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On the unramified spectrum of spherical varieties over

p-adic fields

Yiannis Sakellaridis

Abstract

The description of irreducible representations of a groupG can be seen as a problem in har-
monic analysis; namely, decomposing a suitable space of functions on G into irreducibles
for the action of G×G by left and right multiplication. For a split p-adic reductive group
G over a local non-archimedean field, unramified irreducible smooth representations are in
bijection with semisimple conjugacy classes in the ‘Langlands dual’ group. We generalize
this description to an arbitrary spherical variety X of G as follows. Irreducible unramified
quotients of the space C∞

c (X) are in natural ‘almost bijection’ with a number of copies of
A∗
X/WX , the quotient of a complex torus by the ‘little Weyl group’ of X. This leads to a

description of the Hecke module of unramified vectors (a weak analog of geometric results
of Gaitsgory and Nadler), and an understanding of the phenomenon that representations
‘distinguished’ by certain subgroups are functorial lifts. In the course of the proof, ratio-
nality properties of spherical varieties are examined and a new interpretation is given for
the action, defined by Knop, of the Weyl group on the set of Borel orbits.
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1. Introduction

1.1 Motivation

Let G be a split reductive linear algebraic group over a local non-archimedean field k in characteristic
zero. A k-variety X with a k-action1 of G is called spherical if the Borel subgroup B of G has an
open orbit2 X̊ on X. This includes, but is not limited to, symmetric and horospherical varieties
(these are homogeneous spaces whose isotropy groups are, respectively, equal to the subgroup of
points fixed by an involution of G or containing a maximal unipotent subgroup U). The group G
itself can be considered as a spherical variety under the action of G×G on the left and right, and
in fact many well-known theorems for algebraic groups can be seen as special cases of more general
theorems for spherical varieties under this perspective (e.g. [Kno94b]).3

The importance of the open orbit condition becomes apparent in the following:

Theorem (Vinberg and Kimel’feld [VK78]). Let X be a quasi-affine G-variety over an algebraically
closed field k. The space k[X] of regular functions on X, considered as a representation of G by
right translations, is multiplicity-free if and only if X is spherical.

Hence, if X = H\G is quasi-affine (which, as we discuss in § 2.1, can be assumed without serious
loss of generality), the above theorem states that X is spherical if and only if (G,H) is a Gel’fand
pair in the category of algebraic representations.

1Our convention is that the action of the group is on the right.
2It is enough to assume that there exists an open Borel orbit over the algebraic closure; we show later that it then
has a point over k.
3Notice, though, that one usually makes use of a theorem for G in order to prove its generalization to an arbitrary
spherical variety; this is the case in our present work, too.
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One goal of the present work is to examine to what extent a similar result is true in the category of
smooth representations of p-adic groups and, more generally, to describe (part of) the representations
contained in the spectrum of a spherical variety over a p-adic field. More precisely, we consider the
unramified component of C∞

c (X), the representation of G = G(k) on the space of smooth, compactly
supported functions on X = (H\G)(k), and provide a description of the (generic) irreducible
quotients of this representation. Equivalently, this amounts to a description of embeddings π ↪→
C∞(X), for π an irreducible unramified representation in general position or, in the simple case
where X = H\G, to a description of the space of H-invariant functionals on π. If H contains the
unipotent radical UP of a parabolic, and Ψ is an unramified character of UP normalized by H, then
we also consider sections of the corresponding line bundle LΨ over H\G (for instance, the Whittaker
model); for simplicity we mostly ignore this case in the introduction and refer the reader to § 5.4.

The description itself leads to a fascinating picture, in which a ‘dual group’ ĜX , a reductive
subgroup of the ‘Langlands dual’ group of G, seems to play a role in parametrizing the irreducible
representations appearing in the spectrum of X. This dual group is implicit in the purely algebro-
geometric work of Knop [Kno96], it has appeared in recent work of Gaitsgory and Nadler [GN04,
GN06] in the context of the geometric Langlands program, it appears in our present work on the
unramified spectrum and conforms to the philosophy established by the deep work of several people
on particular cases, in both the local and automorphic settings. (More details are given below.) It
is natural to ask to what extent and in precisely what fashion it plays a role in describing the whole
spectrum of X.

Spherical varieties are ubiquitous in the theory of automorphic forms, although their applications
there have never been examined in this generality. Providing candidates for Gel’fand pairs (but even,
sometimes, when the Gel’fand condition fails), spherical varieties play an essential role in the theory
of integral representations of L-functions [GPR87, Pia75], in the relative trace formula [Jac97, Lap06]
and other areas such as explicit computations of arithmetic interest [Cas80, Hir99, Off04].

On the other hand, the theory of spherical varieties has been greatly developed from the algebro-
geometric point of view in the work of Brion, Knop, Luna, Vinberg, Vust and others. They have
discovered rich geometric and combinatorial structures related to spherical varieties, and these struc-
tures will lend us the dictionary for describing the spectrum. Hence, another goal of the present work
is to initiate a systematic study of the representation theory of spherical varieties by establishing
a connection with these algebraic structures. This allows us to replace explicit, hands-on methods
such as double coset decompositions with more elegant methods and leads to the general picture to
which we have alluded above. In the course of establishing this connection, we have had to examine
several rationality properties of the varieties over k, which may be of independent interest.

In the rest of the introduction we describe more precisely some of the results and comment on
the methods of proof.

1.2 Parametrization of irreducible quotients

The main phenomenon that the current work reveals is the local analog of a global statement of the
following form, which very often arises in the theory of the relative trace formula and elsewhere: ‘An
automorphic representation π of G is a functorial lift from (a certain other group) G′ if and only
if it is distinguished by (a certain subgroup) H’. Instead of explaining the global notion of being
‘distinguished’, we describe its local analog which is the object of study here: π is distinguished by
H = H(k) if it appears as a quotient of C∞

c (X), the representation of G = G(k) on the space of
smooth, compactly supported functions on X = (H\G)(k).

Recall that irreducible unramified representations of G are in ‘almost bijection’ with semisim-
ple conjugacy classes (�A∗/W ) in the Langlands dual group Ĝ of G and they can be realized as
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(subquotients of) unramified principal series I(χ) = IndG
B(χδ

1
2 ). (Here A∗ is the maximal torus of

the dual group or, equivalently, the complex torus of unramified characters of the Borel subgroup,
and W is the Weyl group; δ is the modular character of the Borel subgroup.) To each spherical
variety X, Brion [Bri90] associates a finite group (the ‘little Weyl group’) WX acting faithfully on
the vector space a∗X,Q := X (X̊)

⊗
ZQ, where X (X̊) denotes the weights of B-semiinvariants (regular

eigenfunctions) on the open orbit. Let us denote by P(X) the standard parabolic {g ∈ G | X̊g = X̊}
and by [W/WP (X)] the canonical set of representatives of minimal length of W/WP (X)-cosets (where
WP (X) is the Weyl group of the Levi of P(X)). An alternative construction by Knop [Kno90, Kno94a]
proves, among other things, that WX ⊂ [W/WP (X)] canonically, and the action of WX on a∗X,Q is
generated by reflections. The complex analog of a∗X,Q is the Lie algebra a∗X := X (X̊)

⊗
Z C of a

subtorus A∗
X ⊂ A∗. We assume throughout (without serious loss of generality, cf. §§ 2.1 and 3.8)

that X is quasi-affine and X̊ (the set of k-points of its open Borel orbit) carries a B-invariant
measure. A simplified version of our main result is (cf. Theorems 4.6.5 and 5.3.2) the follow-
ing:

Theorem 1.2.1. A necessary condition for the existence of a non-zero morphism C∞
c (X) → I(χ)

is that

χ ∈ w(δ−
1
2A∗

X) for some w ∈ [W/WP (X)].

If χ ∈ δ−
1
2A∗

X , then χδ
1
2 is a character of P (X) and almost all unramified irreducible π admitting

a non-zero morphism from C∞
c (X) are isomorphic to IndG

P(X)(χδ
1
2 ) for such a χ.

Moreover, for almost every such π we have

dim Hom(C∞
c (X), π) = (NW(δ−

1
2 A∗

X) : WX) × |H1(k,AX)|,
where AX is the image in B/U of the stabilizer of a generic point on X. (The factor |H1(k,AX)|
is equal to the number of B-orbits on X̊.)

The phrase ‘almost every’ refers to the variety structure of A∗/W and the subspaces under
consideration, and means ‘except for a subvariety of strictly smaller dimension’.

In other words, we describe a natural ‘almost one-to-one correspondence’ between a basis of
irreducible quotients of the ‘unramified’ Bernstein component (cf. § 4.2) (C∞

c (X))ur and |H1(k,AX)|
copies of the complex space δ−

1
2A∗

X/WX . In the phenomenon of ‘distinguished’ lifts that we alluded
to before, A∗

X and WX are the maximal torus and the Weyl group of the ‘Langlands dual’ group
ĜX ⊂ Ĝ, and distinguished unramified representations (and, conjecturally, not only unramified)
should be functorial lifts from some group4 G′ with Ĝ′ = ĜX .

1.3 The Hecke module of unramified vectors
The dual group ĜX has appeared in a more canonical way in the recent work of Gaitsgory and
Nadler [GN04, GN06] in the context of the geometric Langlands program.5 In that work, it is
proven that a certain category of G(o)-equivariant perverse sheaves on (a quasi-global analog of)
the space of k-points on X, where the spherical variety X is now defined over a global complex
curve, o = C[[t]] and k = C((t)), is equivalent to the category of finite-dimensional representations
of ĜX . We prove the following weak analog of their results in the p-adic setting.

4Note, however, that global distinguishedness typically involves an additional condition to local functoriality from G′

at every place, which is usually expressed by the non-vanishing of an L-value. This is a more complicated problem
that will not concern us here.
5The Weyl group of the dual group of Gaitsgory and Nadler has not been identified yet in their work, but it is
conjectured to be equal to WX .
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Theorem 1.3.1. Let K denote a hyperspecial maximal compact subgroup of G. Let HX denote
the quotient of the Hecke algebra H(G,K) � C[A∗]W corresponding to the image of δ−

1
2A∗

X under
A∗ → A∗/W and let KX denote the quotient field of HX .

The space C∞
c (X)K is a finitely generated, torsion-free module for HX .

Moreover, we have C∞
c (X)K ⊗HX

KX � (C(δ−
1
2A∗

X)WX )|H1(k,AX)|.

Note that the invariants A∗
X ,WX ,AX appearing in the theorems above only depend on the

open G-orbit H\G ⊂ X, although the representations considered depend on X itself. The basic
fact leading to this conclusion is that the representation-theoretic content of smaller G-orbits can
be read off from the open orbit; more precisely, certain intertwining operators supported on the
smaller orbits appear as residues of operators on the open orbit (cf. Proposition 4.6.3).

As is usually the case with spherical varieties, one recovers classical results by considering G as
a spherical G×G variety under left and right multiplication; in this case, we recover the (generic)
description of irreducible unramified representations of G by semisimple conjugacy classes in its
Langlands dual group, and the Satake isomorphism (without reproving them, since they are used
throughout).

1.4 Interpretation of Knop’s action
Theorem 1.2.1 comes as a corollary to an analysis that we perform and an interpretation in
the context of the representation theory of p-adic groups that we give to an action, defined by
Knop [Kno95a], of the Weyl group W on the set of Borel orbits on X. (Moreover, the case of a
non-trivial character Ψ on the unipotent radical UP ⊂ H of a parabolic is treated with the help
of Knop’s extension of this action to the non-spherical case.) We recall the definition of this action
in § 2; for now, let wY denote the image of a B-orbit Y under the action of w ∈W . Using standard
‘Mackey theory’ [BZ76, Cas95] we define for every B-orbit of maximal rank Y (for the definition of
rank, cf. § 2.1) a rational family of morphisms, SYχ : C∞

c (X) → I(χ), given by rational continuation

of a suitable integral on Y ; what was denoted by Sχ in the formulation of Theorem 1.2.1 is now SX̊χ .
(Note that, while this form of ‘Mackey theory’ has been used extensively in the past, it has proba-
bly never been applied in this generality, and the technical results that we collect or prove for that
purpose may be of independent interest.) For simplicity, let us assume here that H1(k,AX) = 1.

Recall now that we also have the standard intertwining operators Tw : I(χ) → I(wχ). The heart
of the current work is the proof of the following theorem on the effect of composing the operators
Tw with SYχ .

Theorem 1.4.1. We have Tw ◦SX̊χ �= 0 if and only if w ∈ [W/WP (X)]. In that case, Tw ◦SX̊χ ∼ S
wX̊
wχ ,

where ∼ denotes equality up to a non-zero rational function of χ.

In the case where H1(k,AX ) �= 1, there are several morphisms associated to each B-orbit, and
the theorem still holds for the spaces spanned by these morphisms. Moreover, for w = wα, a simple
reflection, we exhibit explicit bases for these spaces which are mapped to each other by composition
with Tw (cf. Theorem 5.2.1).

1.5 Rationality results
There are several rationality properties of our varieties that need to be established in order to apply
the algebro-geometric theory (developed over an algebraically closed field) to our problems. The
key feature here is that since the group is split and the variety spherical, every B-eigenfunction on
X is (up to a constant) defined over k (Lemma 3.2.1). It is expected that in the non-split case the
situation will be significantly more complicated. We now summarize some of the rationality results
proven in § 3.
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Theorem 1.5.1.

