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Abstract

In this paper we establish operator quasilinearity properties of some functionals associated with Davis–
Choi–Jensen’s inequality for positive maps and operator convex or concave functions. Applications for
the power function and the logarithm are provided.
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1. Introduction

Let H be a complex Hilbert space and B(H) the Banach algebra of bounded linear
operators acting on H. We denote byBh(H) the semi-space of all self-adjoint operators
in B(H). We denote by B+(H) the convex cone of all positive operators on H and by
B++(H) the convex cone of all positive-definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [15, page 18]), we say
that a map Φ : B(H)→B(K) is linear if it is additive and homogeneous, namely

Φ(λA + µB) = λΦ(A) + µΦ(B)

for any λ, µ ∈ C and A, B ∈ B(H). The linear map Φ : B(H)→ B(K) is positive if
it preserves the operator order, that is, if A ∈ B+(H), then Φ(A) ∈ B+(K). We write
Φ ∈ P[B(H),B(K)]. The linear map Φ : B(H)→ B(K) is normalised if it preserves
the identity operator, that is, Φ(1H) = 1K . We write Φ ∈ PN[B(H),B(K)].

We observe that a positive linear map Φ preserves the order relation, namely

A ≤ B implies Φ(A) ≤ Φ(B),

and preserves the adjoint operation Φ(A∗) = Φ(A)∗. If Φ ∈ PN[B(H),B(K)] and
α1H ≤ A ≤ β1H , then α1K ≤ Φ(A) ≤ β1K .
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If the map Ψ : B(H)→ B(K) is linear, positive and Ψ(1H) ∈ B++(K), then by
putting Φ = Ψ−1/2(1H)ΨΨ−1/2(1H) we see that Φ ∈ PN[B(H),B(K)], that is, it is also
normalised.

A real-valued continuous function f on an interval I is said to be operator convex
(concave) on I if

f ((1 − λ)A + λB) ≤ (≥) (1 − λ) f (A) + λ f (B)

for all λ ∈ [0, 1] and for all self-adjoint operators A, B ∈ B(H) whose spectra are
contained in I.

The classical Davis–Choi–Jensen’s inequality which motivates this article states
that if f : I → R is an operator convex function on the interval I and if Φ ∈

PN[B(H),B(K)], then for any self-adjoint operator A with spectrum contained in I,

f (Φ(A)) ≤ Φ( f (A)) (1.1)

(see [1, Theorem 2.1]).
We observe that if Ψ ∈ P[B(H),B(K)] with Ψ(1H) ∈ B++(K), then by taking

Φ = Ψ−1/2(1H)ΨΨ−1/2(1H) in (1.1),

f (Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H)) ≤ Ψ−1/2(1H)Ψ( f (A))Ψ−1/2(1H).

If we multiply both sides of this inequality by Ψ1/2(1H), we get the following Davis–
Choi–Jensen’s inequality for general positive linear maps:

Ψ1/2(1H) f (Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))Ψ1/2(1H) ≤ Ψ( f (A)). (1.2)

We denote by PI[B(H),B(K)] the convex cone of all linear, positive maps Ψ with
Ψ(1H) ∈ B++(K), that is, Ψ(1H) is a positive invertible operator in K, and define the
functional F : PI[B(H),B(K)]→B(K) by

F f ,A(Ψ) = Ψ1/2(1H) f (Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))Ψ1/2(1H),

where f : I → R is an operator convex (concave) function on the interval I and A is a
self-adjoint operator whose spectrum is contained in I.

In this paper we establish operator quasilinearity properties of some functionals
associated with Davis–Choi–Jensen’s inequality (1.2) for positive maps and operator
convex (concave) functions. We also give applications to the power function and the
logarithm.

