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ABSTRACT

Occurrences and developments of claims are modelled as a marked point process. The
individual claim consists of an occurrence time, two covariates, a reporting delay, and
a process describing partial payments and settlement of the claim. Under certain
likelihood assumptions the distribution of the process is described by 14 one-
dimensional components. The modelling is nonparametric Bayesian. The posterior
distribution of the components and the posterior distribution of the outstanding IBNR
and RBNS liabilities are found simultaneously. The method is applied to a portfolio of
accident insurances.
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1. INTRODUCTION

A major issue in non-life insurance is prediction of outstanding liabilities. Out-
standing liabilities are traditionally divided into occurred but not reported (IBNR)
claims and reported but not settled (RBNS) claims. At each time the insurance company
has to predict the outstanding liabilities and provide a reserve correspondingly.

A vast number of articles have been written on the subject. In most models the
data are assumed to be discretized. Arjas (1989), Jewell (1989), Norberg (1993a,b,c)
and Hesselager (1994) model in continuous time. Norberg (1993a) describes occur-
rence and development of the claims by a marked Poisson process. In Norberg
(1993 c) and Kirkegaard (1994) different parametric specifications of the model are
considered, and real insurance data are analyzed. Furthermore, Norberg (1993a)
considers an extended model where the occurrence intensity is assumed to be a sto-
chastic process, and he finds the best linear predictor of the outstanding liabilities.

The present paper deals, by way of a case-study, with a portfolio of accident
insurances. The model used is close to that of Norberg (1993a). The claims process
generating occurrences, covariates and developments of the claims is modelled as a
marked Poisson process. Our approach to estimation and prediction is nonpara-
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metric Bayesian. Adopting the methods of Arjas and Gasbarra (1994), the distribu-
tion governing the process of occurrences, covariates and developments is modelled
by piecewise constant conditional intensities. The intervals on which the intensities
are constant, and the values (levels) of the intensities on the different intervals, are
then viewed as model parameters. In principle, such a parameter space is of infinite
dimension. A prior distribution (a distribution on the parameter space) is attached to
the intensities of the claims process.

Both the model parameters and the outstanding liabilities (RBNS and IBNR
claims) are unknown. The problem is to find the conditional distribution of such
unknowns given the observations. This distribution will be called the posterior; it
covers the conditional distribution of the unknown parameters which by standard
usage is called posterior, and the conditional distribution of future observables
which by standard usage is called predictive distribution. In complex models, it is
often difficult to identify the posterior. The posterior can always be determined up
to proportionality, but it can be difficult to normalize, which is necessary e.g. for the
calculation of means. Recently, a technique called Markov chain Monte Carlo
(MCMC) integration has been used to solve this problem numerically in connection
with large statistical models. A general review of the topic can be found in Smith
and Roberts (1993). The idea is to generate a Markov chain which has the posterior
distribution as its equilibrium distribution. Using such a chain, all quantities of
interest can be estimated/predicted. For example, at each step of the chain a new
value of the RBNS claims is sampled; the empirical distribution of these sampled
RBNS claims then converges towards the predictive (posterior) distribution of the
RBNS claims.

Section 2 below describes the data. A claim is described by an occurrence time,
two covariates, and a development. The development contains a reporting delay, a
settlement delay, and a partial payment process containing the partial payments
made from reporting to the settlement of the claim.

In Section 3 distributional assumptions are made. Claims are assumed to occur in
accordance with a Poisson process, and covariates and developments are modelled
as marks associated with the occurrences. The distribution of both occurrences and
marks is specified by piecewise constant conditional intensities, and a prior dis-
tribution of these intensities is chosen.

Section 4 describes the MCMC algorithm (sampling algorithm). A Markov chain
with the desired properties is generated. The algorithm is close to the one described
by Arjas and Gasbarra (1994).

Section 5 describes the estimations and predictions. Using the Markov chain
generated in the sampling algorithm we approximate both the distribution of the
claims process and the distribution of the outstanding liabilities.

2. THE DATA

The data are a portfolio of accident insurances. In the following we first describe the
general structure of the data, and then go on with a detailed description of the
present data set.
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2.1. Structure of the data

We use the set-up of Norberg (1993a). By a claim we understand a combination of
a time of occurrence, a set of covariates, and a development. Let time 0 be the
initial time, and let r be the time at which IBNR and RBNS liabilities are to be
predicted. Each individual policy is described by the covariates (s, a) denoting sex
and age of the policy holder. For each combination of calendar time / in (0, T] , sex s
in {male, female}, and age a in {1, 2, . . . } , the number of policies covered is
denoted

w(t,s,a).

The function w is called the exposure rate.
Using the notation of Norberg (1993a) the development of a claim can be

described by

where U is the waiting time from occurrence until notification (the reporting delay),
V is the waiting time from notification until final settlement, and 7(v) is the amount
paid v time units after notification. The final claim amount is Y(V), which is called Y
for short. Moreover, when a claim is reported, the occurrence time T and the
covariates sex and age (S, A) are known, age being the age at the time of occurrence.
So the complete description of a claim is

(T,S,A,U,X) where,for short, X= (Y(v))ve m .

The partial payments process X~ (^(v))ve[0Ki consists of a series of lump
payments. An illustration can be found in Norberg (1993a), Figure 2.

Not all claims which occurred before time r are actually observed. At time r we
have only observed the reported claims, i.e. claims with T+ U < r, and for each of
these we only know the development up to time r. This means that for a reported
claim we always know (T, S, A, U). Furthermore we observe,

for a settled claim, (F, (F(v))v e [ 0 F ] ) , and (2.1)

for a reported but not settled claim, (1 ( K<T_ T_ V) = 0,(Y(v))ve [O)T_ T_ yj),

(2.2)

where \(v<T- T- u) = 0 indicates that the claim is not settled. Note that the above
is just the partial payment process, (Y(v))ve<0 y,, censored at calendar time r.

2.2. The present data set

The data are a portfolio of accident insurances, supplied by a Danish insurance
company. There are four different kinds of claims; dental claims, spectacles claims,
disability claims, and death claims. We have chosen to model the dental claims, and
look at leisure time cover only. Claims which occurred between January 1, 1982 and
December 31, 1990 and which were reported before March 3, 1992 are observed and
contained in the data set. Here we have chosen to consider r = 6 years. This means
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that only data recorded by December 31, 1987 are considered. The rest of the data
can be used to check the validity of our model.