(i) Every B-orbit of maximal rank has a point over k.

(ii) If Y is a B-orbit defined over k, then so is wY, for every w ∈W .

(iii) Every G-orbit is defined and has a point over k.

The rationality properties of the structure of Borel orbits on X that we examine may be of
independent interest. They generalize a portion of work of Helminck and Wang on symmetric
varieties [HW93].

1.6 Endomorphisms

Finally, we discuss a (partly conjectural) ring of endomorphisms of the Hecke module (C∞
c (X))K

which bears a remarkable similarity to the algebra of invariant differential operators on a spherical
variety. For simplicity, assume here that H1(k,AX) = 1. We recall Knop’s generalization of the
Harish-Chandra homomorphism [Kno94b].

Theorem (Knop [Kno94b]). The algebra of invariant differential operators on a spherical variety
X (over an algebraically closed field k of characteristic zero) is commutative and isomorphic to
k[ρ+a∗X ]WX . This generalizes the Harish-Chandra homomorphism for the center z(G) of the universal
enveloping algebra of g (if we regard the group G as a spherical G × G variety) and the following
diagram is commutative.

z(G) �� D(X)G

k[a∗]W �� k[ρ+ a∗X ]WX

Our description of unramified vectors in C∞
c (X) leads easily to a conjectural description of a

commutative subalgebra of their endomorphism algebra as an H(G,K)-module, which should be
naturally isomorphic to C[δ−

1
2A∗

X ]WX , the ring of regular functions on δ−
1
2A∗

X/WX . The precise
statement of the conjecture is as follows:

Conjecture. We call an endomorphism of (C∞
c (X))K that preserves up to a rational multiple the

family of morphisms SX̊χ ‘geometric’. There is a canonical isomorphism (EndH(G,K)C∞
c (X)K)geom �

C[δ−
1
2 A∗

X]WX such that the following diagram commutes.

H(G,K) �� (EndH(G,K)C∞
c (X)K)geom

C[A∗]W �� C[δ−
1
2A∗

X ]WX

In fact, it is easy to prove this conjecture in many cases.

Theorem 1.6.1. The above conjecture is true if:

(i) the unramified spectrum of X is generically multiplicity-free, in which case the geometric
endomorphisms are all of the endomorphisms of (C∞

c (X))K ; or

(ii) the spherical variety X is ‘parabolically induced’ from a spherical variety whose unramified
spectrum is generically multiplicity-free.
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1.7 Some notation

We will be working throughout over fields of characteristic zero. Unless otherwise stated, we denote
by k a local non-archimedean field (by which we mean a locally compact one, hence, with finite
residue field of order q), by o its ring of integers, by � a uniformizing element and by | • | the
standard p-adic absolute value on k. We generally denote by G a reductive group, that is an affine
algebraic group with trivial unipotent radical; in addition, for the whole paper ‘reductive’ will also
mean (geometrically) connected, and the group will be split over the field of definition.

Given a scheme Y over k, we denote by Yk̄ the base change Y×spec k spec k̄. The set of k-points
will be denoted by Y or by Y(k).

We generally fix a Borel subgroup B ⊂ G (with unipotent radical U) and a maximal torus
A ⊂ B (which, of course, will also be identified with the reductive quotient of B). We also fix the
corresponding root system and choice of positive roots. We denote by Gm, Ga the multiplicative
and additive groups, respectively, over k, by N (•) the normalizer of •, by L(•) the Lie algebra of •
and by U• the unipotent radical of a group •. If α is a root of A, Uα will denote the corresponding
one-parameter unipotent subgroup; if α is simple, then Pα will denote the corresponding standard
parabolic subgroup and Lα a Levi subgroup of it. For any root α of A, α̌ will denote the correspond-
ing co-root: Gm → A. We use additive, exponential notation for roots and co-roots; for example, if
α̌ is a co-character into A and χ is an unramified character of A, then eα̌(χ) will denote χ(α̌(�)).

If Y is a B-variety with an open B-orbit, then Y̊ denotes the open B-orbit. Given a B-variety Y,
we denote by k(Y)(B) (respectively k[Y](B)) the set of non-zero B-semiinvariants (eigenfunctions)
on the rational (respectively regular) functions on Y, and by X (Y) the corresponding group of
weights (eigencharacters). Finally, the space of a one-dimensional complex character χ of a group
H is denoted by Cχ.

2. Spherical varieties over algebraically closed fields

2.1 Basic notions

Let G be an algebraic group over an arbitrary field k in characteristic zero. By a G-variety (over k)
we mean a geometrically integral and separated k-scheme of finite type with an algebraic action
of G over k. A G-variety X is called homogeneous if G(k̄) acts transitively on X(k̄); then X
is automatically non-singular. If X has a point over k, its stabilizer Gx is a subgroup over k and
X � Gx\G, the geometric quotient of G by Gx. Conversely, for any closed subgroup H the geometric
quotient H\G is a homogeneous variety under the action of G.

Now, let G be a reductive group over a field k. A normal G-variety X over k (not necessarily
homogeneous) is called spherical if Bk̄ (where Bk̄ is a Borel subgroup of Gk̄) has a Zariski open
orbit on Xk̄. This is equivalent [Bri86, Vin86] to the existence of finitely many Bk̄-orbits. As a
matter of convention, when we say ‘a B-orbit on X’ (or ‘G-orbit’) we mean ‘a Bk̄-orbit on Xk̄’
(respectively, ‘Gk̄-orbit’); then one naturally has to examine questions such as whether a ‘B-orbit’
is defined over k, which will be the object of the next section.

For the whole paper, we assume that X is quasi-affine. This is not a really serious restriction:
by [Bor91, Theorem 5.1], given a subgroup H of G, there exists a finite-dimensional algebraic
representation of G over k in which H is the stabilizer of a line. If H has trivial k-character group
(i.e. a group of homomorphisms H → Gm over k), then this implies that H\G is embedded in the
space of this representation and, hence, is quasi-affine. (Recall [Bor91, Proposition 1.8] that an orbit
of an algebraic group is always locally closed.) Hence, for an arbitrary H, we may replace H by the
kernel H0 of all of its k-characters and consider the quasi-affine variety H0\G, which is spherical
for the (H/H0) × G action.
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From this point until the end of the present section we assume that k is algebraically closed.
Given a B-orbit Y, the group of weights X (Y) of B acting on k(Y) is the character group of
A/AY , where A = B/U and AY is the image modulo U of the stabilizer of any point y ∈ Y. The
rank of X (Y) is called the rank of the orbit Y. If Y is the open orbit, we denote6 AY by AX ;
the corresponding rank is the rank of the spherical variety. The rank of the open orbit is maximal
among all B-orbits, as we explain below.

We recall the classification and properties of spherical subgroups H for PGL2.

Theorem 2.1.1 (A classic). The spherical subgroups H of G = PGL2 over an algebraically closed
field k in characteristic zero are as follows:

• Type G: PGL2; in this case there is a single B-orbit on H\G.

• Type T : a maximal torus T; there are three B-orbits, the open one and two closed orbits of
smaller rank.

• Type N : N (T); there are two B-orbits, the open one and a closed one of smaller rank.

• Type U : S · U, where U is a maximal unipotent subgroup and S ⊂ N (U); there are two
B-orbits, an open and a closed one, both of the same rank.

2.2 Knop’s action
In [Kno95a], Knop defined an action of the Weyl group on the set of Borel orbits on a homogeneous
spherical variety. This action was defined explicitly for simple reflections, and then it was shown
that this description induces an action of the Weyl group (i.e. satisfies the braid relations). For the
simple reflection wα corresponding to a simple root α it is defined as follows.

Let Pα denote the parabolic (of semi-simple rank one) associated to α (for a fixed choice of
maximal torus A ↪→ B) and let Y be a B-orbit; the simple reflection wα acts on the set of B-orbits
contained in the Pα-orbit Y ·Pα. Consider the quotient Pα → PGL2 = Aut(P1) where P1 = B\Pα.
The image of the stabilizer (Pα)y of a point y ∈ Y is a spherical subgroup of PGL2, and according
to the classification above we say that ‘(Y, α) is of type G, T , N or U ’. (As a matter of language, we
also say that ‘α raises Y to Z’ if Z �= Y is the open orbit in YPα.) We define the action according
to the type of that spherical subgroup.

If it is of type G, wα will stabilize the unique B-orbit in the given Pα-orbit. In the case of type T ,
wα stabilizes the open orbit and interchanges the other two. In the case of type N , wα stabilizes
both orbits. Finally, in the case of type U , wα interchanges the two orbits. Since this defines a
right action in our case that the group acts on the right, we modify it to a left action by defining
wY := Yw−1

, where Yw−1
denotes the action of w−1 on Y as defined by Knop; of course, in the

case of simple reflections the description does not change. Note that in every case the action of wα
preserves the rank of the orbit; more precisely, Knop proves the following:

Lemma 2.2.1. Let Y denote the open orbit of YPα, and let Z∗ denote the closed orbits. There
exist the following relations between their character groups.

• Type G: X (Y) ⊂ (X (A))wα .

• Type U : wαX (Z) = X (Y).

• Type T : wαX (Z1) = X (Z2) ⊂ X (Y).

• Type N : wαX (Z) ⊂ X (Y).

6This will be a standard convention in our notation: if Y is a variety with an open B-orbit we will allow ourselves to
use Y in the notation instead of Y̊, whenever this causes no confusion.
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(An exponent on the right denotes ‘invariants’. An exponent on the left denotes the action of
the Weyl group. Owing to our modification of the definition, the lemma is true as stated, with the
left action of W on the characters.) In particular, X (wY) = wX (Y) for every w and the set B00 of
orbits of maximal rank is stable under the action of the Weyl group.

We denote the standard parabolic {g|X̊ · g = X̊} (the elements of G which preserve the open
B-orbit) by P(X). Equivalently, P(X) is the parabolic corresponding to the simple roots α such
that X̊, α is of type G. The Weyl group of its Levi will be denoted by WP (X). The little Weyl
group WX ⊂W of X was mentioned, but not defined, in the introduction. The reader can take the
following as the definition.

Theorem 2.2.2 (Knop). The stabilizer of X̊ under Knop’s action is equal to W(X) := WX �WP (X).
The elements of WX are those of smallest length in their W(X)/WP (X)-coset.

2.3 Parabolically induced spherical varieties

There is an ‘inductive’ process of constructing some spherical subgroups: given a Levi subgroup L
of a parabolic P ⊂ G and a spherical subgroup M of L, we can form the subgroup H = M � UP,
which is a spherical subgroup of G. The structure of the B-orbits of X := H\G, relevant to the
Borel orbits of M\L, has been investigated by Brion [Bri01]. The closure of each orbit Y of X can
be written uniquely as Y′wB for w ∈ [WP \W ], where [WP \W ] denotes the set of representatives of
minimal length for right cosets of WP (the Weyl group of L) and Y′ a Borel orbit of X′ := M\L.
We have X (X̊) = X (X̊′) and WX = WX′ .

2.4 Non-homogeneous spherical varieties

Now we examine spherical varieties X which are not necessarily homogeneous, that is, may have
more than one G-orbit. It is known then [Kno91] that X contains a finite number of G-orbits,
and that each of them is also spherical. Let Y be a G-orbit. To Y one associates [Kno91, § 2] the
cone CY(X) ⊂ Q := HomZ(X (X̊),Q) spanned by the valuations induced by B-stable prime divisors
which contain Y. This cone is non-trivial (more precisely [Kno91, Theorem 3.1], there exists a
bijection between isomorphism classes of ‘simple embeddings’ of H\G and ‘colored cones’) and we
have the following:

Theorem 2.4.1. Let X be a quasi-affine spherical variety, Y a G-orbit and f ∈ k[Y](B). There
exists f ′ ∈ k[X](B) with f ′|Y = f . Hence, the group of weights of B on Y̊ is a subgroup of the weights
of B on X̊. More precisely, X (Y) = CY(X)⊥ = {χ ∈ X (X) | v(χ) = 0 for every v ∈ CY(X)}. In
particular, every non-open G-orbit on X has strictly smaller rank than X itself.

Proof. Cf. [Kno91, Theorem 6.3].

2.5 Non-degeneracy

We recall the notion of a non-degenerate spherical variety [Kno94a, Kno95a, § 6]: the spherical
variety X is called non-degenerate if for every root α appearing in the unipotent radical of P(X)
there exists χ ∈ X (X) such that χα̌ �= 1. This implies that P(X) is the largest parabolic subgroup
P such that every character in X (X) extends to a character of P(X). It is proven in [Kno94a,
Lemma 3.1] that every quasi-affine variety is non-degenerate. We need a variant of this statement
which includes the character groups of smaller B-orbits.