2. The main results

Theorem 2.1. Let f : I → R be an operator convex (concave) function on the interval
I and A a self-adjoint operator whose spectrum is contained in I. If Ψ1, Ψ2 ∈

PI[B(H),B(K)], then

F f ,A(Ψ1 + Ψ2) ≤ (≥)F f ,A(Ψ1) + F f ,A(Ψ2), (2.1)

that is, F f ,A is operator subadditive (superadditive) on PI[B(H),B(K)].

https://doi.org/10.1017/S0004972716000769 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000769


324 S. S. Dragomir [3]

Proof. We give the proof for operator convex functions. If Ψ1, Ψ2 ∈ PI[B(H),B(K)],
then Ψ1 + Ψ2 ∈ PI[B(H),B(K)] and

F f ,A(Ψ1 + Ψ2) = (Ψ1 + Ψ2)1/2(1H)
· f ((Ψ1 + Ψ2)−1/2(1H)(Ψ1 + Ψ2)(A)
· (Ψ1 + Ψ2)−1/2(1H))(Ψ1 + Ψ2)1/2(1H),

where by ‘ · ’ we understand the usual operator multiplication. Observe that

(Ψ1 + Ψ2)−1/2(1H)(Ψ1 + Ψ2)(A)(Ψ1 + Ψ2)−1/2(1H)
= (Ψ1 + Ψ2)−1/2(1H)(Ψ1(A) + Ψ2(A))(Ψ1 + Ψ2)−1/2(1H)
= (Ψ1 + Ψ2)−1/2(1H)Ψ1(A)(Ψ1 + Ψ2)−1/2(1H)

+ (Ψ1 + Ψ2)−1/2(1H)Ψ2(A)(Ψ1 + Ψ2)−1/2(1H)
= (Ψ1 + Ψ2)−1/2(1H)Ψ1/2

1 (1H)(Ψ−1/2
1 (1H)Ψ1(A)Ψ−1/2

1 (1H))

·Ψ
1/2
1 (1H)(Ψ1 + Ψ2)−1/2(1H)

+ (Ψ1 + Ψ2)−1/2(1H)Ψ1/2
2 (1H)(Ψ−1/2

2 (1H)Ψ2(A)Ψ−1/2
2 (1H))

·Ψ
1/2
2 (1H)(Ψ1 + Ψ2)−1/2(1H). (2.2)

If we define

V := Ψ
1/2
1 (1H)(Ψ1 + Ψ2)−1/2(1H) and U := Ψ

1/2
2 (1H)(Ψ1 + Ψ2)−1/2(1H),

then

V∗ = (Ψ1 + Ψ2)−1/2(1H)Ψ1/2
1 (1H) and U∗ = (Ψ1 + Ψ2)−1/2(1H)Ψ1/2

2 (1H).

Also,

V∗V + U∗U = (Ψ1 + Ψ2)−1/2(1H)(Ψ1(1H) + Ψ2(1H))(Ψ1 + Ψ2)−1/2(1H)
= (Ψ1 + Ψ2)−1/2(1H)(Ψ1 + Ψ2)(1H)(Ψ1 + Ψ2)−1/2(1H) = 1K ,

and (2.2) may be written as

(Ψ1 + Ψ2)−1/2(1H)(Ψ1 + Ψ2)(A)(Ψ1 + Ψ2)−1/2(1H)
= V∗(Ψ−1/2

1 (1H)Ψ1(A)Ψ−1/2
1 (1H))V + U∗(Ψ−1/2

2 (1H)Ψ2(A)Ψ−1/2
2 (1H))U.

