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Abstract

Consider a compact zero dimensional (profinite) monoid. While the group of units must be
open, a regular P-class need not be open in the ideal it generates. This is the case if and
only if the semigroup contains infinitely many copies of a certain semilattice composed of an
increasing sequence of idempotents converging to an upper bound.

Using compactifications of free products, two generator compact monoids with these prop-
erties are constructed.

1980 Mathematics subject classification (Amer. Math. Soc): 22 A 15.

This note is in part a continuation of [2] and [5] where finitely generated compact
zero dimensional semigroups were studied via the semigroup of continuous en-
domorphisms. (A compact semigroup is finitely generated if it contains a dense
finitely generated (abstract) semigroup.)

In a compact finitely generated compact monoid, the group of units is both
open and closed. This is easy to see and it would seem plausible that this prop-
erty is local. (A property of a semigroup 5 is called local if it is appropriately
held by each subsemigroup of the form eSe where e is idempotent.) It is some-
what surprising that this is not the case. Questions concerning the openess of
a maximal subgroup in the monoid it generates or of a D-class in the ideal it
generates arise naturally in the factoring of homomorphisms into those of special
type and in questions on the continuity of certain endomorphisms.
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In this note we establish two results on the local structure of the semigroups
considered. For completeness and because of its importance we present a self
contained short proof of Numakura's result that any compact zero dimensional
semigroup is profinite. This will be done through a simple application of the
syntactic (or principal) congruence.

It will be convenient to have some notation: let IQ denote the natural num-
bers with oo adjoined in the usual way with the multiplication xy = min(i,j/).
Thus IQ is a simple sequence of idempotents ei, ea, e 3 , . . . converging to e with
ei < e2 < e3 < • • •.

Let To denote the usual Cantor set with the multiplication xy = minimum
(x,y) and let B denote {0,1} with the same minimum multiplication.

If S is finitely generated compact and zero dimensional then S is the inverse
limit of a sequence of finite semigroups Si, $2, 3̂> • • •, Si,... where each Si is
obtained from S by a congruence which is invariant under the semigroup of
continuous endomorphisms. Of course S is, in particular, metric.

The principal results are contained in the following two theorems.

THEOREM A. Let S be a finitely generated compact zero dimensional semi-
group. Then S contains a copy of IQ if and only if some regular D -class outside
of the minimal ideal fails to be open in the ideal it generates. If S contains
one copy of IQ it contains an infinite collection of copies any two of which are
isomorphic in such a way that corresponding elements are D equivalent.

THEOREM B . There exists a two generator profinite inverse monoid which
contains copies of IQ and TQ and, in fact, contains a copy of Bu the cartesian
product of a countable number of copies of B.

THEOREM C (NUMAKURA [6]) . A compact zero dimensional semigroup is
the inverse limit of finite semigroups.

We begin with lemmas which may be of independent interest.
Let S be a compact (or stable [1]) semigroup and let D be a regular P-class.

If e2 = e 6 D then eSe D D = He = the maximal subgroup of e ([1]). This
immediately yields

LEMMA 0. If the compact semigroup S contains a copy of IQ then the maxi-
mal subgroup at e is not open in eSe and the D-class at e is not open in the ideal
it generates.

LEMMA 1. Let S be a metric profinite monoid whose group of units is not
open. Then IQ is imbedded as a submonoid.
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PROOF. Let V be any open set containing G the group of uni ts . Since S
is profinite there exists an open and closed submonoid M wi th V D M D G.
Since G is not open the minimal ideal of W is disjoint from G. Thus there is a
descending sequence of submonoids Mi D M<i D M3 D • • • closing down on G.
Let Ki denote the minimal ideal of M j . If / j is an idempotent of Ki there exist
idempotents fj e Kj for j < i such that /,„ < fj if and only if jo < j . Thus, for
each i = 1,2,3,... there is a chain of idempotents e\ < e\ < el

d < • •• < e\_1 < e\
where e* € Kq. Denote this chain of idempotents by El. Now the sequential
limiting set E°° of a subsequence of {E1} contains an idempotent ê  from each
Ki. Moreover e\ < e-i < • • • < e* < ej+i < • • •. Finally, the identity element 1
being the only idempotent in G also belongs to E°°.