Lemma 2.5.1. Let X be a quasi-affine spherical variety, and let Y be a B-orbit. Let α be a simple
positive root that either does not raise Y (i.e. YPα = Y) or raises Y of type U . Then either (Y, α)
is of type G (i.e. YPα = Y) or there exists χ ∈ X (Y) with 〈χ, α̌〉 �= 0.
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Proof. Assume 〈χ, α̌〉 = 0 for every χ ∈ X (Y). Recall that X (Y) = {χ | χ|AY
= 1}; hence,

α̌(Gm) ⊂ AY . This cannot be the case if Y is the open orbit in YPα and (Y, α) is of type T or N .
Let (Y, α) be of type U ; without loss of generality, since wαX (Y) = X (wαY), Y is raised by α.
Given a point y ∈ Y with α̌(Gm) ⊂ By (such a point must exist since all maximal tori of B are
conjugate inside of B), the Lie algebra of By splits into a sum of eigenspaces of α̌(Gm); if α raises
Y of type U this implies that Uα ⊂ By. Hence, the stabilizer of y in [Lα,Lα] � SL2 (or PGL2) is
a Borel subgroup BSL2 and we obtain an embedding of the complete variety BSL2\SL2 = P1 into
the quasi-affine variety X, a contradiction. Therefore, (Y, α) has to be of type G.

3. Rationality properties

3.1 Homogeneous spaces
The main questions that we examine in this section have to do with whether B- and G-orbits are
defined over a non-algebraically closed field k and to what extent Knop’s action makes sense on
the set of k-rational B-orbits. The results are used in the next sections to examine the unramified
spectrum over p-adic fields. We start by recalling certain classical results: we use the terminology
of [Bor91], according to which a solvable k-group is ‘k-split’ (or simply ‘split’) if it admits a normal
series over k whose successive quotients are k-isomorphic to Gm or Ga (in particular, connected).

Theorem 3.1.1. Let G be an algebraic group and H a solvable algebraic subgroup. Assume that
the maximal reductive quotient of H is k-split.

(i) If X is a homogeneous H-variety, then X is affine and X(k) �= ∅.
(ii) The group G(k) acts transitively on (H\G)(k).

Proof. These are [Bor91, Theorem 15.11 and Corollary 15.7]. Note that in characteristic zero, every
unipotent group is connected and k-split, therefore we only needed to assume that the quotient of
H by its unipotent radical was k-split in order to deduce that H is k-split.

3.2 Rationality of the open Borel orbit
From now on, assume that G is a split reductive group over a field k. This means that it has a
Borel subgroup which is defined over k and k-split. Let X be a spherical G-variety (not necessarily
homogeneous) over k. We assume that X is quasi-affine (cf. § 2.1).

As a generalization of Theorem 3.1.1(i), we prove the following:

Proposition 3.2.1.

(i) Every line of B-eigenfunctions on k̄(X) is defined over k.

(ii) The open B-orbit has a point (in particular, is defined) over k.

The proposition is true in general for any quasi-affine variety X over k with a k-action of a split
solvable group B over k such that B has an open orbit on X.

Proof. The first claim follows from the fact that B is split, hence all weights are defined over k,
hence the (one-dimensional) eigenspaces for B on k̄(X) are Galois invariant and, therefore, defined
over k.

For the second claim, note that there is a non-zero regular B-eigenfunction which vanishes
on the complement of the open B-orbit. Indeed, the space of regular functions which vanish on
the complement is non-zero (because X is quasi-affine) and B-stable. As a representation of B it
decomposes into the direct sum of finite-dimensional components. Let V be such a finite-dimensional
component. The space of U-invariants V U (where U is the unipotent radical of B) is then non-zero,
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and since every finite-dimensional representation of A = B/U is completely reducible, it follows
that there exists a non-zero B-eigenfunction which vanishes on the complement of the open orbit.

Now, it follows from the first claim that this eigenfunction can be assumed to be in k[X]. Hence,
the open orbit is k-open (and, therefore, defined over k); by Theorem 3.1.1(i), the open B-orbit has
a point over k.

Owing to this proposition, the open G-orbit on X is isomorphic to H\G over k, where H is a
closed subgroup over k (cf. § 3.1).

3.3 Rationality of G-orbits
With similar arguments as above we obtain the following:

Proposition 3.3.1. Every G-orbit on X is defined over k. Hence, by Proposition 3.2.1(ii) and the
fact that all G-orbits are spherical, every G-orbit has a k-point on its open B-orbit.

Proof. Let Z be a G-orbit closure and let I ⊂ k̄[X] be the ideal defining it. It is G-stable, hence a
representation of G. It splits into a sum of irreducible finite-dimensional subspaces and every such
subspace is generated by a highest-weight vector, that is, a B-semiinvariant. By the rationality of
those (Proposition 3.2.1(i)), it follows that I is defined over k. Now by Proposition 3.2.1, the open
B-orbit, and hence the open G-orbit in Z are defined over k.

3.4 Splitting in B(k)-orbits
Now we examine the splitting of the k-points of a k-rational B-orbit Y in B = B(k)-orbits.

Lemma 3.4.1. For every k-rational B-orbit Y, the set of B-orbits on Y is naturally a torsor for the
(finite) abelian group ΓY := H1(k,AY ).

Proof. We know already that every k-rational B-orbit has a k-point y. It is known that for k-groups
H ⊂ G the k-orbits of G on (H\G)(k) are parametrized (depending on the choice of an orbit) by
the kernel of H1(k,H) → H1(k,G). Moreover, the first cohomology group of a unipotent group in
characteristic zero is trivial, and so is, by Hilbert’s Theorem 90, the first cohomology group of split
tori. Hence, H1(k,B) is trivial and H1(k,By) = H1(k,AY ). This proves the claim.

Note that by Lemma 2.2.1 and the fact that Knop’s action is transitive on orbits of maximal
rank, all AY , for Y of maximal rank, are W -conjugate to each other and, in particular, the order
of H1(k,AY ) is equal to H1(k,AX) for all of them.

Remark. Again by Hilbert’s Theorem 90, H1(k,AY ) = H1(k, π0(AY )), hence this group is non-
trivial if and only if AY is not connected. Note also that H1(k,AY ) has the following explicit
description: it is equal to the quotient of A′Y by the image of A, where A′Y := A/AY . This can
be seen from the long exact cohomology sequence for 1 → AY → A → A/AY → 1 and Hilbert’s
Theorem 90 again.

3.5 Spherical varieties for SL2

Spherical varieties for SL2 are of dimension at most two. Therefore, homogeneous spherical vari-
eties for SL2 (over an arbitrary field k) belong to the homogeneous varieties classified by Knop
in [Kno95b, Theorem 5.2]; it is easily seen that all of the varieties in [Kno95b] are spherical. We
recall this classification according to the classification of the corresponding homogeneous spaces
over the algebraic closure (Theorem 2.1.1) and examine some basic rationality properties.

3.5.1 Case G. The subgroup H = G = SL2. There is a single B-orbit.
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3.5.2 Case T. The subgroup H = T, a (maximal) torus.
By the equivalence of categories between diagonalizable k-groups and lattices with a Galois

action, isomorphism classes of one-dimensional tori over k are classified by Hom(Gal(k̄/k),Z/2) �
̂(k×/(k×)2).
One way to describe the homogeneous space T\G is as

Q(1, β) := {A ∈ gl2 | tr(A) = 1,det(A) = β},
where β ∈ k and 4β − 1 �= 0, under the adjoint action of SL2.

The space X has, in general, several G-orbits. However, note that we can naturally extend the
action of SL2 to an action of PGL2, and PGL2 acts transitively on X.

We examine the splitting of the open Borel orbit in B-orbits: we have AX = {±1}, and hence
the orbits of B on the open B-orbit are parametrized by k×/(k×)2. (Do not confuse this with the
parametrization of isomorphism classes of tori mentioned above.) However, if we extend the action
to PGL2, then its Borel subgroup acts transitively on X̊ and this will be important later.

Note that if the torus is non-split, it does not embed over k into a Borel subgroup and therefore
the smaller B-orbits do not have a point over k.

3.5.3 Case N. The subgroup H is the normalizer of a maximal torus. It turns out that for all
tori we obtain the same homogeneous variety: indeed, the space N (T)\SL2 can be identified with
the open subset of P(pgl2) defined by 4det(A)− (tr(A))2 �= 0. It can then be seen that for every T,
N (T) appears as a stabilizer of a k-point. Again, the action extends to PGL2. Note also that the
k-points of N (T) coincide with the k-points of T for T non-split. This implies that the PGL2-orbit
of a k-point with stabilizer N (T), for T non-split, is isomorphic as a PGL2-space with T\PGL2.
The splitting of X̊ in B-orbits is parametrized by k×/(k×)4, while if we consider the action of PGL2

and let B̃ denote its Borel subgroup the orbits under B̃ are parametrized by k×/(k×)2 (and the
B-orbits are related to B̃-orbits through the natural map k×/(k×)4 → k×/(k×)2).

3.5.4 Case U. The subgroup H is equal to S · U, where U is a maximal unipotent subgroup
and S ⊂ N (U).

As a G-space, X splits into a disjoint union of spaces isomorphic to SU \G. The k-points of the
open B-orbit may split into several B-orbits. However, because of the Bruhat decomposition over k,
every one of them belongs to a different G-orbit. For the same reason, both B-orbits have k-points.

3.6 Rationality of Knop’s action
Proposition 3.6.1.

(i) If a B-orbit Y is defined (equivalently, has a point) over k, then so is wY for every w ∈W . In
particular, all of the B-orbits of maximal rank are defined over k.

(ii) If a B-orbit Y is raised by a simple root α to a B-orbit Z, and Y is defined over k, then so is
Z. More precisely, if y ∈ Y(k), then y · Pα contains a k-point of Z.

Proof. Consider the Pα-orbit of Y. Dividing by UPα we obtain a spherical variety for Lα, the Levi
of Pα. Further dividing by the connected component of the center Zα of Lα we get a spherical
variety Xα for SL2 (or PGL2). In both steps, the quotient maps are surjective on k-points since
we are dividing by a unipotent group and a split torus, respectively. Therefore, a B-orbit on X has
a point over k if its image in Xα is defined over k. By examining now the SL2-spherical varieties
which were classified above, it follows now that the rationality of Y implies the rationality of wαY.
The open orbit is, by Proposition 3.2.1, defined over k. Moreover, all orbits of maximal rank belong
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to the open G-orbit and are in the W -orbit of the open orbit. This proves the rationality of all orbits
of maximal rank. Finally, the fiber of the quotient map over the image of a point z is acted upon
transitively by (Z0

α/Z
0
α ∩Gz)(k) (these groups being canonically isomorphic for all z ∈ (YPα)(k));

therefore, if y′ · Pα contains a point of Z, for y′ in the same fiber as y, then so does y · Pα.

3.7 The Zariski and Hausdorff topologies
For any topological field k, the k-points of a variety X over k naturally inherit a topology from
that of k. Indeed, since X = Homk-alg(k[X], k) (we assume for simplicity of notation here that X
is affine, the general case can be recovered by covering X by affine neighborhoods), every point
can in particular be viewed as a map from k[X] to k, and therefore the set of points inherits the
compact-open topology from the space of such maps. (With k having its given topology and k[X]
considered discrete.) If the topology on k is locally compact, totally disconnected and Hausdorff,
so will be the induced topology on X. We conveniently refer to that topology as the ‘Hausdorff’
topology.

For a spherical variety, we wish to examine the relation between closures of B-orbits in both
the Zariski and the Hausdorff topology. By definition, essentially, the ‘Hausdorff’ topology is finer
than the Zariski topology, therefore a Zariski-open set is also Hausdorff-open. More precisely, we
have the following:

Lemma 3.7.1. If G is a k-group acting on a k-variety X with a (Zariski) open orbit, and if x ∈ X
belongs to the open orbit, then x ·G is (Hausdorff) open in X.

Proof. The differential g → TxX is surjective, hence the claim.

Does the Hausdorff closure of a B-orbit coincide with the Zariski closure? The following example
shows that this is not the case, at least not in non-homogeneous varieties.

Example 3.7.2. Let X be the subvariety of A2×(A\{0}) defined by the equation: x2−ay2 = 0(a �= 0).
Consider the following action of G = B = G2

m: (x, y, a) · (r, k) = (rk3x, rk2y, k2a). Then the B(k)
orbits are:

• {(x, y, x2/y2) | x, y �= 0};
• {(0, 0, a) | a ∈ (k×)2};
• {(0, 0, a) | a /∈ (k×)2}.

The second and the third taken together form the k-points of the same B-orbit, but only the second
is in the Hausdorff closure of the first.

Contrary to the previous example, for a homogeneous spherical variety we have the following:

Lemma 3.7.3. If X is homogeneous, then any neighborhood of a point y ∈ Y (in the Hausdorff
topology), where Y is a Borel orbit of dimension j < dimX contains k-points belonging to orbits
of dimension j + 1. In particular, every G-orbit contains points of X̊ .

Proof. This is a direct consequence of Proposition 3.6.1(ii): There is a simple root α raising Y, and
y · Pα contains k-points of wαY. By homogeneity, such points can be arbitrarily close to y.

The second claim now follows from the first and the fact that every G-orbit is open in the
Hausdorff topology (Lemma 3.7.1).

Our main object of study are the spaces of locally constant, compactly supported functions on
spherical varieties. We need to decide whether, in the non-homogeneous case, we will allow the
support of our functions to extend beyond the Hausdorff closure of X̊ (the k-points of the open B-
orbit), or whether we will redefine X as the Hausdorff closure of X̊ . For the discussion of the
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next section and the results of § 5 it does not make a difference, since the smaller G-orbits have
smaller rank and the results that we prove are ‘generic’ and are not influenced by the smaller orbits.
However, for the study of unramified vectors in § 6 we require that the support of all functions is
contained in the Hausdorff closure of X̊ . Of course, the Hausdorff closure of X̊ is G-stable.