Some modifications are needed to give the data the desired structure. The
exposure is only known by years, not days. An estimate of the exposure rate w is
obtained by interpolation. Information about claim developments is almost as we
need them. Some of the claims records do not contain information about the
covariates, and for simplicity such claims records (as well as exposure) were
removed. Furthermore, times of occurrence, notification, partial payments and
settlements are only known by days. However, we shall model occurrences and
developments in continuous time, and view the reported times of occurrence,
notification, etc. as approximations to the true values. Finally, we have chosen to
modify the observed partial payment processes. Looking at a partial payment
process, two payments made during the same day on the same claim are lumped
together and viewed as a single payment. Furthermore, about 2% of the partial
payments were negative. Some of these had a corresponding positive payment on
the same day, and in that case both these payments were disregarded. Negative
payments that did not have a corresponding positive payment never exceeded the
accumulated claim amount paid, and they were set off against the previous positive
payments. For example, a recorded partial payment process containing two pay-
ments, one of 1200 DKK at January 5, 1985 and one of -500 DKK at January 16,
1985, is transformed into a partial payment process containing only one partial
payment of 700 DKK made at January 5, 1985. Lumping payments that are made
during the same day is easy to justify, but to set off negative payments against
previous positive payments requires some comments. We have chosen December
31, 1987 as the time of prediction. However, in our modification of the observed
partial payments processes we included all partial payments made before March 3,
1992. This means that we use negative payments in the future to modify payments in
the past. An insurance company can not do that as it does not know about payments
in the future. Therefore, insurance companies with recorded negative payments will
tend to slightly overestimate the outstanding liabilities if they use our model.

After these modifications, our data contain 434.000 exposure years. There are
2806 reported claims; of these 2191 are settled and 617 unsettled. There are 3718
observed partial payments, and they add up to 10.040.000 DKK.

3. DISTRIBUTIONAL ASSUMPTIONS

We model the distribution of all claims which occur in our portfolio and their full
development. Let

{Ti,S,,Ai,UhXi)i>l (3.1)

denote these claims. It is important to note that many of the claims (3.1) are not
observed completely, and some of them not at all. As mentioned in the previous
section, we only observe the reported claims and their development is censored at
calendar time r.
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A Bayesian model is used. The modelling is done in two steps. First, the
distribution of the claims process (3.1) is described by intensities, henceforth
referred to as components. Our model will have 14 such components. Some describe
the distribution of the occurrences and covariates, some describe the distribution of
the reporting delays, and some the distribution of the partial payments processes.
Then, a prior distribution is chosen. The intensities (components) are assumed to be
piecewise constant. The intervals on which the intensities are constant, and the
values (levels) of the intensities on the different intervals are the parameters. A prior
distribution (a distribution on the parameter space) is attached to the intensities.

The two steps are described below. The first step contains 'likelihood assump-
tions', and here the major restrictions are made. The second step contains 'prior
assumptions'. Since we have only little knowledge at hand, we try to add only little
structure in our choice of prior.

3.1. Likelihood assumptions
At calendar time t there are w(t, s, a) policies with sex s and age a in the portfolio.
We assume that for an individual policy, claims occur according to a Poisson
process with intensity

f(t,s,a), t e (0,r]

(age changing once a year). As a consequence we get that, amalgamating all policies
in our portfolio, the occurrence times and covariates follow a marked Poisson
process with intensity

w(t,s,a)f(t,s,a), (t,s,a) € (0, r] x {male, female} x {1 ,2 , . . . } .

It is assumed that the intensity/can be written as

f(t,s,a)=Mt)f2(s,a). (3.2)

In this way the distribution of occurrences and covariates is described by three
components; a calendar time effect/i, an age effect for males/^(male, •), and an age
effect for females /^(female, •).

The development of a claim contains a reporting delay and a partial payment
process. Following Norberg (1993a), we assume that the distribution of the devel-
opment of a claim depends on the past history of the process only through the
associated occurrence time and covariates. This kind of development distribution is
called position dependent, see Karr (1991). In the following the distribution of the
development of a claim, which occurred at time / and has covariates (s,a), is
described by the distribution of the reporting delay U, Pu\t,s,a, a n d the distribution
Px\u,t,s,a °f the partial payment process X given U — u.

The distribution Pu\t,s,a is assumed to be absolutely continuous (with respect to
the Lebesgue measure). It is modelled by the corresponding hazard rate

Su\t,s,a ( " ) = # ( " ) , (3-3)

which is assumed independent of both the time of occurrence and the covariates;
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that a probability P on 11+ has hazard rate g means that g(u)du = P(dw)/P((M, oo)).
There are many possible extensions. For example, we could assume that Pyi^a has
hazard rate

gu\t,s,a(u) = S\{s,u)g2{s,a)g^{t),

containing 5 components. Both sexes have then their individual reporting delay
component and age component, and then there is a calendar time component. Such
an extension would cause no mathematical problems, but the computational effort
would increase.

The partial payment process X = {YV)V£<OIA arising from a single claim is a
jump process. Let

nv = [T, S,A, U,

be the history of a reported but not settled claim; here v is the time since the claim
was reported. Let dy denote a small interval of length dy around y. The distribution
of X is described using intensities. Let hx(v \ Hv-) be the intensity of settling at
time v without a partial payment at time v, let hsep(v, dy | Hv-) be the intensity of
settling at time v with partial payment of size dy, and finally let hp(v, dy \ Hv-) be
the intensity at time v of having a partial payment of size dy without settlement. We
have to decide how the intensities hse, / j s e p and hp depend of the history Hv- just
before time v.

The following information can be derived from Hv-:

Nv number of partial payments in [0, v),

Tv time since the latest partial payment if any, else Tv = v.

We assume that the intensity of settling only is

the intensity of settling with a partial payment of size dy is

h
h
h (
hsep(

i fW v >0 ,

and the intensity of having a partial payment of size dy without settlement is

As a consequence, partial payments are distributed according to the densities p®ep,
pLp, p® and/>p. These will be described by their corresponding hazard rates denoted
Ap. A*, 4 and qp.