LEMMA 2. Let S be a finitely generated profinite semigroup. Let D be a
D-class such that DIM is finite. Then D is open in J{D).

PROOF. Fix an H-dass of D, say H, and let zi, z j , . . . , xn denote the gen-
erators. Let T be the union of all translates XiHa and HaXi, (where Ha runs
through the ^-classes of D and Xi is a generator), which are contained in the
ideal J{D) \ D. Then T is compact and J(T) is a closed ideal contained in
J(D)\D.

Let V be an open set about H such that V D J{T) = 0, and V n D = H.
Suppose that SHS\H meets V so that for some s,t€S one has sHtnV/0.
Then for w, w', words in the generators, one has wHw' D V / 0 . Let w —
J/iJ/2 • • • Vk and w' = y'lV^- • • y'r where the j/i and yj are generators. Consider
j/jt^J/'i- This is either an #-class H' of D or is contained in the ideal J(T). If
the latter, wHw' C J(T) and could not meet the open set V. If the former,
look at yk-iH'y'^. Proceeding in this way, wHw' is either an #-class of D or is
contained in J{T). In either case one has a contradiction.

LEMMA 3. Let S be a compact semigroup and De a regular D -class of the
idempotent e. If there are non idempotent M-classes in Le arbitrarily close to He

then He is not open in eSe.

PROOF. If xa —• h e He then exae —> ehe = h. Moreover if xa£e and HXa is
not a subgroup it is known (see [1]) that exa £ De. Hence exae is an element of
J(D)\D.

PROOF OF THEOREM A. Suppose 5 is a finitely generated semigroup and
Jo is a subsemigroup of 5. Consider De the P-class of e the identity of To- From
Lemma 2 we know that De has an infinite number of ̂ -classes and thus must
contain an infinite number of ^-classes or an infinite number of ^-classes. In
either case, since each £-class or ^-class of De must also contain an idempotent
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there are infinitely many idempotents in De. Finally if / is another idempotent
of De then there is an isomorphism x i-> a'xa of eSe onto fSf. Here a€ ReC\Lf
and a' be the inverse of a in Rf f~l Le. (See Theorem 2.18 of [3].) Thus, at
each idempotent of De there is a copy of IQ. Finally, the isomorphism is P-class
preserving having as inverse y i-> ay a'.

PROOF OF THEOREM B. For each prime we construct a certain finite semi-
group Ap: Let Cp denote the cyclic group of order p and let B denote the two
element monoid with e as zero. Form the monoid Cp * B, the free product with
the identities amalgamated. Let Jp denote the ideal of Cp * B generated by
all words in which e appears two or more times. Thus Jp is generated by all
elements of the form ege where g ^ 1. Let Ap denote Cp* B modulo the ideal
Jp. Note that Ap is a finite inverse monoid. With an obvious notation the group
of units is Cp and CpeCp is a regular P-class with idempotents geg-1, g €CP.

Form the compact zero dimensional inverse monoid X APi where p< runs over
the primes. Within this monoid form M = cl(<jf, e) the compact submonoid
generated by g = (ffi, 02,9z, • • •) where gt generates CPi and e = (e, e , e , e , . . . ) .

Since X Cp is a monothetic group it appears as G the group of units in M.
Note that the £-class of e is Ge which has only one idempotent. The existence
of /o then follows from Lemma 2. To be explicit, let cjj denote an element of
G such that the first j coordinates are equal to 1 and all other coordinates are
different from 1. Then eg^e is a sequence of idempotents converging to e from
below. Thus, there is a copy of IQ.