The above ‘bad’ example will be understood better via the next lemma, which studies the
relationship between B-orbits on the open G-orbit and open B-orbits on the smaller G-orbits.

Lemma 3.7.4. For every G-orbit Z ⊂ X and every k-rational B-orbit closure V containing Z there
is a canonical A-equivariant map of geometric quotients V̊/U → Z̊/U. Correspondingly, there is
a canonical homomorphism of groups H1(k,AV ) → H1(k,AZ) such that the resulting map {B-
orbits on V̊ } → {B-orbits on Z̊} is equivariant. This map admits the following description. Each
B-orbit on V̊ is mapped to the unique B-orbit on Z̊ which is contained in its closure; in particular,
the image of the map corresponds to the B-orbits of Z̊ which belong to the Hausdorff closure of V̊ .

Proof. Recall (Theorem 2.4.1) that every regular B-eigenfunction on Z extends to X (in particular,
to V). In other words, there is an injection X (Z) ↪→ X (V) or, equivalently, AV ⊂ AZ . This induces

ΓV := H1(k,AV ) → ΓZ := H1(k,AZ)

as claimed.
The extension property of eigenfunctions has the following consequence: the restriction k[V] →

k[Z] splits canonically at the level of B-eigenfunctions

k[Z](B) ↪→ k[V](B)

or by passing to quotients
k[Z̊](B) ↪→ k[V̊](B)

which extends by linearity to U-invariants

k[Z̊]U ↪→ k[V̊]U.

Hence, we obtain a canonical morphism V̊/U → Z̊/U, which of course is A-equivariant, and
therefore induces a map between the sets of B-orbits which is compatible with the cohomology
maps described above.

The implication ‘zB ⊂ vB ’ ⇒ ‘vB ∈ V̊ is mapped to zB ∈ Y̊ ’ follows immediately from the
definition of the Hausdorff topology. Indeed, neighborhoods in this topology are determined by the
values attained by regular functions, and if vB is not mapped to zB , then this means that there exist
B-semiinvariants strictly separating vB from zB . To show the converse implication, assume that a
neighborhood N of z does not meet a vB . Then the same is true for every U -translate of N , therefore
we may assume that N is U -invariant. However, a fundamental system of U -invariant neighborhoods
of z is determined by the values of all f ∈ k[V](B); therefore, there exists a B-semiinvariant strictly
separating zB from vB and therefore vB is not mapped to zB .

3.8 Invariant differential forms and measures
Given a linear algebraic group G, its unipotent radical UG carries a (left and right) invariant top
form ω. It is unique up to scalar, and the adjoint (right) action Adg : u �→ g−1ug of G transforms
it by a character d : G → Gm (the ‘modular character’); in other words, Ad∗

g(ω) = d(g)ω. This
character is the sum of all roots of G on the Lie algebra of UG, and it is also equal to the ratio
between a right- and a left-invariant top form on G (which agree at the identity).

The group of isomorphism classes of G-line bundles on a homogeneous variety X = H\G
(over the algebraic closure) is naturally: PicG(X) := X (H) (see [KKV89]). Let Lψ denote the
corresponding line bundle for the character ψ of H; its sections can be identified with global sections
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f of the trivial bundle on G such that f(hg) = ψ(h)f(g) for all h ∈ H, g ∈ G. If ψ is a k-character,
then Lψ is defined over k. There is a non-zero G-invariant global section of L∗

ψ ⊗ Ω (the sheaf of
top-degree differential forms valued in the dual of Lψ) if and only if ψ = dH/dG|H; in particular,
there is a G-invariant top form on X if and only if the modular characters of G and of H agree
on H.

Given a smooth variety X over a local field k, any k-rational top differential form ω on X
gives rise to a positive Borel measure on the topological space of its k-rational points [Wei82]. This
measure will be denoted by |ω|. The complex character δG := |dG| of G = G(k) is equal to the ratio
between right and left Haar measure on G and is also called ‘the modular character’.

We show that without loss of generality we may assume that the k-points of the open orbit X̊ in
our spherical variety X possess a B-invariant measure. For this, we may take X to be homogeneous.

As discussed in § 2.1, we can assume that G = G1 × T over k, where T is a torus and G1 acts
transitively on X: X = H0\G1, where H0 has no k-characters. Then X possesses a G1-invariant
k-rational top form ω. The idea is to replace T, if necessary, by a subtorus.

Let B1 = G1 ∩ B, a Borel subgroup of G1; then B = B1 × T. For the open orbit we have
X̊ = (H∩(B1×T))\(B1×T) (assuming that HB is open). Then the quotient X̊/B1 � (HB1∩T)\T.
Let HT = HB1 ∩T. Then T is a finite quotient over k of T′ ×HT , where T′ is some subtorus and
X is still a spherical G1 ×T′-variety. Let χ be the k-character under which ω transforms under the
action of T. Since HT∩T′ is finite, it follows that |ω| (which is a positive measure on X) is invariant
under (HT ∩ T′)(k). Hence, |ω| varies by a positive (unramified) character of (TH ∩ T′)(k)\T′(k),
and by twisting it by the inverse of that character (which is constant on the orbits of B1) we obtain
a B1 × T ′-invariant measure on X̊ .

4. Mackey theory and intertwining operators

In this section we summarize the method of intertwining operators (cf. [BZ76, Cas95]). It is usually
referred to as ‘Mackey theory’ by analogy to Mackey’s theorem for representations of finite groups.
The finiteness of B-orbits is very important here. We use a method of Igusa to establish the ra-
tionality and other properties of intertwining operators, we examine their poles and we discuss the
precise relationship between intertwining operators constructed analytically and Jacquet modules.

4.1 Unramified principal series

From now on, k will always denote a locally compact non-archimedean local field in characteristic
zero. We work in the abelian category S of smooth representations of G, which means that every
vector has open stabilizer.

An unramified character of a reductive algebraic group A over a p-adic field k is a complex
character of A which is of the form |f1|s1 · · · |fr|sr , where f1, . . . , fr are k-rational algebraic characters
of A (i.e. homomorphisms into Gm), defined over k, the sign | · | denotes the p-adic absolute value
and s1, . . . , sr ∈ C.

The group of unramified characters of A has a natural structure of a complex algebraic torus: if
f1, . . . , fm form a basis for the group of algebraic characters modulo torsion and if
χ = |f1|s1 · · · |fm|sm , then the association χ �→ (q−s1 , . . . , q−sm) ∈ (C×)m, where q is the order of the
residue field of k, defines the structure of a complex torus on the group of unramified characters.

If X = H\G is a homogeneous G-variety over k, an unramified character ψ of H gives rise to a
complex G-line bundle over X, to be denoted by Lψ. If X = H\G, then sections of this line bundle
can be described as complex functions f on G such that f(hg) = ψ(h)f(g) for every h ∈ H, g ∈ G. In
general, choose a normal subgroup H1 ⊂ H such that H1 is in the kernel of all unramified characters
of H and H/H1 is a k-split torus (this is always possible: choose a quotient H/H1 of H/H0, where
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H0 is as in § 2.1, such that X (H/H1)k is isomorphic to the quotient of X (H/H0)k by its torsion),
then sections of Lψ can be described as functions f on (H1\G)(k) such that f(hx) = ψ(h)f(x) for
h ∈ (H/H1)(k). (Recall that the quotient map H1\G → H\G is surjective on k-points.) There is
an L∗

ψ-valued G-invariant measure on X if and only if ψ = δH/δG.
Let B be the Borel subgroup of G, with a maximal torus A ⊂ B; we denote the complex torus of

its unramified characters (considered simultaneously as characters of B via A = B/U) by A∗. This is
the maximal torus in the ‘Langlands dual’ group of G. Co-roots of A are naturally roots of A∗ and,
hence, the expression eα̌(χ) (χ ∈ A∗) makes sense and is equal to χ(eα̌(�)). (This is compatible with
the standard conventions of [Bor79].) Let d (respectively δ) be the algebraic (respectively complex)
modular character of the Borel; hence, d = e2ρ (where ρ is the half-sum of positive roots) and δ = |d|.
Given an unramified character χ of B, we define the unramified principal series I(χ) := IndG

B(χδ
1
2 ).

(Since we are working in the smooth category, IndG
B(χδ

1
2 ) is the space of smooth sections of L

χδ
1
2

over B\G.) We recall its properties. For a hyperspecial maximal compact subgroup K of G, it
contains a unique (up to scalar multiple) vector invariant under K (called ‘unramified’). For generic
χ ∈ A∗, it is irreducible. When we say generic, when talking about points on complex varieties, we
mean ‘everywhere, except possibly on a finite number of divisors’. For generic χ, again, and w ∈W
we have an isomorphism Tw : I(χ) � I(wχ). We recall the construction of the intertwining operator
Tw later. Also, the spaces I(χ) can be identified to each other as vector spaces by considering the
restriction of f ∈ I(χ) to K. If we call this common underlying vector space V , and we have a family
of maps mχ from a set S to I(χ) for χ varying on a subvariety D of A∗, then we say that the family
is regular if for every s ∈ S we have mχ(s) ∈ V ⊗C[D]. Similarly we define the notion of a ‘rational’
family of maps. We write mχ,1 ∼ mχ,2 to denote that mχ,1 = c(χ)mχ,2 for some non-zero rational
function c of χ.

We need to recall more information on the divisors on which the above statements (irreducibility
of I(χ) and isomorphism with I(wχ)) may fail to be true. First, there are the ‘irregular’ characters,
that is, those given by an equation χ = wχ, w ∈ W . Those are precisely the characters belonging
to one of the divisors Rα̌ := {χ | χα̌ = 1}, where α̌ is a co-root. More precisely, the representation
I(χ) may be reducible for χ irregular, and the intertwining operator Tw has a pole on the divisor⋃
α̌>0,wα̌<0Rα̌. Then, there are the divisors Qα̌ (α̌ a co-root) described by the equation χα̌ = q. It

is known that, for such χ, I(χ) is reducible and Tw ceases to be an isomorphism on the divisor:⋃
α̌>0,wα̌<0

(Qα̌ ∪Q−α̌).

Returning to our spherical variety, the complex torus of unramified characters of B supported
by an orbit Y (i.e. generated by complex powers of the modulus of k-rational B-semiinvariants on
Y) will be denoted by A∗

Y . If Y is the open B-orbit on X we denote A∗
Y by A∗

X . (Its Lie algebra is
a∗X = X (X) ⊗Z C.)

4.2 The Bernstein decomposition and center

By the theory of the Bernstein center [Ber84], the category S is the direct sum of categories SP,σ,
indexed by equivalence classes of pairs of data (‘parabolic subgroup’, ‘orbit of irreducible supercusp-
idal representations of its Levi’). Here ‘orbit’ implies the action of the torus of unramified characters
of the Levi subgroup and two such sets of data are equivalent if and only if they are conjugate by
some g ∈ G. The ‘simplest’ of these categories is indexed by the data (‘Borel subgroup’, ‘unram-
ified characters’). It will, by abuse of language, be called the ‘unramified Bernstein component’,
although not all representations belonging to it are unramified (i.e. possess a vector invariant under
a maximal compact subgroup). Given a smooth representation π, its ‘unramified’ direct summand
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πur admits the following equivalent characterizations:

(i) every irreducible subquotient of πur and no irreducible subquotient of its complement is iso-
morphic to a subquotient of some unramified principal series;

(ii) πur is the space generated by the vectors of π which are invariant under the Iwahori subgroup.

Moreover, the center z(S) of S is described in [Ber84]. This is, by definition, the endomorphism
ring of the identity functor; in other words, every element of this ring is a collection of endomor-
phisms, one for each object in the category, such that when applied simultaneously they commute
with all morphisms in the category. The center can also be identified with the convolution ring of all
conjugation-invariant distributions on G whose support becomes compact when they are convolved
with the characteristic measure of any open-compact subgroup.

By the above decomposition, one evidently has z(S) =
∏
P,σ z(SP,σ). Each of the factors in this

product is naturally isomorphic to the space of regular functions on a complex variety (and the
disjoint union of these varieties is called the ‘Bernstein variety’). The center of Sur is naturally
isomorphic to C[A∗]W by mapping each element to the scalar by which it acts on I(χ), for all
χ ∈ A∗. Convolving the corresponding distributions with the characteristic measure of a hyperspecial
maximal compact subgroup K, we obtain an isomorphism of rings between z(Sur) and the ‘spherical
Hecke algebra’ H(G,K) of K-biinvariant measures on G. The fact that H(G,K) � C[A∗]W is the
Satake isomorphism.

4.3 Filtrations
Let X be a locally compact, totally disconnected space with a continuous (right) action of G. Then
the space C∞

c (X) of locally constant, compactly supported complex functions on X furnishes a
smooth representation of G, the ‘right regular representation’, to be denoted by g �→ R(g). The
discussion below applies more generally to the space C∞

c (X,Lψ) of smooth, compactly supported
sections of Lψ, where Lψ is as in § 4.1, but for simplicity we will work with the trivial bundle here
and make a few comments on the general case in § 4.8.