By applying f and using Hansen–Pedersen–Jensen’s inequality for operator convex
functions,

f ((Ψ1 + Ψ2)−1/2(1H)(Ψ1 + Ψ2)(A)(Ψ1 + Ψ2)−1/2(1H))
≤ V∗ f (Ψ−1/2

1 (1H)Ψ1(A)Ψ−1/2
1 (1H))V + U∗ f (Ψ−1/2

2 (1H)Ψ2(A)Ψ−1/2
2 (1H))U

= (Ψ1 + Ψ2)−1/2(1H)Ψ1/2
1 (1H) f (Ψ−1/2

1 (1H)Ψ1(A)Ψ−1/2
1 (1H))

·Ψ
1/2
1 (1H)(Ψ1 + Ψ2)−1/2(1H)

+ (Ψ1 + Ψ2)−1/2(1H)Ψ1/2
2 (1H) f (Ψ−1/2

2 (1H)Ψ2(A)Ψ−1/2
2 (1H))

·Ψ
1/2
2 (1H)(Ψ1 + Ψ2)−1/2(1H). (2.3)
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Finally, by multiplying both sides of (2.3) by (Ψ1 + Ψ2)1/2(1H),

F f ,A(Ψ1 + Ψ2)≤Ψ
1/2
1 (1H) f (Ψ−1/2

1 (1H)Ψ1(A)Ψ−1/2
1 (1H))Ψ1/2

1 (1H)

+ Ψ
1/2
2 (1H) f (Ψ−1/2

2 (1H)Ψ2(A)Ψ−1/2
2 (1H))Ψ1/2

2 (1H)
= F f ,A(Ψ1) + F f ,A(Ψ2),

and the proof is concluded. �

Corollary 2.2. Let f : I → R be an operator convex (concave) function on the
interval I and A a self-adjoint operator whose spectrum is contained in I. If Ψ1,
Ψ2 ∈ PI[B(H),B(K)] and λ ∈ [0, 1], then

F f ,A((1 − λ)Ψ1 + λΨ2) ≤ (≥) (1 − λ)F f ,A(Ψ1) + λF f ,A(Ψ2),

that is, F f ,A is operator convex (concave) on PI[B(H),B(K)].

Proof. Suppose that Ψ1, Ψ2 ∈ PI[B(H),B(K)] and λ ∈ [0, 1]. Then (1 − λ)Ψ1 + λΨ2 ∈

PI[B(H),B(K)] and, by (2.1),

F f ,A((1 − λ)Ψ1 + λΨ2)≤ (≥) F f ,A((1 − λ)Ψ1) + F f ,A(λΨ2)
= (1 − λ)F f ,A(Ψ1) + λF f ,A(Ψ2),

since F f ,A is positive homogeneous on PI[B(H),B(K)], that is,

F f ,A(αΨ) = αF f ,A(Ψ)

for any α > 0 and Ψ ∈ PI[B(H),B(K)]. �

For Ψ1, Ψ2 ∈ PI[B(H),B(K)], we write Ψ2 �I Ψ1 if Ψ2 − Ψ1 ∈ PI[B(H),B(K)].
This means that Ψ2 −Ψ1 is a positive linear functional and Ψ2(1H) −Ψ1(1H) ∈ B++(K).
For examples of such maps, see [6].

Corollary 2.3. Let f : I → [0,∞) be an operator concave function on the interval
I and A a self-adjoint operator whose spectrum is contained in I. If Ψ1, Ψ2 ∈

PI[B(H),B(K)] with Ψ2 �I Ψ1, then

F f ,A(Ψ2) ≥ F f ,A(Ψ1), (2.4)

that is, F f ,A is operator monotonic nondecreasing in the order ‘�I’ ofPI[B(H),B(K)].

Proof. Let Ψ1, Ψ2 ∈ PI[B(H),B(K)] with Ψ2 �I Ψ1. By (2.1),

F f ,A(Ψ2) = F f ,A(Ψ1 + Ψ2 − Ψ1) ≥ F f ,A(Ψ1) + F f ,A(Ψ2 − Ψ1),

implying that
F f ,A(Ψ2) − F f ,A(Ψ1) ≥ F f ,A(Ψ2 − Ψ1).