However, let x be an element with each coordinate equal to e or 0. Define the
element y by placing an e in each coordinate where it appears as a coordinate
of y and placing eg, (g ^ 1), in those coordinates where 0 is the coordinate of i.
The element y is clearly in M and ye = x. Since x is a typical element of Bu,
the last must be a subsemigroup of M. The semigroup Bu contains a copy of
To since there are sufficiently many continuous homomorphisms of To into B to
separate points.

To see that M is an inverse semigroup note first that the idempotents com-
mute. One need only show that M is regular. Any coordinate of a point of M is
of the form 0, e or geg0 where g, g0 € G. Thus, if x e M the double orbit GxG
certainly contains an idempotent. This idempotent is certainly D equivalent to
x.

To prove the result of Numakura it suffices to show that a compact zero
dimensional semigroup can be embedded, topologically and algebraically, as a
subsemigroup of a cartesian product of finite semigroups. In effect, such a prod-
uct is an inverse limit of the finite products. Moreover any compact subspace
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of an inverse limit is itself an inverse limit of i ts projections to the co-ordinate

spaces.

Thus , it suffices to show t h a t a compact zero dimensional semigroup has

enough finite continuous homomorphisms to separate points , since this allows

one to embed it into the Car tes ian p roduc t of all t he finite images. This will

follow from Lemma 4 for which we recall t he definition of PA-

The syntactic (or principal) congruence is defined as follows: Let A be any

subset of a semigroup S. T h e points x and y of S are congruent , XPAU, if and

only if

uxv G A & uyv G A for all u, v G S1.

(As usual S1 denotes 5 with an identity adjoined if necessary.)
It is clear that PA is needed a congruence in which A is a union of classes.
The role of this congruence in compact zero dimensional semigroups can be

seen from

LEMMA 4. Let S be a compact semigroup and let A be an open and closed
subset of S. Then PA, the syntactic congruence, is both open and closed.

PROOF. TO see that PA is closed suppose that s and t are inequivalent.
Thus, there exist UQ and VQ such that, say, uosvo G A while uotvo & A. By
continuity of multiplication, there exist open sets 0 about s and W about t such
that uo0vo C A and uoWvo QS\A. Then 0 x W C (S x S) \ PA-

To see that PA is open, we may suppose that sa —• s, ta —» t with sa and
ta inequivalent modulo PA- There exist ua and va such that uasava G A and
uatava £ A (or vice versa). Since S is compact, we may arrange things so that
ua —• w, va —> v, sa —• s and ta —* t. Since A is closed usv G A and since S \ A
is closed utv G S \ A. But this says that s and t are inequivalent. Thus, the
complement of PA is closed.

Finally, one notes that a compact semigroup modulo an open and closed
congruence must be finite.

References

[1] L. W. Anderson, R. P. Hunter and R. J. Koch, 'Some results on stability in semigroups',
Trans. Amer. Math. Soc. 17 (1965), 521-529.

[2] L. W. Anderson and R. P. Hunter, 'Homomorphisms having a given //-class as a single
class', J. Austral. Math. Soc. 15 (1973), 7-14.

[3] A. H. Clifford and G. B. Preston, Algebraic theory of semigroups (Math. Surveys, no. 7,
Amer. Math. Soc, 1961).

[4] K. H. Hofmann and P. S. Mostert, Elements of compact semigroups (Merrill, Columbus,
Ohio, 1966).

https://doi.org/10.1017/S1446788700029852 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029852


270 R. P. Hunter [6]

[5] R. P. Hunter, 'Some results on subgroups defined by the Bohr compactification', Semigroup
Forum 26 (1983), 125-137.

[6] K. Numakura, 'Theorems on compact totally disconnected semigroups and lattices', Proc.
Amer. Math. Soc. 8 (1957), 623-626.

Department of Mathematics
Pennsylvania State University
University Park, Pennsylvania 16802
U.S.A.

https://doi.org/10.1017/S1446788700029852 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029852