By Frobenius reciprocity,7

HomG(C∞
c (X), I(χ)) = HomB(C∞

c (X),C
χδ

1
2
).

If Y ⊂ X is open and B-stable, and Z = X \ Y , then we have an exact sequence

0 → C∞
c (Y ) → C∞

c (X) → C∞
c (Z) → 0,

which gives rise to an exact sequence of distributions (by definition, the linear dual of C∞
c ):

0 → D(Z) → D(X) → D(Y ) → 0.

By applying the functor of (B,χ−1δ−
1
2 )-equivariance we obtain a sequence on the spaces

D(•)(B,χ−1δ−
1
2 ) = HomB(C∞

c (•),C
χδ

1
2
) (recall that, by definition, the action of g on a distribution

D is given by π∗(g)D(f) = D(π(g−1)f)), but we might lose right exactness:

0 → D(Z)(B,χ
−1δ−

1
2 ) → D(X)(B,χ

−1δ−
1
2 ) → D(Y )(B,χ

−1δ−
1
2 ). (1)

We apply the above in the setting of ‘X is equal to the k-points of our spherical variety X’.
As we remarked above, the Zariski topology is coarser than the induced Hausdorff topology, hence

7The isomorphism asserted by Frobenius reciprocity is given as follows: given a morphism into I(χ), compose with
‘evaluation at 1’ to obtain a functional into C

χδ
1
2
. For the whole paper, we avoid distinguishing between the morphism

and the functional whenever possible, and we use the same letter to denote both.
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the set of k-points of orbits of dimension greater than d is open in the set of k-points of orbits of
dimension at least d. More precisely, we have the following filtration

0 ↪→ C∞
c (X̊) ↪→ C∞

c

( ⋃
dim(Y)�dim(X)−1

Y

)
↪→ · · · ↪→ C∞

c (X)

with successive quotients isomorphic to C∞
c (

⋃
dim(Y)=d Y ) for the appropriate d.

It follows that the dimension of the space of (B,χ−1δ−
1
2 )-equivariant distributions on X is less

than or equal to the sum of the dimensions of (B,χ−1δ−
1
2 )-equivariant distributions on Y , for all

k-rational orbits Y. Part of what we prove below is that, for generic χ, we actually have equality. In
any case, the problem now has been divided into two parts: examine the problem of (B,χ−1δ−

1
2 )-

equivariant distributions on any single B-orbit, and then determine whether these distributions
extend to the whole space.

4.4 Distributions on a single orbit
4.4.1 The case where B acts transitively. Now we examine the problem of (B,χ−1δ−

1
2 )-

equivariant distributions on C∞
c (Y ), where Y = y · B is some orbit of B (not of B). We use

the natural projection C∞
c (B) � C∞

c (yB) = C∞
c (By\B), given by integration on the left over By

with respect to right Haar measure:

p(f)(x) =
∫
By

f(bx) drb, f ∈ C∞
c (B)

in order to pull back such a distribution to B. If we pull back a (B,χ−1δ−
1
2 )-equivariant distribution

to B, we obtain a (B,χ−1δ−
1
2 )-equivariant distribution on B, which has to be χ−1δ−

1
2 times the

right Haar measure, hence equal to χ−1δ
1
2 ·dlb, where dlb denotes left Haar measure. In other words

the distribution is given by

SYχ : φ �→
∫
B
f(b)χ−1δ

1
2 (b) dlb, (2)

where f ∈ C∞
c (B) such that p(f) = φ. This distribution is well defined (i.e. will factor through the

surjection p : C∞
c (B) � C∞

c (By\B)) if and only if

χ−1δ
1
2 |By = δBy , (3)

where δBy is the modular character of By.

Definition. Given a B-orbit Y , the unramified characters satisfying (3) will be called Y -admissible.
They form a complex subvariety of A∗ which will be denoted by AdmY .

As a matter of notation, for Y a B-orbit closure we use the notation AdmY = Adm Y̊ . Note
that two Y -admissible characters χ differ by an element of A∗

Y . Hence, AdmY is a translate of
A∗
Y ; in particular, dimAdmY = rk(Y ). Clearly, AdmY only depends on the B-orbit containing Y .

Moreover, it is immediate that the family of functionals SYχ is regular in χ ∈ AdmY (cf. § 4.1).
We summarize the above discussion as follows:

Lemma 4.4.2. For each B-orbit Y we have a (unique up to scalar) B-morphism C∞
c (Y ) → C

χδ
1
2

if

and only χ ∈ AdmY . These morphisms are given as specializations of a regular family SYχ , which is
uniquely defined up to a non-vanishing regular function on AdmY .

(Recall that a non-vanishing regular function on a group variety is always the multiple of a
character.)
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Remark. All of the rational families of distributions/intertwining operators to be defined in this
paper are uniquely defined up to a non-vanishing regular function on the corresponding parametriz-
ing variety. This dependence is typically originating from a choice of base point which is used in
order to write down certain integral expressions and choices of measures, etc. The relations to be
established between such distributions are always of the form S1 ∼ S2 (cf. § 4.1), and whenever we
write S1 = S2 it should be interpreted as ‘equality up to an invertible regular function of χ’, which
is slightly stronger than S1 ∼ S2. In fact, for the results of this paper the reader might as well ignore
the normalization up to a regular function, and consider the morphisms as if they were uniquely
defined up to a rational function.

In case that the orbit Y admits a B-invariant measure, or equivalently that δ|By = δBy , the
condition of admissibility takes the nicer form

χδ
1
2 ∈ A∗

Y

and the distribution can be expressed as an integral on Y :

SYχ : φ �→
∫
Y
φ(y)|f1(y)|s1 · · · |fm(y)|sm dy, (4)

where f1, . . . , fm are a basis for the k-rational semiinvariants of B on Y (modulo torsion) and
s1, . . . , sm ∈ C such that |f1|s1 · · · |fm|sm is of weight χ−1δ−

1
2 . More generally, even if there is no

B-invariant measure there will always be a measure dy that varies by some unramified character
ψ of B (since every unramified character of By can be extended to a character of B) and then the
same expression will give SYχ except that the weight of |f1|s1 · · · |fm|sm should be ψ · χ−1δ−

1
2 .

4.4.3 Non-transitive action of B and weighted distributions. Let Y be a k-rational B-orbit and
denote by SYχ the vector space of B-morphisms C∞

c (Y ) → C
χδ

1
2
. It admits a basis consisting of

SYi
χ , where Yi, i = 1, . . . , n ranges over the distinct B-orbits; however, this turns out not to be the

correct basis to use. In this section we define certain bases which will become useful later.

The first basis which we will define is quite natural. Fix a point y ∈ Y thus obtaining an iden-
tification Y/U � A′Y := A/AY . Note that we can choose A ⊂ B such that AY ⊂ By, hence
making the torus A′Y act on Y ‘on the left’; the resulting action depends on the choices made,
but the choices will not have any effect on our definitions except (as usual) up to non-vanishing
regular functions of χ. We may form a basis for SYχ indexed by the set of complex characters χ̃ of
A′Y which coincide with χ on the image8 of A. The corresponding basis element Sχ̃ is defined in
a similar way as in the previous section. To be precise, SYχ̃ can be described as the composition of
two morphisms. The first is integration over the horocycles on Y (with some abuse of notation9 and
depending, again, up to non-zero rational functions of χ̃, on the choices of invariant measure
and of base point):

C∞
c (Y ) → C∞

c (A′Y ,Lδδ−1
By

) : f(•) =
∫
Uy\U

φ(y · u•) du (5)

8There is a slight abuse of language here since χ is not a character of A/AY but, rather, satisfies (3). For convenience,
we say that ‘χ̃ is a character of A′Y which extends χ’ to mean that χ̃ must also satisfy (3).
9The abuse has to do with the fact that A′Y does not act on the right. The proper interpretation of the integral is as
follows. First, recall the definition of L

δδ−1
By

from § 4.1. If A1= the kernel of the algebraic character dd−1
By

in AY , then f

is a function in Ind
(A/A1)(k)

(AY/A1)(k)
(δδ−1

By
). Secondly, for every a ∈ (AY /A1)(k) pick a preimage ā ∈ A(k̄); then conjugation

by ā carries a U-invariant top form on Uy\U to a U-invariant top form on Uy·a\U, necessarily k-rational. These
forms give rise to measures on the sets of k-points, and with respect to those measures: f(a) =

∫
Uy·a\U

φ(y · a · u) du.
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followed by integration over the torus:∫
A′Y

f(a)χ̃−1δ−
1
2 (a) da. (6)

(Here note that by the admissibility condition (3) the product f(a)χ̃−1δ−
1
2 (a) lies in the trivial line

bundle over A′Y .)
While this basis is very natural, unfortunately in certain cases one needs to use yet another.

While the SYi
χ are distributions supported on a single B-orbit, and the SYχ̃ are weighted averages

of the former as they range over all B-orbits on Y , the new basis will be somewhere between the
two: it will consist of weighted averages over some of the SYi

χ . Since we only use such a basis in
a very specific case, we give the definition only for that case. At this point, the definition will appear
very unmotivated, and the reader should skip it at first reading.

The definition depends not only on Y but also on some simple root α such that (Y, α) is of typeN
with Y being the open orbit in YPα. We want to define first a subgroup A′Y

α of A′Y . We consider the
quotient map YPα → N (T)\PGL2 and let B2 denote the corresponding Borel subgroup of PGL2.
Then we have a map from B-orbits on Y to B2-orbits on the image of Y , corresponding to the map

H1(k,AY ) → H1(k,AY,2), (7)

where AY,2 is the image of AY modulo the center of Lα. Recall that H1(k,AY ) is a quotient of
A′Y ; now we define A′Y

α to be the preimage in A′Y of the kernel of (7).
Now for every character χ̃ of A′Y

α extending χ, and for every orbit ζ of A′Y
α on Y/U (the latter

being naturally a torsor of A′Y ) we can define a morphism SYχ̃,ζ as above, except that we restrict the
last integration (6) to the chosen orbit of SYχ̃,ζ . In other words, we take y ∈ Y with (ymodU) ∈ ζ in
order to define the identification Y/U � A′Y and repeat the first step (5) while replacing (6) by∫

A′Y
α

f(a)χ̃−1δ−
1
2 (a) da. (8)

Again, our regular family of morphisms is only well-defined up to a non-vanishing regular func-
tion. The new basis for SYχ is indexed by pairs (χ̃, ζ) where χ̃ is an extension of χ to A′Y

α and ζ

denotes an orbit of A′Y
α on Y/U . Note that in the notation we suppress the dependence of this basis

definition on α; however, this dependence is certainly an unpleasant feature which complicates the
final results.

4.4.4 Comparison between admissible characters for different orbits. Based on Lemma 2.2.1,
we can describe the relations between the varieties of admissible characters on the Borel orbits of a
Pα-orbit.

• Case G: we have χα̌ = q for every χ ∈ AdmY . (Recall that α denotes the positive root in the
Levi of Pα.)

• Case U: notice that the stabilizer Bz of the closed orbit has unipotent radical of dimension one

larger than the stabilizer By of the open orbit. In fact, δ
1
2 |Bz = eα · wαδ

1
2
By

and δBz = wαδBy

(as characters on AZ = wαAY ), and this implies that AdmwαY = wαAdmY .
• Case T: if Y denotes the open orbit and Z∗ the closed orbits (in the case of a split torus,

for we have seen that if T is non-split, then the closed orbits are not defined over k), then
AdmY ⊃ AdmZ∗ . Note, however, that for the small orbits AdmZ1 = wαAdmZ2 does not hold;
the correct relation is δ−

1
2 AdmZ1 = wα(δ−

1
2 AdmZ2).

• Case N: if Y denotes the open orbit and Z the closed orbit, then AdmY ⊃ AdmZ and δ−
1
2 AdmZ

is wα-invariant.
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Remark. Note that in case T we do not have wα(AdmZ1) ⊂ AdmZ2 . (Similarly, in case N we do
not have this for Z1 = Z2 = Z). Moreover, it may be contained in Q−α but not in Qα or Rα. (For
the definition of Qα and Rα, cf. § 4.1.) Indeed, the condition χ−1δ

1
2 |Bz = δBz and the fact that

Bz1 = wBz2 imply that either:

(i) A∗
Z1

= A∗
Z2

= A∗
Y ∩ ker(eα̌), in which case the condition reads eα̌(χ−1δ

1
2 ) = 1 if and only if

χ ∈ Q−α; or

(ii) wα(A∗
Z1

) �= A∗
Z1

and we would have wα(AdmZ1) = AdmZ2 if and only if eα|Bz = 1, which is
impossible.

4.5 Convergence and rationality
4.5.1 Having examined the question of (B,χ−1δ−

1
2 )-equivariant distributions on a single B-

orbit, we now examine whether we can extend them to the whole X or, in other words, whether a
sequence of the form (1) is surjective on the right. The idea is to use the integral expression (2),
if it converges for all φ ∈ C∞

c (X), to define an equivariant extension of the distribution SYχ to the
whole space C∞

c (X). Then one shows that the resulting morphism is rational in χ, and thus can be
extended to almost every χ ∈ AdmY . As a corollary, for all χ which do not belong to the ‘poles’ of
the intertwining operators, we deduce that the sequence (1) is surjective on the right.