Since f is positive and Ψ2,1 := Ψ2 − Ψ1 ∈ PI[B(H),B(K)] and since Ψ2,1(1H) =

Ψ2(1H) − Ψ1(1H) ∈ B++(K), it follows that

f (Ψ−1/2
2,1 (1H)Ψ2,1(A)Ψ−1/2

2,1 (1H)) ≥ 0

and, by multiplying both sides by Ψ
1/2
2,1 (1H), we see that F f ,A(Ψ2 − Ψ1) ≥ 0 and the

inequality (2.4) is proved. �
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Corollary 2.4. Let f : I → [0,∞) be an operator concave function on the interval
I and A a self-adjoint operator whose spectrum is contained in I. If Ψ, Υ ∈

PI[B(H),B(K)], t, T > 0 with T > t and TΥ �I Ψ �I tΥ, then

TF f ,A(Υ) ≥ F f ,A(Ψ) ≥ tF f ,A(Υ).

Proof. The result follows from (2.4) on taking first Ψ2 = TΥ, Ψ1 = Ψ and then Ψ2 = Ψ,
Ψ1 = tΥ and by the positive homogeneity of F f ,A. �

We consider now the functional J f ,A : PI[B(H),B(K)]→B(K) defined by

J f ,A(Ψ) := Ψ( f (A)) − F f ,A(Ψ)
= Ψ( f (A)) − Ψ1/2(1H) f (Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))Ψ1/2(1H).

Theorem 2.5. Let f : I → R be an operator convex (concave) function on the interval
I and A a self-adjoint operator whose spectrum is contained in I. Then the functional
J f ,A is positive (negative) on PI[B(H),B(K)], positive homogeneous and concave
(convex) on PI[B(H),B(K)] and superadditive (subadditive) on PI[B(H),B(K)].

Proof. We consider only the operator convex case. The positivity of J f ,A on
PI[B(H),B(K)] is equivalent to Davis–Choi–Jensen’s inequality for general positive
linear maps (1.2). The positive homogeneity follows by the same property of F f ,A and
the definition of J f ,A.

If Ψ1, Ψ2 ∈ PI[B(H),B(K)] and λ ∈ [0, 1], then, by Corollary 2.2,

J f ,A((1 − λ)Ψ1 + λΨ2)
= ((1 − λ)Ψ1 + λΨ2)( f (A)) − F f ,A((1 − λ)Ψ1 + λΨ2)
≥ (1 − λ)Ψ1( f (A)) + λΨ2( f (A)) − (1 − λ)F f ,A(Ψ1) − λF f ,A(Ψ2)
= (1 − λ)[Ψ1( f (A)) − F f ,A(Ψ1)] + λ[Ψ2( f (A)) − F f ,A(Ψ2)]
= (1 − λ)J f ,A(Ψ1) + λJ f ,A(Ψ2),

which proves the operator concavity of J f ,A. The operator superadditivity follows in a
similar way and we omit the details. �

Corollary 2.6. Let f : I → R be an operator convex function on the interval I and A
a self-adjoint operator whose spectrum is contained in I. If Ψ, Υ ∈ PI[B(H),B(K)],
t,T > 0 with T > t and TΥ �I Ψ �I tΥ, then

TJ f ,A(Υ) ≥ J f ,A(Ψ) ≥ tJ f ,A(Υ)

or, equivalently,

T (Υ( f (A)) − F f ,A(Υ)) ≥ Ψ( f (A)) − F f ,A(Ψ) ≥ t(Υ( f (A)) − F f ,A(Υ)) ≥ 0. (2.5)

The inequality (2.5) has been obtained in [6] in an equivalent form for an operator
concave function f and normalised functionals Ψ and Υ.
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Now assume that A is a self-adjoint operator whose spectrum is contained in [m,M]
for some real constants M > m. If f is convex, then for any t ∈ [m,M],

f (t) ≤
(M − t) f (m) + (t − m) f (M)

M − m
. (2.6)

If A is a self-adjoint operator whose spectrum is contained in [m, M], then
m1H ≤ A ≤ M1H and by applying the map Ψ we get mΨ(1H) ≤ Ψ(A) ≤ MΨ(1H) for
Ψ ∈ PI[B(H),B(K)]. This is equivalent to

m1K ≤ Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H) ≤ M1K .