The assumptions (3.4)-(3.6) need some comments. The distribution of the partial
payment process P^a,^^ is assumed to be independent of both the time of occur-
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rence t, the reporting delay u and the covariates (s, a). The intensities of the partial
payment process depend on the past history of the process only through the number
of partial payments (Nv) and the time since latest partial payment if any, else the
time since notification. These assumptions are not crucial, and at this stage the
model has many possible extensions. For example, it could be reasonable to assume
that the size of a partial payment depends on the sizes of the previous partial
payments. And often it is reasonable to assume that the size of a payment also
depends on the time since the latest partial payment (if any). Such extensions can be
done without mathematical difficulties, but the computational effort would increase.
For example, making the size of a partial payment dependent on the cumulated
amount of the previous payments, Y(v—), can be done assuming that the intensities
ql,p and qp have the structure

and

qp(y\Hv-) = qp
a(y)ql

p
b(Y(v-)).

Even the product assumptions made here are not that crucial.

3.2. Prior assumptions
In the previous subsection the distribution of the claims process is described by 14
components (intensities). These are

/ i , /2(male, •), / 2 (female, •), g,

Now a prior distribution is to be chosen. The intensities are assumed piecewise
constant. The intervals on which the intensities are constant, and the values (levels)
of the intensities on the different intervals are the parameters. A prior distribution (a
distribution on the parameter space) is attached to the intensities. The main idea is
taken from Arjas and Gasbarra (1994). Following their notation, we shall denote
unknown parameters by Latin letters and parameters in the prior distributions, the
so-called hyperparameters, by Greek letters.

To begin with we look at the calendar time effect f\. It is assumed to have a
piecewise constant structure

Mt) = Y,hsJ<t<sJ + l)bj, (3.7)

where bj, given (bo,... ,bj-\), follows a lognormal distribution with parameters
(log(A/_i),0^) denoting the mean and the variance in the associated normal dis-
tribution, and 0 = So < S[ < S2 < • • • follows a Poisson process with intensity Ay,.
In short, we write

bj I (bo,... ,* / - 1) = LogN(log(6,-_ i)yA), (S,)f> 0 £ Poisson(A/l). (3.8)
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For uniqueness it is assumed that the initial level bo is 1.
The prior structure (3.7)-(3.8) is essentially used to model all 14 components. A

prior should reflect the knowledge one has about the problem at hand, and it is
therefore reasonable to discuss what kind of prior information the structure (3.7)-
(3.8) will represent. To save notation we drop the subscript f\ on the hyperpara-
meters.

The intensity/i is by (3.7) assumed to be a positive simple function (a piecewise
constant function). The prior distribution of/i should therefore be a distribution on
the space of positive simple functions. The prior (3.8) is a possible choice. The prior
expected number of changes in level per year is A, and the levels have a log-
martingale structure,

where the e's are iid normally distributed with zero mean and variance a2. A small
(large) value of a1 corresponds to a high (low) correlation between the levels at
different times. We consider this choice of prior very vague. It is our experience
that, with a reasonable amount of data, the data will 'speak for themselves'. By
adjusting the values of the hyperparameters we can, however, control the smooth-
ness of the estimate, the estimate being the posterior mean, say. Now, our prior also
has some weaknesses. The prior distribution of/i is not stationary. The median in
the prior distribution of bj is bo, but the mean is ^oexp(/(T2/2). This could be a
problem if we wish to predict the occurrence intensity in the years to come. There
we have no data, and if we choose to predict using the posterior mean, we will
therefore get an increasing estimator. The reader might ask: why not control the
mean by multiplying bj with exp(-7'cr2/2)? If that is done, then it can be shown that
bj converges almost surely to 0, and new difficulties arise. As an alternative prior
one could keep the distributional assumptions about the jump times, but assume that
the levels are distributed as

bj = bQ, where b — Gamma(7,6), and (, are iid Gamma(K, 1/re). (3.9)

From a computational point of view, this prior gives no difficulties. Furthermore, it
is stationary. The assumption is that the intensity varies around a level b. It does not
allow for permanent changes in the intensity. As a consequence, the prior (3.9) adds
more structure to the intensity (smaller variance), and that can be useful when
predicting the future occurrence intensity. We are going to use prior (3.7)-(3.8). The
prior is chosen in an attempt to add only little prior information.

The age effects/2(male, •) and/^(female, •) are modelled as discrete versions of
the construction (3.7)-(3.8). We assume that

/2(male, a) = ^ l ( a 6 {K.+ 1,...,*,+,})C/, a = l , 2 , 3 , . . .

where (c,-) • > { are modelled as (£>,•)• > l above, but with new hyperparameters aj-^
and X/2m, and where (Kj + i - Kj)j > x are assumed to be iid geometrically distributed
with parameter Kf2m. Some readers might again find it reasonable to add the prior
information that young males have a high intensity of making claims. Such
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information is not added here, but our estimates will show that young males are a
high risk group. The age effect for females fi(female, •) is assumed to have the same
structure as the age effect for males, but with new hyperparameters. Furthermore,
we need to specify the prior of the initial levels fi (male, 0) and/2(female, 0). These
are assumed to be lognormally distributed with parameters (/•*o/2m><7o/to) for males
and (fM)f2f, °ofv) f°r females; the /z's controlling the levels and the a's controlling
the variability.

The remaining 11 components (g, AjL,, q®' etc.) are all assumed to have the same
structure (3.7)-(3.8) as the calendar time effect f\, each component having its
individual hyperparameters. The initial levels are assumed to be lognormally dis-
tributed, again with individual hyperparameters for each component.

Finally, unknown parameters associated with different components are assumed
to be independent with respect to the prior. This independence assumption is not
that crucial, and in some branches it is not reasonable. It might be that a large
number of occurrences induces relatively small claims. In that case f\ should be
positively correlated with the q's. Also, it might not be reasonable to assume
independence between the competing risks, /z ,̂, h® and h°p, say. It could be that,
if the intensity of settling only, h®e, is high, then the intensity of settling with a
partial payment, /z°ep, tends to be high too. There are ways of modelling such
dependencies, but for simplicity we have chosen not to consider them here.