In order to understand the asymptotic behavior of our distributions in the closure of an orbit
Y , we make use of the resolution of singularities. The idea of using the resolution of singularities to
establish meromorphic properties of certain distributions originates in Atiyah [Ati70] and Bernstein–
Gel’fand [BG69] who used it in the archimedean case. In the p-adic case it has been developed
and used by Igusa [Igu00]; for theorems close in formulation to what we need see Denef [Den85,
Theorem 3.1] and Deshommes [Des96, Théorème 2.5.1].

Recall that, by Hironaka’s embedded resolution of singularities [Hir64], given a k-rational B-
orbit Y with closure Y there exists a (canonical) regular k-scheme Ỹ and proper k-morphism
p : Ỹ → Y, which is an isomorphism on Y and such that the inverse image E of Y \ Y is an
effective divisor (the ‘exceptional divisor’); moreover, for every point y0 ∈ Ỹ(k) the geometrically
irreducible components of E which contain y0 are defined over k and have normal crossings. In other
words, the equations of these irreducible divisors around y0 are linearly independent in my0/m

2
y0,

and, in particular, they form part of a system of coordinates of the Hausdorff topology around y0.
Note that the map Ỹ → Y is surjective on k-points, since the proper algebraic morphism induces a
proper map in the Hausdorff topology.

In this section it does not make a difference whether Y splits into many B-orbits or not, so we
pretend that it does not. To understand the behavior of SYχ , applied to any φ ∈ C∞

c (Y ), it is first

better to write it as
∫
Y φ(y) dµ(y), where dµ is a B-eigenmeasure on Y with weight χ−1δ−

1
2 . In

turn, dµ can be written as |ω||f1|s1 · · · |fm|sm , where ω is a top-degree B-eigenform and the fi are
B-semiinvariants on Y.

We can now pull back φ, the fi and ω to Ỹ in order to express the integral as an integral on Ỹ ;
the corresponding measure is denoted by p∗ dµ. A divisor D on Ỹ defines a valuation vD on rational
sections of line bundles, and we can extend the ‘exponential’ of this valuation to dµ or, equivalently,
to its weight by setting

qvD(χ−1δ−
1
2 ) = qvD(ω)+s1vD(f1)+···+smvD(fm).

This is a regular function of χ ∈ AdmY . Note that the exponent vD(χ−1δ−
1
2 ) is only well-defined

modulo 2πi/ log q.
Let y0 ∈ Ỹ ∩ supp(p∗φ). Let D1, . . . ,Dk be the irreducible components of E which contain

y0. Then there exist local coordinates x1, . . . , xn identifying a neighborhood of y0 in the Hausdorff
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topology with a neighborhood of 0 in kn such that Di = {xi = 0} for 1 � i � k. Moreover,
|p∗ dµ| =

∏k
i=1 |xi|ri dx1 · · · dxn (up to a constant) in this basis, where ri = qvDi

(χ−1δ−
1
2 ).

Therefore, in a neighborhood of y0, the integral (4) is equal (up to a constant) to∫
p∗φ(x)

k∏
i=1

|xi|ri dx1 · · · dxn. (9)

Recall also that p∗φ is locally constant. From this we deduce the following:
Proposition 4.5.2.
(i) The integral (4), representing SYχ (φ), converges for all φ ∈ C∞

c (Y ), for χ in an open subregion
of AdmY . It is rational in χ, and its poles are products of factors of the form

1

1 − q−vD(χ−1δ−
1
2 )−1

,

where D denotes an irreducible component of the exceptional divisor E of Ỹ. The resulting
functional is also to be denoted by SYχ .

(ii) Let χ ∈ AdmY such that (the rational continuation of) SYχ (φ) does not have a pole at χ, let

f ∈ k[Y](B) of weight ψ−1 and let φi denote the restriction of φ to the set where |f | = q−j .
For κ� 0,

SYχψκ =
∑
j

SYχψκ(φj)

with the above sum converging absolutely. (Note that it is not required of the individual
summands to be given by a convergent integral.)

(iii) Let A0 denote the maximal compact subgroup of A and consider the lattice A/A0AY . Choose
a point y ∈ Y and let t denote the map φ �→ ∫

(A0U)y\A0U
φ(a · yu) du from C∞

c (Y ) to

C∞(A/A0AY ). Its image is supported on a translate of a cone of the form {a | 〈a, ψ〉 < ε} for
some ψ ∈ Hom(A/A0AY,Z), ε > 0 and satisfies

t(φ)(a) � eκ〈a,ψ〉
for some κ.

Remark. It is clear that all poles of the form 1/(1 − q−vD(χ−1δ−
1
2 )−1), where D is an irreducible

component of E which has a k-point, will appear for suitable φ. However, two distinct divisors Di

may induce the same vDi , in which case the pole will not necessarily appear with multiplicity two.
For instance, in T\PGL2 (T a split torus) there are two colors (B-stable prime divisors) which
induce the same valuation but do not intersect.

Proof. It is obvious that the integral (9) converges absolutely if vD(χ−1δ−
1
2 ) is large enough (in

fact, greater than −1). Recall that (by the assumption that X is quasi-affine) there exists a non-zero
f ∈ k[Y](B) which vanishes on Y \ Y. Multiplying by a high enough power of |f |, we can achieve
the desired valuation for all divisors Di. The rationality and stated form of the poles are immediate
from (9).

For the second assertion, let y0 ∈ Ỹ be a point as above, and assume that vDi > 0 for i = 1, . . . , j,
vDi(f) = 0 for i > j. Then for κ � 0 the exponents ri of (9) corresponding to χψi are strictly
increasing affine functions of κ for i � j, while for i > j the values of ri do not depend on κ.
Therefore, if φ is supported in a neighborhood of y0, then

SYχψκ(φj) � Kq−κj ·
k∏

i=j+1

1
1 − q−ri−1

with the constant K depending on φ, χ, f but not on κ or j, and this establishes the claim.
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Finally, for the third assertion, note that the integral under consideration is the integral of φ
restricted to the set where |fi| have a fixed value, for all fi in a set of generators for k[Y](B).
Therefore, the estimate follows from the same considerations as above, namely the asymptotic
behavior (9) of the integral and the existence of an f ∈ k[Y](B), which vanishes on Y \ Y. (Here
we use exponential notation for the weight ψ−1 of f .)

4.6 Discussion of the poles
4.6.1 Let SYχ : C∞

c (X) → I(χ) be as above. By the ‘poles’ of SYχ we mean the smallest divisor
M ⊂ AdmY which contains the polar divisors of SYχ (φ) for all φ ∈ C∞

c (X). We have proven above
that there exists such a divisor, that is, that there is only a finite number of distinct irreducible
polar divisors appearing for all φ.

In Proposition 4.5.2 we gave a description of the poles of SYχ in terms of geometric data of
our spherical variety. There is also a representation-theoretic understanding of the poles, discussed
in [Gar99, § 2.6], which leads to necessary conditions for the poles to appear.

Let M be a closed prime divisor of A∗
Y . The local ring oA∗

Y ,M
is principal. Hence, if M is

contained in the subvariety where SYχ has poles, there is f ∈ mA∗
Y ,M

(the maximal ideal) such that
S′Y
χ := f(χ)S′Y

χ is regular and non-zero on a dense subset of M .10 However, the functional S′Y
χ was

regular when restricted to C∞
c (Y ), so the functional S′Y

χ will vanish on C∞
c (Y ) for χ ∈M and will

be supported on Y \ Y . We deduce that, for M to be a polar divisor of SYχ , it has to be contained
in the variety of admissible characters of a smaller orbit in the closure of Y .

Since we already know (by Proposition 4.5.2 and the remark following it) that some of the
possible poles will appear, we can extend Garrett’s results as follows:

Proposition 4.6.2. For every irreducible component D of E (cf. § 4.5.1) such that D(k) �= ∅ there

is a k-rational B-orbit Z in p(D) such that AdmZ ⊃ {χ | q−vD(χ−1δ−
1
2 ) = q}.

Proposition 4.6.3. Let Z be a G-orbit on X. There exists a k-rational B-orbit V with V ⊃ Z
such that:

(i) the inverse image Z̃ := p−1Z ⊂ Ṽ (in the notation of § 4.5.1 with Y = V) is an effective
divisor and each irreducible component D ⊂ Z̃ dominating Z induces the same vZ := vD ∈
Hom(X (V),Z) by restriction to k(V)(B);

(ii) the set AdmZ is precisely equal to {χ ∈ AdmV | q−vZ (χ−1δ−
1
2 ) = q};

(iii) for every B-orbit Z1 ⊂ Z contained in the closure of a B-orbit V1 ⊂ V , the rational family of
morphisms

S′V1
χ := (1 − q−vZ (χ−1δ−

1
2 )−1) · SV1

χ : C∞
c (V ) → C

χδ
1
2

specializes to SZ1
χ for χ ∈ AdmZ .

Proof. We first show that the set of k-rational B-orbits V with the property that the inverse image
Z̃ := p−1Z ⊂ Ṽ (in the notation of § 4.5.1 with Y = V) is an effective divisor is non-empty. We
know that Z has a k-point, say z, in its open B-orbit. Performing the resolution of singularities
as in § 4.5.1, with Y = V1 := X̊, if z̃1 is a k-point in the preimage of z, then there is a divisor
D1 ⊂ Ṽ1 � V1 with kpoints are arbitrarily close to z̃1. The image of D1 in X is contained in an
absolutely irreducible, k-rational, B-stable closed subvariety (which is therefore the closure of a
B-orbit V2) containing Z. We repeat this process with V2, V3 (constructed inductively), and so
on, until Vi = Z̊, which has to occur by induction on the dimension of Vi.

10In fact, as we saw in Proposition 4.5.2, the polar divisors in our case are always principal.
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Now pick V such a k-rational B-orbit of minimal possible dimension.
Let Z1 denote the B-orbit of a point z ∈ Z, and assume that there is a B-orbit V1 ⊂ V containing

Z1 in its closure. Let z̃ be a preimage of z in Ṽ and let D ⊂ p−1(Z̃) be an irreducible k-rational
divisor containing z̃ and dominating Z. Denote by vD be the corresponding valuation, considered
as an element of Hom(X (V),Z) by restriction to k(V)(B). We have seen that for χ such that

q−vD(χ−1δ−
1
2 ) = q (10)

the distributions S′V1
χ := (1 − q−vD(χ−1δ−

1
2 )−1) · SV1

χ : C∞
c (V ) → C

χδ
1
2

specialize to distributions

supported on the closure of Z1. We show that, in fact, they specialize to SZ1
χ :

For φ ∈ C∞
c (V̊ ∪ Z̊) and χ ∈ AdmZ we have S′V1

χ ∼ SZ1
χ (φ). There is a B-semiinvariant f on

X which vanishes precisely on all B-orbits which do not contain Z in their closure, while it is not
identically equal to zero on Z (this is [Kno91, Corollary 1.7]). By the minimality of V, the restriction
of f to V is zero precisely in the complement of V̊ ∪ Z̊. Applying Proposition 4.5.2(ii) with this f
and ψ−1 denoting the weight of f , we have that, for large m and χ ∈ AdmZ ,

S′V1
χψm(φ) =

∑
j

S′V1
χψm(φj) ∼

∑
j

SZ1
χψm(φj) = SZ1

χψm(φ).

(Note that since D dominates Z, χψm also satisfies (10) if χ does.) By the rationality of these
distributions, we deduce that for every χ satisfying (10) we have S′V1

χ ∼ SZ1
χ .

It now follows that all χ satisfying (10) belong to AdmZ . On the other hand, dimAdmV −
dimAdmZ � 1 (since by Theorem 2.4.1 all B-semiinvariants on Z extend to V and there exist

B-semiinvariants on V which vanish on Z). Therefore, we deduce that AdmZ = {q−vD(χ−1δ−
1
2 ) = q}

and, a posteriori, all such vD are equal to some vZ . (This is, of course, an unpleasantly indirect
proof of this fact.)

Remark. The statement is not true for Z any B-stable set; indeed as we shall see in the next section
in the case of T\PGL2 that both closed orbits define the same valuation on k[X](B); renormalizing
the intertwining operator of X̊ at its pole ‘picks up’ a sum of the intertwining operators of the closed
orbits.

It is also not true that a pole for SYχ (where Y is any B-orbit) necessarily implies that the
corresponding sequence of the form (1) is not surjective on the right. A basic example of this will
be encountered in our discussion of Jacquet modules.

Corollary 4.6.4. For every B-orbit Y, we have AdmY ⊂ wAdmX̊ for some w ∈ [W/WP (X)].

Recall that P(X) denotes the standard parabolic {g ∈ G | X̊g = X̊} and WP (X) the Weyl group
of its Levi, and that [W/WP (X)] denotes representatives of minimal length.

Proof. Assume first that Y belongs to the open G-orbit. Let w1, w2, . . . , wr be simple reflections
which successively raise Y to X̊, hence codimY = r. It is known that w = w1w2 · · ·wr ∈ [W/WP (X)]
(see [Bri01, Lemma 5(iii)]). From the discussion of § 4.4.4, AdmY ⊂ wAdmX̊ .