From (2.6) and the continuous functional calculus,

f (Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))≤
1

M − m
[ f (m)(M1K − Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))]

+
1

M − m
[ f (M)(Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H) − m1K)].

Multiplying this inequality on both sides by Ψ1/2(1H) yields

F f ,A(Ψ) ≤ T f ,A(Ψ),

where

T f ,A(Ψ) :=
f (m)(MΨ(1H) − Ψ(A)) + f (M)(Ψ(A) − mΨ(1H))

M − m

is a trapezoidal-type functional. We observe that T f ,A is additive and positive
homogeneous on PI[B(H),B(K)].

We define the functional D f ,A : PI[B(H),B(K)]→B(K) by

D f ,A(Ψ) := T f ,A(Ψ) − F f ,A(Ψ)

=
f (m)(MΨ(1H) − Ψ(A)) + f (M)(Ψ(A) − mΨ(1H))

M − m
−Ψ1/2(1H) f (Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))Ψ1/2(1H).

We observe that if f is convex (concave) on [m,M] and m1H ≤ A ≤ M1H , then

D f ,A(Ψ) ≥ (≤) 0 for any Ψ ∈ PI[B(H),B(K)].

Theorem 2.7. Let f : I → R be an operator convex (concave) function on the interval
[m, M] and A a self-adjoint operator whose spectrum is contained in [m, M]. Then
the functional D f ,A is positive (negative) on PI[B(H),B(K)], positive homogeneous
and operator concave (convex) on PI[B(H), B(K)] and operator superadditive
(subadditive) on PI[B(H),B(K)].

The proof is similar to the proof of Theorem 2.5 and we omit the details.
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Corollary 2.8. Let f : I → R be an operator convex function on the interval I and A
a self-adjoint operator whose spectrum is contained in I. If Ψ, Υ ∈ PI[B(H),B(K)],
t,T > 0 with T > t and TΥ �I Ψ �I tΥ, then

TD f ,A(Υ) ≥ D f ,A(Ψ) ≥ tD f ,A(Υ)

or, equivalently,

T
[ f (m)(MΥ(1H) − Υ(A)) + f (M)(Υ(A) − mΥ(1H))

M − m
− F f ,A(Υ)

]
≥

f (m)(MΨ(1H) − Ψ(A)) + f (M)(Ψ(A) − mΨ(1H))
M − m

− F f ,A(Ψ)

≥ t
[ f (m)(MΥ(1H) − Υ(A)) + f (M)(Υ(A) − mΥ(1H))

M − m
− F f ,A(Υ)

]
≥ 0.

3. Examples for the power function and the logarithm

It is well known that the function fν : [0,∞)→ [0,∞) given by fν(x) = xν for
ν ∈ (0, 1) is operator concave and positive on [0,∞). We consider the functional on
PI[B(H),B(K)] defined by

Fν,A(Ψ) = Ψ1/2(1H)(Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))νΨ1/2(1H),

where A is a positive operator on H.
Assume that C, B are positive invertible operators on a complex Hilbert space

(H, 〈· , · 〉). We use the following notation for operators as in [11]:

C∇νB := (1 − ν)C + νB,

the weighted operator arithmetic mean, and

C]νB := C1/2(C−1/2BC−1/2)νC1/2,

the weighted operator geometric mean, where ν ∈ [0, 1]. When ν = 1
2 , we write C∇B

and C]B for brevity, respectively. The definition of C]νB can be extended to any real
number ν.

Using this notation, we observe that

Fν,A(Ψ) = Ψ(1H)]νΨ(A).

In particular, for ν = 1
2 ,

F1/2,A(Ψ) = Ψ(1H)]Ψ(A).