3.3. Additional remarks
The distribution of the claims process (3.1) is described by 14 components. These
components are modelled nonparametrically. Some readers might want to add more
structure by using parametric models. For example, the distribution of the partial
payments could be described by mixtures of lognormal distributions. Such a choice
can be motivated easily. We work with dental claims; there are examinations and
there are operations. Operations are more expensive than examinations, and there-
fore it can be argued that the distribution of a partial payment should have two
peaks. The estimates will show that the distributions of the partial payments actually
have two peaks. Also, as discussed previously, it could be useful to add more
structure into the calendar time effect f\ when predicting the occurrence intensity in
the years to come. As time goes (r increases) more and more claims are observed,
and the estimates of all components that are independent of calendar time will be
consistent (the posterior distributions will converge towards unit mass distribu-
tions). However, the uncertainty about the occurrence intensity in the years to come
will remain. Assuming that the occurrence intensity does not change with calendar
time (f\ constant) is a possibility. This is, however, typically not realistic, and
structures like (3.9) could be chosen.

Along the way we have pointed out possible extensions. Different branches of
insurance (motor insurance, fire insurance, etc.) call for different specifications of
the model. The insurance companies will have an idea about which dependencies
the model should allow for, e.g. that a long settlement period typically induces large
partial payments.
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4. MARKOV CHAIN MONTE CARLO INTEGRATION

We wish to approximate the posterior distribution of the unknowns: i.e. parameters
and outstanding liabilities. To do that, Markov chain Monte Carlo (MCMC) inte-
gration is used. A Markov chain, which has the posterior distribution as its equili-
brium distribution, is generated. The algorithm contains an arbitrarily chosen
number of steps where, at each step, new values of the unknown parameters, the
remaining developments of the reported but not settled claims (RBNS) and the
occurrence times, covariates and full developments of the occurred but not reported
claims (IBNR), are sampled. As the number of steps increases, the empirical
distribution of these sampled quantities converges towards the posterior distribution.
Thereby the posterior can be approximated, and based on this approximation the
estimations and predictions are made. By increasing the number of steps we can
make the approximation as exact as we wish.

Figure 1 shows a model graph. Quantities surrounded by squares are known; these
are either hyperparameters chosen by us, or they are data. Quantities surrounded by
ellipses are unknowns; these are either unknown parameters, IBNR claims or RBNS
claims. Arrows indicate dependencies. In each step of the algorithm new values of
all quantities surrounded by circles are sampled.

Before we go on with a description of the algorithm we shall again refer to Smith
and Roberts (1993) for an introduction to MCMC integration.

4.1. Likelihood
In order to solve the Bayesian inferential problem we need the likelihood of the
data, i.e. the distribution of the (observed) data given the unknown parameters.

The observations are the claims reported, including their development up to
calendar time r. We denote these observations

(7V,SM?, £/?,*?),->,. (4.1)

Note that X° is the partial payment process censored at calendar time r, i.e.
T — T- — U° time units after notification; cf. (2,l)-(2,2). In the previous section
the distribution of all claims which had occurred, including their full development
were modelled. The results of Norberg (1993a) imply that, given the unknown
parameters, the process generating the reported claims including their full devel-
opment, even if these go beyond calendar time r, has occurrence intensity

w(t,s,a]f{t,s,a)Pu(T-t). (4.2)

The conditional distribution of the reporting delay of a claim which occurred at time
tis

and the distribution of the corresponding partial payment process is
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/ IBNR claims:
I partial payments

f IBNR claims:
j occurrence times,
I covariates and
V reporting delays

Exposure:
w{t,s,a)

Hyperparameters
controlling

fl,f2,9

C RBNS claims: ^ \
remaining )

partial payments /

Reported claims:
observed

partial payments

Reported claims:
occurrence times,

covariates and
reporting delays

Hyperparameters
controlling

the /i's and g's

FIGURE 1 Model graph

The claims (4.1) occur with intensity (4.2). The distribution of a reporting delay of a
claim which occurred at time t is given by (4.3). The distribution of the observed
part of a partial payment process of a claim, which occurred at time t and was
reported after u time units, is easily found using the 'intensity construction' of the
distribution Px of the partial payment process; see Subsection 3.1. We denote the
distribution

where T — t — u refers to the censoring of the process T — t — u time units after
notification. A likelihood is a density. In the following we use a somewhat sloppy
notation which hopefully does not cause misunderstandings. The likelihood of the
observations (4.1) is
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A(obs) oc Y[f[^,S?,A^Pu(T- T?)^0^-PT-^-^{dX?)

x exp I - V / w{t, s, a)f(t, s, a)Pv(T - t)dt)

V s,a JO j

( r \
exp - V / w(t, s, a)f{t, s, a)P(/(r - /)d?

(4.4)

(4.5)

Here the last part (4.5), dealing with the partial payment processes, has to be written
in more detail. Recall that X° is the observed part of the partial payment process of
the /th claim. The superscript T — T- — U° refers to the censoring of the process at
calendar time r. From the observed partial payment processes {X°)i > , some useful
quantities are derived. First we consider exposure:

W°(v): The number of claims in which the waiting time from notification to first
partial payment or settlement is at least v. Note that W° is majorised by the
number of reported claims and decreasing in v. We have ^ ( 0 ) = 2806, the
number of reported claims.

Wl(v): The number of times any partial payment process is observed, with waiting
time at least v since the latest partial payment. Also Wx is decreasing in v. We
have Wx (0) = 1780. Here Wx is less than the number of reported claims, but in
principle Wx can exceed the number of reported claims since a claim can have
several partial payments.

Then 'events':
(V*se)j > l : Waiting times from notification to settlement without payment. There are

only 9 of these in the data.
(^sep)y> l a n d (^ep)y> i: Waiting times from notification to settlement with one

payment, and the corresponding amounts paid (in this case the payment equals
the total claim amount). There are 1295 of these.
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) • > i an<l (^pJ)i > i • Waiting times from notification to the first partial payment
without settlement, and the corresponding amounts paid. There are 1376 of
these.
j > i: Waiting times from a partial payment to settlement only (no partial
payment at the time of settlement). There are 242 of these.