Now let Y = Z̊, where Z is a smaller G-orbit. Let V be as in Proposition 4.6.3. It follows that
AdmY ⊂ AdmV .

For a general B-orbit the claim now follows by applying the above two steps and the fact that
P(X) ⊂ P(Z) for every G-orbit Z.

The importance of this result will be that most information about the unramified spectrum of
a spherical variety can already be retrieved by looking at the open orbit.

Combining all of the results above, we have proven the following:
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Theorem 4.6.5. Assume that X̊ carries a B-invariant measure (cf. § 3.8). A necessary condition
for the existence of a non-zero morphism: C∞

c (X) → I(χ) is that

χ ∈ w(δ−
1
2A∗

X) for some w ∈ [W/WP (X)]. (11)

For every B-orbit Y on X and χ ∈ AdmY there exists a natural (up to a non-zero regular function
on AdmY ) family SYχ : C∞

c (X) → I(χ), rational in χ. For almost all χ satisfying the condition (11),

the space of morphisms C∞
c (X) → I(χ) admits a basis consisting of all SYχ with AdmY � χ.

Finally, we comment on the ‘shift’ δ−
1
2 which appears in the description of admissible characters.

We have seen a typical example where this shift has a significance (i.e. is not absorbed by A∗
X):

in the variety PGL2\PGL2 whose spectrum consists only of the trivial representation (which is a
subrepresentation of I(δ−

1
2 )). In fact, this is essentially the only appearance of a non-trivial shift.

Lemma 4.6.6. Under the assumptions of the above theorem, the variety δ−
1
2A∗

X is equal to δ
− 1

2

L(X)
A∗
X .

Here L(X) denotes the Levi of P(X) and δL(X) is the modular character of its Borel subgroup,
in other words, it is equal to e2ρL(X) where ρL(X) is the half-sum of positive roots of L(X). Note
that ρL(X) is orthogonal to a∗X by Lemma 2.2.1.

Proof. We are using the following two facts. First, by assumption, X̊ carries a B-invariant measure.
This implies that δ|AX

= δBx where x is a point on X̊. Secondly, by [Pop86], the open B-orbit
of a spherical variety X is B-isomorphic to the open B-orbit of a horospherical variety S (one
whose stabilizer contains a maximal unipotent subgroup) with P(S) = P(X). It follows that δBx =
δL(X).

4.7 Jacquet modules
Any B-equivariant functional V → C

χδ
1
2

(for (π, V ) a smooth representation of G) factors through
the Jacquet module VU . This is, by definition, the maximal quotient of V where U acts trivially;
equivalently, it is equal to the quotient of V by the span of {v − π(u)v | u ∈ U, v ∈ V }. It is
well-known that the A-equivariant functor V �→ VU is exact, owing to the fact that U is filtered by
compact subgroups. In fact, since we are only considering unramified principal series, we may as
well compose with the functor VU �→ VA0U ((co-)invariants for the maximal compact subgroup A0

of A), which is also exact; we call VA0U the unramified Jacquet module.
In what follows we examine the Jacquet modules for some basic GL1- and GL2-spherical varieties.

We do this in order to demonstrate how the method of intertwining operators gives us information
on the Jacquet module; to show that the Jacquet module does not, in general, have a very simple
geometric description; and to discuss what happens at characters χ on the poles of the intertwining
operators, where the above method fails to prove surjectivity of (1) on the right.

Example 4.7.1. Let X = A1, as a GL1-spherical variety. From the two orbits X̊ = k× and Z = {0}
we have the sequence

0 → C∞
c (k×) → C∞

c (k) → C → 0.
The corresponding sequence of unramified Jacquet modules is

0 → Cc(Z) → C∞
c (Z ∪ {−∞}) → C → 0 (12)

where Cc(Z) denotes compactly supported sequences on Z and C∞
c (Z ∪ {−∞}) denotes sequences

supported away from −∞ which stabilize in a neighborhood of −∞.
Tate’s thesis shows that the intertwining operator SX̊χ has a pole at χ = 1, which is exactly where

the intertwining operator SZχ appears. (This is a general phenomenon which will be discussed below.)
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The element 1 − χ of the Bernstein center (respectively, the Hecke algebra element which maps
the sequence (an)n to the sequence (an − an−1)n) is clearly injective from C∞

c (k) onto C∞
c (k×)

(respectively on the corresponding unramified parts), and this implies that the Jacquet module of
C∞
c (k) is isomorphic to that of C∞

c (k×). Its unramified part is, as mentioned, Cc(Z) � C[T, T−1]
and if we rewrite (12)

0 → C[T, T−1] → C[T, T−1] → C → 0,
then the map on the right is just evaluation at T = 1.

We deduce, in particular, that the sequence (1) is not surjective on the right in this case.

Example 4.7.2. Let X = T\PGL2, where T = A is a k-split torus. Let Y1,Yw denote the two
closed B-orbits represented by the elements 1 and w (a representative for the non-trivial Weyl
group element), respectively. By the Bruhat decomposition, PGL2 = B � BwB, the orbit Yw has
an open, B-stable neighborhood A\(BwB) = A\(BwU) � A1 × A1 where the action of B = AU
is described as follows: A acts by the character d on the first factor and by d−1 on the second, and
U � Ga acts by translations on the second. The geometric quotient of this open set by the action of
U exists and is equal to A1 by projection onto the first factor. It is easy to see that integration over
the orbits of U defines an isomorphism C∞

c (A\BwU )U � C∞
c (k) ⊗ Cδ, where the action of A on k

is via the character δ. There is a G-automorphism (multiplication on the left by w, the non-trivial
element of the Weyl group), which carries one closed orbit to the other and the open neighborhood
A\BwU to the open neighborhood A\wBwU. Therefore, we have

C∞
c (X)U � (C∞

c (k) ⊕ C∞
c (k))/C∞

c (k×)diag ⊗ Cδ,

where the diagonal copy of C∞
c (k×) ⊗ Cδ corresponds to the U -coinvariants of C∞

c (X̊) and is
embedded with a minus sign in one of the factors. In other words, up to twisting by Cδ the Jacquet
module corresponds to functions f on the non-separated ‘affine line with doubled origin’ k×∪{01, 02}
which are locally constant on k×, vanish eventually as x → ∞, while as x → 0 they eventually
stabilize to f(01) + f(02).

Using the previous example, it follows that the sequence (1) is not surjective on the right; at
χ = δ

1
2 the dimension of intertwining operators is equal to two, coming from the two closed orbits.

Example 4.7.3. Let now X = U\PGL2. The Bruhat decomposition gives us a filtration:

0 → C∞
c (U\BwB) → C∞

c (X) → C∞
c (U\B) → 0

with corresponding Jacquet modules (cf. [Cas95, Proposition 6.2.1])

0 → C∞
c (k×) → C∞

c (X)U → C∞
c (k×) → 0

and unramified Jacquet modules

0 → C[T, T−1] → C∞
c (X)A0U → C[T, T−1] → 0.

The latter is a sequence of H(G,K) = C[T, T−1]-modules (where convolution with elements of the
Hecke algebra corresponds to multiplication of polynomials), and since this ring is a principal ideal
domain and the modules are free, the sequence splits, so we have (non-canonically)

C∞
c (X)A0U � C[T, T−1] ⊕ C[T, T−1].

Therefore, we see that although the intertwining operator SX̊χ has a pole at χ = 1, the corresponding
sequence (1) is surjective on the right in this case, and the dimension of intertwining operators is
constantly equal to two.

In any case, our intertwining operators are enough to characterize the image of a function φ in
the Jacquet module.
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Lemma 4.7.4. A vector φ ∈ C∞
c (X) lies in the kernel of the Jacquet morphism C∞

c (X) → C∞
c (X)U

if and only if the integral of φ over every horocycle (U -orbit) is zero. Similarly, it lies in the kernel of
the unramified Jacquet morphism if and only if its integral over every A0U -orbit is zero. The integral
of φ over all A0U -orbits in a given B-orbit Y is zero if and only if SYχ (φ) = 0 for generic χ ∈ AdmY .

Proof. If Y is a B-orbit and φ ∈ C∞
c (Y ) is compactly supported, then it is obvious that its image in

C∞
c (Y )U (respectively C∞

c (Y )A0U ) is zero if and only if its integral over all orbits of U (respectively
A0U) is zero.

Now let φ ∈ C∞
c (X). Since the kernel of the Jacquet morphism is generated by elements of the

form f − R(u)f , where R denotes the right regular representation, it is clear that if φ belongs to
the kernel then its integral over every horocycle is zero. Conversely, using the standard filtrations of
Jacquet modules and by induction on the orbit dimension, we prove that φ lies in the kernel of the
Jacquet morphism if all of its integrals on horocycles are zero. So, assume that the integral of φ
over every horocycle is zero and let m be the minimal dimension of an orbit which intersects the
support of φ. Then the image of φ under

C∞
c (X)U � C∞

c

( ⋃
dimY�m

Y

)
U

is zero. The kernel of the above map is equal to the Jacquet module of C∞
c (

⋃
dimY >m Y ), hence

φ differs from a φ′ ∈ C∞
c (

⋃
dimY >m Y ) by a function of the form f − R(u)f . Since the latter has

integral zero over any U -orbit, we reduce the problem to φ′, which allows us to complete the proof
by induction. The claim about the unramified Jacquet module follows similarly.

For the last claim, the direction ⇒ is, again, obvious. For the inverse, use part (iii) of Propo-
sition 4.5.2: multiplying t(φ) by a suitable character of B, it lands in L1(A/A0AY ). By standard
Fourier analysis on the discrete abelian group A/A0AY , if its Fourier transform is zero, then the
function itself is zero.

The importance of the above lemma is that in order to establish certain results we do not have
to worry about intertwining operators which may not be expressible in terms of our SYχ .

4.8 Non-trivial line bundles and standard intertwining operators
As mentioned above, exactly the same arguments apply to intertwining operators C∞

c (X,Lψ) →
I(χ), where ψ is some complex character of H. The condition of admissibility with respect to a
B-orbit Y is now χ−1δ

1
2 |By = δBy

yψ−1|By , where yψ denotes the character by which the stabilizer
of y (a conjugate of H) acts on the fiber of the map G → H\G over y.

As a special case of this, the filtration of B\G defined by the Bruhat decomposition gives rise
to the standard intertwining operators for unramified principal series

Tw : I(χ) → I(wχ),

which are rational in χ ∈ A∗ and are given by the rational continuation of the integral∫
∏

α>0,w−1α<0 Uα

φ(w−1u) du.

The above integral expression depends on the choice of a representative for w in N (A), but only
up to a character of A∗, therefore we ignore this dependence whenever we can. The poles of these
intertwining operators are on a union of ‘irregular’ divisors as described in § 4.1, and one can verify
that those are the characters where a smaller Schubert cell can support an intertwining operator
into I(χ). Note that in the case of the variety B\G Knop’s action translates to the action of W on
itself by left multiplication.
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5. Interpretation of Knop’s action

5.1 Avoidance of ‘bad’ divisors
The object of this section is to investigate what happens when one composes the morphisms SY,∗χ

with the intertwining operators for principal series Tw. Before we do that, we need to examine issues
that might arise from the set of our characters χ being contained in some of the hypersurfaces where
I(χ) is reducible (and where some of the Tw annihilate a subrepresentation). It turns out that this
can only happen for trivial reasons. These trivial reasons are best exhibited in the example of the
SL2-spherical variety of type G, namely X is a point. Then C∞

c (X) is the trivial representation
of G; it is contained as a proper subrepresentation in I(χ) where χ = δ−

1
2 and as a quotient

(but not a subrepresentation) in I(wχ). Hence, Sχ maps into that subrepresentation of I(χ) and
Tw : I(χ) → I(wχ) annihilates its image. As it turns out, this is essentially the only way things can
go wrong. We recall from § 4.1 the definition of the ‘bad’ divisors Rα̌ = {χ ∈ A∗ | χα̌ = 1} and
Qα̌ = {χ ∈ A∗ | χα̌ = q}, where α̌ is a co-root and q is the order of the residue field.

Lemma 5.1.1. The variety δ−
1
2A∗

X is never contained in one of the ‘irregular’ divisors Rα̌. It is
contained in Qα̌ if and only if α is a simple, positive root of the Levi of P(X).

Proof. Since δ−
1
2 ∈ δ−

1
2A∗

X and δ−
1
2 is regular, δ−

1
2AX∗ is not contained in any of the Rα̌.

We have δ−
1
2A∗

X ⊂ Qα̌ implies e−ρ ∈ Qα̌ if and only if 〈ρ, α̌〉 = 1 if and only if α ∈ ∆. In that
case, we see that wα has to centralize A∗

X which, by non-degeneracy (§ 2.5), implies that α ∈ ∆P (X).
The converse is checked easily.

Corollary 5.1.2. For generic χ ∈ δ−
1
2A∗

X the image of SX̊χ in I(χ) is irreducible.

Proof. Indeed, since a generic χ is contained only in those Qα̌ with α simple, positive and appearing
in the Levi quotient L(X) of P(X), and since the stabilizer inside P(X) of a generic point contains,
modulo the unipotent radical of P(X), the commutator subgroup of L(X), it follows that for such χ
the image of SX̊χ in I(χ) belongs to the irreducible subspace induced from the trivial representation
of the commutator of L(X).