Using the results from the previous section for the operator concave function fν, we
see that Fν,A is positive, operator concave, operator superadditive, operator monotonic
nondecreasing in the order ‘�I’ and we have the inequality

TΥ(1H)]νΥ(A) ≥ Ψ(1H)]νΨ(A) ≥ tΥ(1H)]νΥ(A),
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where Ψ, Υ ∈ PI[B(H), B(K)], t, T > 0 with T > t and TΥ �I Ψ �I tΥ. The
operator concavity, superadditivity and monotonicity may also be derived from
the corresponding properties of the weighted operator geometric mean (see
[15, page 146]).

If we consider the functional

Jν,A(Ψ) := Ψ(Aν) − Ψ(1H)]νΨ(A),

then Jν,A is negative, operator convex and operator subadditive on PI[B(H),B(K)].
Also, if 0 < m1H ≤ A ≤ M1H , then we can consider the functional

Dν,A(Ψ) :=
mν(MΨ(1H) − Ψ(A)) + Mν(Ψ(A) − mΨ(1H))

M − m
− Ψ(1H)]νΨ(A)

and from the above section we conclude that Dν,A is negative, operator convex and
operator subadditive on PI[B(H),B(K)].

Now consider the function Φp(t) = tp which is operator convex on (0,∞) if either
1 ≤ p ≤ 2 or −1 ≤ p ≤ 0. We consider the functional on PI[B(H),B(K)] defined by

Fp,A(Ψ) = Ψ1/2(1H)(Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))pΨ1/2(1H)
= Ψ(1H)]pΨ(A),

where A is a positive-definite operator on H. In particular,

F2,A(Ψ) = Ψ1/2(1H)(Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))2Ψ1/2(1H)
= Ψ(A)Ψ−1(1H)Ψ(A)

and

F−1,A(Ψ) = Ψ1/2(1H)(Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))−1Ψ1/2(1H)
= Ψ(1H)Ψ−1(A)Ψ(1H).

From the previous section, we can infer that Fp,A is positive, operator convex and
subadditive on PI[B(H),B(K)].

For Ψ1, Ψ2 ∈ PI[B(H),B(K)] , we have by the properties of Fp,A that the scalar-
valued function

ρp,A(Ψ) := ‖Fp,A(Ψ)‖ = ‖Ψ(1H)]pΨ(A)‖

is subadditive and positive homogeneous on PI[B(H),B(K)].
Consider the functional

Jp,A(Ψ) := Ψ(Ap) − Ψ(1H)]pΨ(A).

If A is positive definite and either 1 ≤ p ≤ 2 or −1 ≤ p ≤ 0, then the functional
Jp,A is positive, operator concave, operator superadditive, operator monotonic
nondecreasing in the order ‘�I’ and we have the inequality

T [Υ(Ap) − Υ(1H)]pΥ(A)]≥Ψ(Ap) − Ψ(1H)]pΨ(A)
≥ t[Υ(Ap) − Υ(1H)]pΥ(A)] ≥ 0,
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where Ψ, Υ ∈ PI[B(H),B(K)], t, T > 0 with T > t and TΥ �I Ψ �I tΥ. Also, if
0 < m1H ≤ A ≤ M1H , then the functional

Dp,A(Ψ) :=
mp(MΨ(1H) − Ψ(A)) + Mp(Ψ(A) − mΨ(1H))

M − m
− Ψ(1H)]pΨ(A)

is positive, operator concave, operator superadditive, operator monotonic
nondecreasing in the order ‘�I’ and we have the inequality

T
[mp(MΥ(1H) − Υ(A)) + Mp(Υ(A) − mΥ(1H))

M − m
− Υ(1H)]pΥ(A)

]
≥

mp(MΨ(1H) − Ψ(A)) + Mp(Ψ(A) − mΨ(1H))
M − m

− Ψ(1H)]pΨ(A)

≥ t
[mp(MΥ(1H) − Υ(A)) + Mp(Υ(A) − mΥ(1H))

