The element 7 is clearly in M and §€ = Z. Since Z is a typical element of B,
the last must be a subsemigroup of M. The semigroup BY contains a copy of
Ty since there are sufficiently many continuous homomorphisms of Ty into B to
separate points.

To see that M is an inverse semigroup note first that the idempotents com-
mute. One need only show that M is regular. Any coordinate of a point of M is
of the form 0, e or gegyg where g,go € G. Thus, if Z € M the double orbit GZG
certainly contains an idempotent. This idempotent is certainly D equivalent to
z.

To prove the result of Numakura it suffices to show that a compact zero
dimensional semigroup can be embedded, topologically and algebraically, as a
subsemigroup of a cartesian product of finite semigroups. In effect, such a prod-
uct is an inverse limit of the finite products. Moreover any compact subspace
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of an inverse limit is itself an inverse limit of its projections to the co-ordinate
spaces.

Thus, it suffices to show that a compact zero dimensional semigroup has
enough finite continuous homomorphisms to separate points, since this allows
one to embed it into the Cartesian product of all the finite images. This will
follow from Lemma 4 for which we recall the definition of P,4.

The syntactic (or principal) congruence is defined as follows: Let A be any
subset of a semigroup S. The points z and y of S are congruent, zP,y, if and
only if

uzv€E Ao uywe A forall u,v e St
(As usual S! denotes S with an identity adjoined if necessary.)

It is clear that P, is needed a congruence in which A is a union of classes.

The role of this congruence in compact zero dimensional semigroups can be
seen from

LEMMA 4. Let S be a compact semigroup and let A be an open and closed
subset of S. Then Py, the syntactic congruence, is both open and closed.

PROOF. To see that P4 is closed suppose that s and ¢t are inequivalent.
Thus, there exist up and vy such that, say, ugsvy € A while ugtvy & A. By
continuity of multiplication, there exist open sets 0 about s and W about ¢ such
that ugO0vp C A and ugWuvp € S\ A. Then 0 x W C (S x S) \ Pa.

To see that P4 is open, we may suppose that s, — 8, to, — ¢t with s, and
t. inequivalent modulo P4. There exist u, and v, such that u,38,v, € A and
UataVa & A (or vice versa). Since S is compact, we may arrange things so that
Ug — U, Vg — U, 8o — 5 and t, — ¢t. Since A is closed usv € A and since S\ A
is closed utv € S\ A. But this says that s and ¢ are inequivalent. Thus, the
complement of P4 is closed.

Finally, one notes that a compact semigroup modulo an open and closed
congruence must be finite.
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