(VlJp)j> , and {YlJp)J> ,: Waiting times from a partial payment to settlement with
payment, and corresponding amount paid at settlement. There are 643 of these.

(V\j): > , and (Ypj)j > {: Waiting times from a partial payment to the next, when the
latter does not settle the claim, and corresponding amounts. There are 404 of
these.

As an illustration we have in Figure 2 shown two examples of partial payment
processes. The first process settles within time r. There are two payments made, and
no payment is made at the time of settlement. The second process arises from an
RBNS claim. There is one payment made and the partial payment process is
censored (calendar time r is reached). Events and amounts are shown at the figure;
waiting time between jumps are events, and sizes of jumps are amounts. Note that
V is the waiting time from latest payment until censoring, and it only affects the
exposure. The exposure functions are given by

Accumulated
payments

V1'1

V1-1

p

•\rO,l

Time since
notification

Accumulated
payments

!y°<2

P

Time since
notification

FIGURE 2 Examples of observed partial payment processes; x denotes a settlement
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2 v p en F°-2I I 3 v s (0,

and
0 v e (^.ooV

As a function of exposure and events the last part (4.5) of the likelihood can be
written as

n p^-T°-u° <dxo, ^ -r-r h0• jyOJ\ TT 0̂' ( jAh TT /J0(

i > 1 7 > 1 7 > 1 7 > 1
x n A«(K«) n *iep( ̂  n ;

7 > 1 7 > 1 7 > 1

p(v) + ^(v))dv (4.8)

(4.9)

; > i 7 >

7 > 1 7 > 1

where the V, W and Y depend on the observed partial payment processes in an

obvious way. The density pi' say, is given by its corresponding hazard rate cf* .

We have

- £ / ""̂ pOOdA (4.12)
7 > 1 ^° /

The last part (4.5) of the likelihood function can now be substituted with (4.6)-
(4.12).

We have chosen priors along the lines of Arjas and Gasbarra (1994). To copy
their sampling algorithm it is necessary that, in each of the 14 components, the
likelihood is proportional to an expression of the form

where h is a component, and Z does not depend (functionally) on h. This is the case
with all components but g, which unfortunately occurs in the part (4.4) of the
likelihood. A way to deal with this problem is to use data augmentation.

4.2. Missing data
The reason that the likelihood of the (observed) data does not have a tractable shape
is that the occurred but not reported claims (IBNR) are not observed. Here data
augmentation can be used. By sampling and adding to our data the occurrence times
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and covariates of the IBNR claims, the likelihood obtains the desired shape. The
occurrence times and covariates of the IBNR claims are called missing data. The
missing data are denoted

(If, SJ^A^,. (4.13)

Note that reporting delays and partial payment processes of the IBNR claims, and
the remaining development of the RBNS claims, are not included as missing data.
However, we are going to sample them at each step of the algorithm, but they are
not used to sample unknown parameters. They are only used to predict outstanding
liabilities, cf. Figure 1. The results of Norberg (1993 a) imply that, given the
unknown parameters, the missing data (4.13) are independent of the observations
(4.1) and that the missing data are distributed as a marked Poisson process with
intensity

w(t,s,a]f[t,s,a)(l - P [ / ( T - / ) ) , (t,s,a) € (0,r) x {male, female} x {1 ,2 , . . . } .

(4.14)

The likelihood of the missing data only is

A(mis) oc \[f{iy,^,Aj){\ - ?U(T - Tf))
j> i

w(t,s,a)f(t,s,a){l -PU(T - t))dt

[ ' g(u)du
o

x exp (- J2 £ *>{t, s, a)h

Because of conditional independence of the observed and missing data, the like-
lihood of these combined data is the product of the corresponding two likelihood
expressions, i.e.,

A(total) = A(obs) A(mis) (4.15)

i > i j>i •>i j>i

xexpl-^TJ w(t,s,a)fi(t)f2(s,a)dt) (4.16)

( rU° fT—T? \

-12 ' g^du -12 ' g(">du (4-17)
,> i Jo j>iJ° )

i> 1
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where the last part is written in detail in (4.6)-(4.12). Now the likelihood has the
desired shape.

4.3. Sampling algorithm
The sampling algorithm goes as follows: To begin with, initial values of the
unknown parameters are determined. These can either be sampled from the prior
distribution or chosen arbitrarily; asymptotically it does not matter. A general step
of the algorithm contains three substeps:

Substep 1: Sample occurrence times and covariates of the IBNR claims (the missing
data) given the unknown parameters sampled in the previous step of the
algorithm;

Substep 2: Sample the remaining development of the reported but not settled claims
(RBNS) and the full developments of the IBNR claims, given the unknown
parameters sampled in the previous step of the algorithm, and given both
observed and missing data where the latter were sampled in Substep 1;

Substep 3: Sample the unknown parameters given both the data (observations) and
the missing data sampled in Substep 1.

These three substeps are discussed in the following.

4.3.1. Sampling the missing data
The missing data are the occurrence times and covariates of the IBNR claims, see
(4.13). Given the present value of the unknown parameters, sampled in the previous
step of the algorithm, the missing data are distributed as a marked Poisson process
with intensity (4.14). It follows from Norberg (1993a), Theorem 1, that the total
number of IBNR claims is Poisson distributed with mean

^ B N R = [T
w(t,s,a)fl(t)f2(s,a)(l-Pu(r-t))dt,

Jo

and given this total number, the occurrence times and covariates of the IBNR claims
are iid with density

w(t,s,a)Mt)f2(s,a)(\ -PU(T - t))/WiBNR

on (0, T]X {male, female} x { l , 2 , . . . } . The missing data are sampled from this
distribution.

4.3.2. Sample IBNR and RBNS claims
In Substep 2 the unknown parameters sampled earlier by the algorithm, the data, and
the occurrence times and covariates of the IBNR claims sampled in Substep 1 (the
missing data), are all held fixed.