M − m
− Υ(1H)]pΥ(A)

]
≥ 0,

where Ψ, Υ ∈ PI[B(H),B(K)], t, T > 0 with T > t and TΥ �I Ψ �I tΥ.
It is well known that the function f : (0,∞)→ R, f (t) = ln t is operator concave on

(0,∞). We consider the functional on PI[B(H),B(K)] defined by

Fln,A(Ψ) = Ψ1/2(1H) ln(Ψ−1/2(1H)Ψ(A)Ψ−1/2(1H))Ψ1/2(1H),

where A is a positive-definite operator on H.
Fujii and Kamei [7, 8] defined the relative operator entropy S (A|B), for positive

invertible operators A and B, by

S (A|B) := A1/2(ln A−1/2BA−1/2)A1/2,

a relative version of the operator entropy considered by Nakamura and Umegaki [13].
If B ≥ A and A is positive and invertible, then A−1/2BA−1/2 ≥ I and, by the

continuous functional calculus, ln(A−1/2BA−1/2) ≥ 0, which implies by multiplying
both sides with A1/2 that S (A|B) ≥ 0. For some recent results on relative operator
entropy, see [2–6, 9, 10, 12, 14].

Using the relative operator entropy notation,

Fln,A(Ψ) = S (Ψ(1H)|Ψ(A)),

where A is a positive-definite operator on H and Ψ ∈ PI[B(H),B(K)]. From the
properties established in the previous section applied to the operator concave function
f : (0,∞)→ R , f (t) = ln t, we see that Fln,A is operator concave and operator
superadditive on PI[B(H),B(K)]. These properties may also be derived from the
corresponding properties of the relative operator entropy (see [15, page 153]).

Moreover, if Ψ �I Υ, then

Fln,A(Ψ) − Fln,A(Υ) ≥ Fln,A(Ψ − Υ)

and, in addition, if Ψ(A) + Υ(1H) ≥ Υ(A) + Ψ(1H), then

Fln,A(Ψ) ≥ Fln,A(Υ).
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The function f (t) = − ln t, t > 0, is operator convex. If we consider now the
functional

J− ln,A(Ψ) := S (Ψ(1H)|Ψ(A)) − Ψ(ln(A)),

then from the previous section we can infer that J− ln,A is positive, operator concave,
operator superadditive, operator monotonic nondecreasing in the order ‘�I’ and we
have the inequality

T (S (Υ(1H)|Υ(A)) − Υ(ln(A)))≥ S (Ψ(1H)|Ψ(A)) − Ψ(ln(A))
≥ t(S (Υ(1H)|Υ(A)) − Υ(ln(A))) ≥ 0

provided that Ψ, Υ ∈ PI[B(H),B(K)], t, T > 0 with T > t and TΥ �I Ψ �I tΥ.
Consider also the functional

D− ln,A(Ψ) := S (Ψ(1H)|Ψ(A)) −
ln m(MΨ(1H) − Ψ(A)) + ln M(Ψ(A) − mΨ(1H))

M − m

for Ψ ∈ PI[B(H), B(K)]. Then D− ln,A is positive, operator concave, operator
superadditive, operator monotonic nondecreasing in the order ‘�I’ and we have the
inequality

T
[
S (Υ(1H)|Υ(A)) −

ln m(MΥ(1H) − Υ(A)) + ln M(Υ(A) − mΥ(1H))
M − m

]
≥ S (Ψ(1H)|Ψ(A)) −

ln m(MΨ(1H) − Ψ(A)) + ln M(Ψ(A) − mΨ(1H))
M − m

≥ t
[
S (Υ(1H)|Υ(A)) −

ln m(MΥ(1H) − Υ(A)) + ln M(Υ(A) − mΥ(1H))
M − m

]
≥ 0

provided that Ψ, Υ ∈ PI[B(H),B(K)], t, T > 0 with T > t and TΥ �I Ψ �I tΥ.
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