First we sample the reporting delays of the IBNR claims. We already know their
corresponding occurrence times {TJl)j> ,. So, the^'th reporting delay must exceed
r — TJ1, and it is distributed according to the hazard rate g. Now they'th reporting
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delay is sampled from a distribution on (r — TJ1, oo) with piecewise constant hazard
rate g.

The partial payment process of an IBNR claim can be sampled as follows. First
the waiting time to the first 'event' is sampled. This waiting time is distributed
according to the piecewise constant intensity /z|?e + h® + /zp1. Then the type of the
event is sampled. With probability h^e/(h^e + h® + h^) it is a settlement only, with
probability /Jlp/(A^. + /^ep + h°) it is a settlement with partial payment, and with
probability hp/{h^ + h® + h®) it is a partial payment only. If the first event
includes a partial payment then the size of this payment is sampled. If the first
event also includes settlement, then the partial payment has hazard rate q®ep, else it
has hazard rate <7p. If the first event was a partial payment only then the waiting time
to the next event and the type of this event are sampled. Here the components
needed are h^., h^. , /zp, ql and ql. Waiting times and events are sampled until
settlement is reached.

The remaining partial payment process of an RBNS claim is sampled using the
same method as above. For each individual RBNS claim we need to know whether
any previous partial payments have been made, and the time since the latest partial
payment if any, else the time from reporting.

4.3.3. Sampling the unknown parameters
In this substep we condition on the observed data and the missing data sampled in
Substep 1, and sample the unknown parameters ()umP times and levels of the 14
components). The conditional distribution of these unknowns has a density that is
proportional to the likelihood (4.15) of the combined observed and missing data,
multiplied with the prior density of the unknown parameters. Direct sampling from
this distribution is not possible. However, we can identify the conditional distribu-
tions of each of the unknown parameters given the remaining part of the unknown
parameters and given the observed and missing data. From these one-dimensional
distributions the parameters can be sampled one by one. A complete description of
the sampling of the unknown parameters would take quite a few pages. We shall
here give a short overview.

The unknown parameters are the jump times and levels of all the 14 components.
To save notation we shall denote the unknown parameters by X\, Xi, • • • (how they
are ordered will be discussed later). Assume that the present step is the Mi, and
denote by X\~', X\~', . . . the values of the unknown parameters sampled in the
previous step of the algorithm. They are now sampled one by one. As mentioned,
the conditional distribution of each individual unknown parameter, given the
remaining parts of the unknowns and given observed and missing data, is known
(at least up to proportionality). First a new value X\ of X\ is sampled from the
distribution of

X, given 4 - \ 4 - \ . . . , (4.18)

then a new value X\ of Xi is sampled from the distribution of

X2 given X\,AT*"1,..., (4.19)
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and so the algorithm continues. The algorithm is called Gibbs sampling, cf. Smith
and Roberts (1993). Recall that the unknown parameters are the levels and jump
times of the 14 components. When the unknown parameter (anX) is a level, it is not
tractable to sample from the above one-dimensional distributions and then Metro-
polis-Hastings is used. With this modification the algorithm is called a 'variable-at-
a-time Metropolis-Hastings', cf. Chan and Geyer's discussion of the paper by
Tierney (1994).

The method used for doing the sampling (4.18)-(4.19) is taken from Arjas and
Gasbarra (1994). The unknown parameters can be grouped into 14 groups according
to the component they determine (/l,/2(male, -),fi (female, •), g, ...). In Arjas and
Gasbarra (1994) it is shown how the unknown parameters associated with one
component can be sampled. Denote by (bj) and (5,-) the levels and jump times of the
component/i, say. Arjas and Gasbarra order them as

bo,SubuS2,...,

and sample new values as indicated in (4.18)-(4.19) above. Their algorithm carries
over with minor modifications; their levels are correlated gamma distributed, while
our levels are correlated lognormally distributed, and when sampling the levels they
use rejection sampling which corresponds to repeating Metropolis-Hastings until
acceptance is reached. When sampling the unknown parameters associated with an
individual component, we adopt the methods of Arjas and Gasbarra, and thereby the
components are sampled one by one, following the order (4.20). But in which order
should the different components be sampled? According to the prior the 14
components are independent, and by inspection of the likelihood (4.15) of the
combined observed and missing data, we get that according to the conditional
distribution of the unknown parameters given observed and missing data, all
components but f\,fj(male, •) and/2(female, •) are independent. Therefore, except
for the mutual order o f / i , /2(male, •) and /2(female, •), the order in which the
different components are sampled does not play a role. We have chosen to sample
first/i, then/2(male, •), then/2(female, •), and then the remaining 11 components.
Asymptotically, the order does not play any role.

5. RESULTS OF THE ANALYSIS

Suppose we stop the sampling algorithm after n steps. What we then have is the first
n steps of a Markov chain. That the chain is Markov follows from the construction.
Each step of the chain contains sampled values of the unknown

parameters,

occurrence times, covariates and full development of the IBNR
claims, and

remaining development of the RBNS claims.

By construction, the posterior distribution, i.e. the conditional distribution of the
above unknowns given the observations, is invariant for that chain. It is obvious that
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the chain is both irreducible and aperiodic. From Tierney (1994) it now follows that
the chain is (positive) recurrent. We need the chain to be ergodic, and for that a
stronger type of recurrence, called Harris recurrence, is needed. In their discussion
of the paper by Tierney (1994), Chan and Geyer show that a certain type of
algorithm, which they call a 'variable-at-a-time Metropolis-Hastings', is often
Harris recurrent. Their proof carries over to our situation with only minor modifica-
tions. It then follows that our chain is ergodic. A survey of the theory can be found
in Tierney (1994).

Let (Mj)j=i2 denote the chain, let h be a function on the space of possible
values of the unknowns above, and assume that h has finite mean with respect to the
posterior distribution. Then

/ ' S -E p o s t e r i o r /* . (5.1)

As an example, suppose we wish to find (approximate) the posterior distribution of
the size of the outstanding liabilities. The outstanding liabilities are a function of the
claims process (3.1). The liabilities are divided into liabilities arising from the IBNR
claims,

vIBNR _ V^ , v
A — 2-^ (r< ̂  r < r< + u') ''

and liabilities arising from the RBNS claims,

^RBNS _ 22 l(Tj + Ui < T < T, + U, + V,) ( Yi - YJ(T - 7} - Ui)).
i> 1

Let XjBNR and xfBNS denote the values sampled in the yth step of the algorithm
(both are functions of My). By (5.1) we have

' a S p / vIBNR , v*BNS . -. / - ~s
) _^ "poster ior^ +X < X), (5.2)

11 j=\ ' ' *

and thereby the posterior (predictive) distribution of the outstanding liabilities can
be approximated by the left hand side of (5.2). The theory does not give an exact
answer as to how large n should be chosen. However, what one usually does is to
run several independent simulations and use these to evaluate the stability of the
algorithm.

To begin with we have to choose values of the hyperparameters, and the initial
values of the unknown parameters. Recall that each of the 14 components (inten-
sities) can be written as

(Sj<.<sJ+l)l>j. (5.3)

The hyperparameters a\ and //o determine the prior variance and mean of the initial
level (bo) while A (or «) and a2 determine the prior variability of the intensity; cf.
the discussion in Subsection 3.2. Table 1 shows the chosen values of the hyper-
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TABLE 1
HYPERPARAMETERS

/ l

8

hf£
£
if
J

/2(male, •)
/2(female, •)

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.02
0.02
0.02
0.02

0.2
0.2

Mo

- 9
- 3
- 6
- 6
- 3
- 6
- 6
-10
-10
-10
-10

Mo

-11
-11

A"1

70
6
10
10
10
10
10
10
250
250
250
250

-log(l

5
5

a2

0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.04
0.04
0.04
0.04

a2

0.01
0.01

parameters. We shall not try to motivate the choice of all the values. However, a few
comments are needed. The individual values of A and a2 were chosen as follows.
We started out with some arbitrary values. If the estimate (posterior mean of the
intensity) turned out either too ragged or too smooth, then new values of A and a2

were chosen. This way of choosing hyperparameters corresponds to how window
size (bandwidth) is chosen in kernel density estimation, and it is not orthodox
Bayesian in spirit. On the other hand, our choice of the hyperparameters (TQ and /zo
represents prior knowledge. For example, we believe that small payments (from 0 to
25 DKK) are very unlikely, and therefore the values of the q's should start out small.
By choosing /xo small we express the prior knowledge that the intensity (hazard rate)
starts out small, and by choosing al small we express a high degree of belief in this
knowledge. Other values of the hyperparameters were tried out. But, within what we
believe were reasonable values, the hyperparameters had only minor influence on
our estimations/predictions.

The unknown parameters are the jump times and levels (the 5"s and b's, cf. (5.3))
of each of the 14 components. Their initial values can, for example, be sampled
from the prior distribution or be chosen arbitrarily. The theory says that asympto-
tically it does not matter what you do, which was also our experience. However, the
algorithm turned out to be time consuming, and to save iterations we, therefore,
wanted to start the algorithm at a place with high posterior probability. For each
component, the initial values of the jump times were chosen such that areas with
many observations (occurrences, delays or payments) had many jumps. Given the
jump times, the maximum likelihood estimators of the levels were used as their
initial values.
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The algorithm was written in S-Plus and run on a DEC workstation. As men-
tioned, the algorithm turned out to be rather time consuming; about 1 hour for each
100 steps, but much could have been gained by writing parts of the algorithm in C,
say. We did two runs; one of length 1000 and one of length 500. After a few
iterations (40-60) the algorithm seemed stable (we plotted the approximations to the
posterior mean of the individual 14 components, and found that these did not change
much). As approximation to the posterior distribution of all unknowns we use the
empirical distribution of all 1500 realizations.

Each of the 14 components was estimated by its (approximated) posterior mean
(an average of the 1500 iterations). In Figure 3 the estimates of the components f\,
fi and g are shown. From a mathematical point of view, it is easy to calculate
(posterior) pointwise 95% credible intervals for each component, but the computa-
tional effort would increase. Even though we have no credible intervals, we allow
ourselves to comment on the estimates. The occurrence intensity is the product of
the calendar time effect f\ and the age effect f2. Looking a t / i , there seems to be no
obvious seasonal effect. In observation year no. 3 (1984) the occurrence intensity is
high (we have no explanation why), otherwise there are only minor variations.
Looking at f^ it is obvious that there is an age effect. Young males are a high risk
group, while young females are a low risk group. From age 30 and on there are only
minor differences between the sexes. The last graph shows the reporting delay
hazard rate g. Based on the estimate from Figure 3, the 95% quantile of the

Calendar time effect Age effect

2! d

1 2 3 4 5

calendar time in years

Reporting delay hazard rate

30 40 50

age in years

60

50 100 150 200 250

reporting delay in days

FIGURE 3 Posterior mean of / i , fc and g
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Before first payment After first payment

- fill6"

100 200 300 '

time since notification in days

Payment without settlement

100 200 300

time since latest payment in days

400

Payment at time of settlement

0 2000 4000 6000 0 2000 4000 6000

payment in DKK payment In DKK

FIGURE 4 Posterior mean of h's and q's; the q hazard rates are shown by their corresponding densities, the

distribution of the reporting delays is 4 months, and almost 75% of the claims are
reported within a month.

Figure 4 shows the estimates (posterior means) of the h's and q's. The posterior
means of the h's and q's are smooth functions. However, for computational
simplicity the estimates are calculated at a relatively small number of points, and
the estimates may therefore appear a bit ragged. Before the first payment, the
different types of events, settlement with payment, payment only, and settlement
only, occur with intensities h^p, Zip1 and h^, respectively. The intensity of settling
only is almost 0. The intensity of settling with a payment starts out high within the
first couple of days from notification. It then decreases, and it has its maximum a
month after notification. The intensity of having a partial payment only has essen-
tially the same structure. There is 5% probability that no events have occurred
within 6 months from notification. After the first payment, the different types of
events occur with intensities ^ e p , hl and h1^, respectively. Here the probability of
settling only (/z^) seems to be considerable, especially when the time since the latest
payment is long. There is almost 50% probability that no events have occurred
within 6 months from notification, and there is 5% probability that no events have
occurred within 5 years. This means that for a claim with observed previous
payments the expected settling time is long. Payments that are not made at the
time of settlement are distributed with hazard rates q^ and ql The corresponding
densities are called p® and px, respectively. Now, 19% of all observed first-time
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payments not made at the time of settlement were of the size of 178, 185, 186 or 189
DKK. These amounts are probably fees for some standard dental examination. Our
estimate of p°p therefore has a high peak in this area (the peak has been truncated on
the graph), and it is questionable whether it is reasonable to model the distribution
of these payments as a continuous distribution. None of the other types of payment
(first-time payment at time of settlement, or subsequent payments) had such very
frequently occurring sizes. The average first-time payment not made at time of
settlement is approximately 1000 DKK. The distribution of the subsequent pay-
ments not made at time of settlement, pp, has the same shape as pp, except for the
high peak. Based on the estimate from Figure 4, the mean of these payments is
approximately 2100 DKK. The distributions of the payments that are made at the
time of settlement, p®ep and pl

sep, seem to be independent of whether any previous
payments have been made. The distributions have 2 peaks; one at approximately
200 DKK and one at approximately 3500 DKK. The average amounts are approxi-
mately 4200 and 4600 DKK.

Figure 5 contains our main results. Here the (approximated) predictive distribu-
tion of the outstanding liabilities are shown. Recall that the original data set
contained information about occurrence times, covariates and reporting delays, on
all claims which occurred between January 1, 1982 and December 31, 1990 and
which were reported before March 3, 1992. Furthermore, all payments made upon

Number of IBNR claims IBNR liabilities

50 100

number of claims

200000 400000

payment in DKK

600000

RBNS liabilities IBNR and RBNS liabilities

1000000 2000000

payment In DKK

3000000 1000000 2000000

payment In DKK

3000000

FIGURE 5 Predictive distribution of outstanding liabilities; observed accumulated run-off March 3, 1992
(4.2 years after time r) is shown with dotted lines
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these claims before March 3, 1992, were observed. In our estimation/prediction we
only use data that were available at December 31,1987 (r = 6 years after January 1,
1982). The predictive distributions of the outstanding liabilities could therefore have
been calculated at that time. The distributions are calculated using the method
indicated in (5.2). We have the observed run-off for a period of 4.2 years. On the
graphs the accumulated run-offs are shown with dotted vertical lines. There are 68
observed IBNR claims. This corresponds to the 39% quantile of the predictive
distribution of the IBNR claims. The posterior distribution of the reporting delays
has almost no mass for delays exceeding 3 years, and we therefore expect that all
IBNR claims are reported within the 4.2 years. Table 2 shows mean, coefficient of
variation (c.v.) and quantiles, from the predictive distributions of the outstanding
liabilities, cf. Figure 5. The coefficient of variation is 0.22 in the predictive
distribution of the outstanding IBNR liabilities, while it is only 0.09 for the RBNS
liabilities. Intuitively, this is obvious; only the sizes of the RBNS claims are
unknown, while for the IBNR claims also the number of claims is unknown. After
4.2 years the observed run-off for both the IBNR and the RBNS liabilities are below
the 0.2 quantile of the predictive distribution of the outstanding liabilities. That was
to be expected: 10 of the 68 observed IBNR claims were not yet settled after 4.2
years, and therefore there still remained some payments on the IBNR claims. Recall
that RBNS claims with previous payments tend to have a long settlement delay. Of
the observed 617 RBNS claims, 182 were not settled after 4.2 years. Some of these
will settle without further payments, but still, the outstanding liabilities will exceed
the observed 1.910.000 DKK. By combining the sampled values of the IBNR and
the RBNS liabilities and using (5.2), we get an approximation to the predictive
distribution of the outstanding IBNR and RBNS liabilities, shown at the last graph
in Figure 5. The mean and quantiles are found in Table 2.

With the predictive distribution of the outstanding liabilities in hand, the insur-
ance company can decide the size of the reserve to be set aside. Now, there is a
possible extension at this stage. For deciding on an investment policy, it is useful for
the company to know when the payments are due. This calls for the posterior
(predictive) distribution of the run-off over calendar time. As previously, it is no
mathematical problem to approximate this distribution; as a function of the un-

TABLE 2
MEAN, C.V. AND QUANTILES OF THE PREDICTIVE DISTRIBUTIONS OF THE OUTSTANDING LIABILITIES

mean
5% quantile
95% quantile
c.v.
4.2 years run-off
quantile for run-off

IBNR

337.000 DKK
229.000 DKK
468.000 DKK
0.22
246.000 DKK
9%

RBNS

2.090.000 DKK
1.780.000 DKK
2.410.000 DKK
0.09
1.910.000 DKK
18%

IBNR and RBNS

2.430.000 DKK
2.080.000 DKK
2.800.000 DKK
0.09
2.160.000 DKK
11%
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knowns, sampled at each step of the algorithm, we get a value of the run-off over
calendar time, and using these the desired distribution can be approximated.

CLOSING REMARKS

The distribution of the claims process was described by 14 one-dimensional
components which were modelled in a nonparametric Bayesian way. We find the
Bayesian approach very apt. A standard parametric approach to the prediction
problem could be as follows. First, the distribution of the outstanding liabilities is
found as a function of the parameters. Then, estimators (maximum likelihood, say)
of the parameters are found. And finally, a reserve is calculated as a function of the
estimators. Furthermore, the uncertainty about the parameter estimates can be
incorporated into the reserve estimate. With the Bayesian approach the procedure
takes place in a single step. The posterior distribution of unknown parameters and
the predictive distribution of the outstanding liabilities are found simultaneously.
Only the latter distribution is needed to predict the outstanding liabilities, since the
uncertainty about the parameters is a part of the variation (variance) in that
distribution.

We were a little less enthusiastic about the nonparametric modelling; the com-
putations turned out very time consuming, and sometimes additional structure is
needed (cf. the discussion in Subsection 3.3). In the future, we might want to model
some components nonparametrically and some parametrically.

If we were to expand the model, then we would look at the partial payment
processes. Claim handlers sometimes have additional information about the claims
reported. Often, a claim handler forms an idea of the size of the total claim amount,
and such information can be useful when predicting the outstanding payments on
the RBNS claims.
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