5.2 The basic theorem
Theorem 5.2.1. Let Y be a k-rational B-orbit on X and α a simple root such that Y is of maximal
rank in Y ·Pα. The following describes the composition of Twα with elements of SYχ (cf. § 4.4.3), for
χ ∈ AdmY :

(i) if (Y, α) is of type G, then Twα ◦ S1 = 0 for every S1 ∈ SYχ ;

(ii) if (Y, α) is of type U or T , then Twα ◦ SYχ̃ ∼ S
wαY
wα χ̃ ;

(iii) if (Y, α) is of type N , then Twα ◦ SYχ̃,ζ ∼ SYwα χ̃,ζ .

Moreover, in cases T and N , if Z is a smaller rational orbit in YPα, then for generic χ ∈ AdmZ

we have Twα ◦ SZχ̃ ∼ SYwα χ̃ (respectively Twα ◦ SZχ̃ ∼ SYwα χ̃,ζ , where ζ is the coset corresponding to a
split torus in case N).

The proof is performed in two steps: first we show it for functions whose support on (Y ·Pα)(k)
is compact, and then we extend it to all φ ∈ C∞

c (X).

Proposition 5.2.2. The statement of Theorem 5.2.1 is true when the S∗∗ and Twα ◦ S∗∗ are viewed
as functionals and restricted to φ ∈ C∞

c (X) with φ|(YPα)(k) ∈ C∞
c ((YPα)(k)).

Proof. If (Y, α) is of type G, then the image of every S1 ∈ SYχ is contained in IndG
Pα

(χδ
1
2 ) ⊂ I(χ),

and Twα annihilates that subspace.
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In each of the other cases, let S1 ∈ SYχ be one of the basis elements as in the statement of
Theorem 5.2.1, according to the type of (Y, α). Let y ∈ Y and, in the case of type N , y ∈ ζ where
S1 = Sχ̃,ζ . Let Hα = (Gy ∩ Pα mod UPα) ⊂ Lα. We can write the functional S1 as (the rational
continuation of)

S1(φ) =
∫
Uy\U×A′′

φ(y · ua)χ̃−1δ
1
2 (a) du da

where A′′ = A′Y in cases T,U and A′′ = A′Y
α in case N (with notation and abuse of notation as

in § 4.4.3).
We first want to reduce the case of type N to the case of type T , and the basis SYχ̃,ζ was chosen

precisely for that purpose. Namely, consider the quotient Lα → Lα/Zα � PGL2; the image of Hα is
equal to H2 := N (T2) for some torus T2. Let H1

α denote the preimage of the connected component
of H2, namely the preimage of T2. Then we have a quotient map H1

α\Lα → Hα\Lα and the image
of (H1

α\Lα)(k) intersected with Y corresponds exactly to the coset ζ.
In cases U and T let H1

α = Hα. The central observation is that in all cases H1
α\Lα is a homo-

geneous spherical variety for a group L̃α which acts transitively on its k-points, and whose Borel
subgroup B̃α acts transitively on the k-points of the open orbit. Indeed, in cases T and N we have
Hα ∩B ⊂ Zα so we can let L̃α be the group Lα/(Hα ∩B). In case U , A∩Hα normalizes Hα so we
can let L̃α be the group (A/A∩Hα)×Lα (with the first factor acting ‘on the left’). Now it is clear
that B̃α acts transitively on the k-points of the open orbit, and by Lemma 3.7.3 so does L̃α on the
k-points of H1

α\Lα. Let H̃1
α be the corresponding isotropy group. Note that H̃1

α\L̃α is of type T or
U . Moreover, χ̃ can be considered as a character (possibly ramified) of B̃α.

Now S1 can be considered as a morphism C∞
c ((YPα)(k)) → IndL̃α

B̃α
(χ̃δ

1
2 ) and analyzed into the

composition of two morphisms. First, integration over UPαy\UPα

f �→
∫
UPαy\UPα

f(y · u · •) du (13)

defines a morphism

ια : C∞
c ((YPα)(k)) → C∞

c (H̃1
α\L̃α,LδPαδ

−1
Py∩UPα

).

This is followed by integration over ȳ ·B̃α, where ȳ ∈ H̃1
α\L̃α is a point mapping to (y mod UPα)

S̃Yχ̃ : C∞
c (H̃1

α\L̃α,LδPαδ
−1
Py∩UPα

) → IndL̃α

B̃α
(χ̃δ

1
2 ).

We analyze the composition of S̃Yχ̃ with Twα . First, we note that Twα ◦ S̃Yχ̃ has an image in

IndL̃α

B̃α
(wα χ̃δ

1
2 ).

5.2.3 Cases T and N. Here, by the fact that B̃α has a unique open orbit, it follows that for
generic χ ∈ AdmY there is a unique morphism

C∞
c (H̃1

α\L̃α,LδPαδ
−1
Py∩UPα

) → IndL̃α

B̃α
(wα χ̃δ

1
2 ).

It follows that Twα ◦ S̃Yχ̃ ∼ S̃Ywα χ̃ and, hence, Twα ◦ SYχ̃ ∼ S
wY
wχ̃ (in case T) and Twα ◦ SYχ̃,ζ ∼ SYχ̃,ζ (in

case N).
The statement regarding Twα ◦ SZχ̃ follows from the remark in § 4.4.4: since wαAdmZ is not

contained in Adm ′
Z for any non-open orbit Z ⊂ YPα, for generic χ ∈ AdmZ we must have Twα◦SZχ̃ ∼

SYwα χ̃. Note that Twα is well defined and non-zero for generic χ ∈ AdmZ .
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5.2.4 Case U. Without loss of generality, since Twα ◦ Twα ∼ Id, let Y be the closed orbit in
YPα. Then S̃Yχ̃ is given by the functional

φ �→
∫
ÃY \Ã

φ(ȳ · a)χ̃−1δ−
1
2 (a) da.

This converges absolutely for every χ̃ if φ ∈ C∞
c (H̃1

α\L̃α,LδPαδ
−1
Py∩UPα

), and in the domain of con-

vergence of Twα we obtain

Twα ◦ S̃Yχ̃ (φ) =
∫
U2

∫
ÃY \Ã

φ(ȳ · awu)χ̃−1δ−
1
2 (a) da du

which is precisely equal to S̃wαY
wα χ̃ .

This completes the proof of the proposition.

5.2.5 Orbits in the closure do not contribute. To conclude the proof of Theorem 5.2.1, we need
to show that what we have just proved for φ compactly supported on (Y · Pα)(k) continues to
hold for φ supported in its closure. We now use SYχ to denote any of the basis elements in the
formulation of the theorem, according to the type of (Y, α) that we are considering. The idea is to
split the intersection of the support of φ with Pα into infinitely many compact pieces, let φi denote
the restriction of φ to the ith piece by φi (hence, φ =

∑
i φi when restricted to (Y ·Pα)(k)) and use

the fact that SYχ (φ) =
∑

i S
Y
χ (φi) when χ is such that the integral expression for SYχ converges. The

problem is that Twα and SYχ will not, in general, converge simultaneously so we cannot use their
integral expressions to prove that Twα

∑
i S

Y
χ (φi) =

∑
i TwαS

Y
χ (φi) directly. To solve this problem,

we could make use of the asymptotic estimates of Proposition 4.5.2(ii), with a suitable f (as in
Proposition 4.6.3). However, asymptotic estimates are unnecessary here.

Lemma 5.2.6. Let K1 be an open compact subgroup of Pα. Let g1, . . . , gm be representatives for
the orbits of K1 on B\Pα. Then there are rational functions r1, . . . rm of χ such that for φ ∈ I(χ)K1

we have

Twαφ =
m∑
j=1

rj(χ)φ(gj).

The lemma is a direct consequence of the rationality of Tw and the fact that IndPα
B (χδ

1
2 )K1 is

finite dimensional. It is important that we only fix a compact open subgroup of Pα, not of the whole
group G.

Now, given φ ∈ C∞
c ((Y ·Pα)(k)) fix a compact-open K1 ⊂ Pα such that φ is K1-invariant and

representatives g1, . . . , gm as above and enumerate the K1-orbits on (Y ·Pα)(k): O1, O2, O3, . . .. Let
φi = φ · 1Oi ∈ C∞

c ((Y ·Pα)(k)).

Note that for g ∈ Pα the sets Oig define a partition of (Y ·Pα)(k) in g−1K1g-orbits.

For χ in the region of convergence of the integral expression for SYχ we have SYχ (R(gj)φ) =∑
i S

Y
χ (R(gj)φi) for every j. Using the previous lemma:

Twα

∑
i

SYχ (φi) =
m∑
j=1

rj(χ)
∑
i

R(gj)SYχ (φi) =
∑
i

m∑
j=1

rj(χ)R(gj)SYχ (φi) =
∑
i

TwαS
Y
χ (φi).

Using Proposition 5.2.2, we have Twα ◦SYχ (φi) = S
wY
wχ (φi). Hence, TwαS

Y
χ = S

wY
wχ . This completes

the proof of Theorem 5.2.1.
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5.3 Corollaries and examples
We discuss the implications of Theorem 5.2.1 for elements of the Weyl group of length greater
than one.

Corollary 5.3.1. We have Tw ◦ SX̊χ �= 0 if and only if w ∈ [W/WP (X)]. For w ∈ [W/WP (X)],

Tw ◦SX̊χ = S
wX̊
wχ . If there are no orbits Y of maximal rank and simple roots α such that (Y, α) is of

type N , then Tw ◦ SX̊χ̃ ∼ S
wX̊
wχ̃ for every w ∈ [W/WP (X)].

Proof. Every w = w1w2 with w1 ∈ [W/WP ] and w2 ∈ WP (X) (uniquely). It follows from Theo-

rem 5.2.1 that Tw2 ◦SX̊χ = 0. The elements of [W/WP (X)] are characterized by the fact that wα > 0
for every (simple) positive root α in the Levi of P(X). From Lemma 5.1.1 and the properties of
intertwining operators (§ 4.1) it follows that Tw1 is an isomorphism for almost every χ on δ−

1
2A∗

X .
The second statement follows immediately from Theorem 5.2.1.

Remark. For simply laced groups, Brion [Bri01] has shown that the condition ‘there are no orbits
Y of maximal rank and simple roots α such that (Y, α) is of type N ’ is equivalent to the condition
‘there is no simple root α such that (X̊, α) is of type N ’.

By [Kno95a], the stabilizer of the open orbit is WX � WP (X). Moreover, by definition, WX ⊂
[W/WP (X)]. The points of A∗

X are left stable by WP (X). Hence, Tw ◦ SX̊χ = SX̊wχ (for generic X) if
and only if w ∈WX .

Denote by Sχ̃ the operator SX̊χ̃ for χ ∈ δ−
1
2A∗

X . The problem that if there are (Y, α) of type N ,

then we cannot explicitly ‘diagonalize’ the composition of elements of Sχ := SX̊χ with Tw, for w of
length greater than one, can be amended non-explicitly as follows. We claim that there still exists a
rational basis (Siχ)i, i = 1, . . . , |H1(k,AX)|, of Sχ such that Tw ◦Siχ ∼ Siwχ for every i and w ∈WX .
Indeed, we may re-normalize the operators Tw so that they satisfy Tw1 ◦ Tw2 = Tw1w2 (for instance,
as equivariant Fourier transforms on U\G, cf. [BK99]). Then the matrices bw(χ) of the relation
Tw(χ)[Sχ̃]χ̃ = bw(χ)[Sχ̃]χ̃ are 1-cocycles from WX to GLn(C(δ−

1
2 A∗

X)) and by Hilbert’s Theorem 90,
they are coboundaries, that is, bw(χ) = β(χ)−1β(wχ) for some β ∈ GLn(C(δ−

1
2 A∗

X)). Then β(χ) is
the transition matrix between the basis (Sχ̃)χ̃ and the desired basis (Siχ)i.

This basis Siχ has the problem that it is not explicit. If there are no orbits Y of maximal rank
and simple roots α such that (Y, α) is of type N , then we simply denote by (Siχ)i the basis consisting
of the morphisms Sχ̃.

We can now state the main representation-theoretic result of this paper.

Theorem 5.3.2. Assume that X̊ carries a B-invariant measure (§ 3.8) and let BX denote the image

of δ−
1
2A∗

X on the ‘unramified’ Bernstein variety (§ 4.2). By Theorem 4.6.5, every irreducible π ∈ Sur

admitting a non-zero quotient C∞
c (X) → π must lie over BX . With the possible exception of a set

of π (respectively χ) lying over a proper closed subvariety of BX , the following are true.

(i) Every π is isomorphic to IndG
P(X)(χδ

1
2 ) for χ ∈ δ−

1
2A∗

X .

(ii) Every quotient C∞
c (X) → π is obtained as a linear combination of specializations of the

morphisms Siχ, i = 1, . . . , |H1(k,AX)|.
(iii) The quotients Siχ, for fixed χ, are linearly independent. The quotients Siχ1

and Sjχ2 are isomor-
phic if and only if χ1 = wχ2 for some w ∈WX and i = j.

(iv) We have dim Hom(C∞
c (X), π) = (NW(−ρ+ a∗X) : WX) × |H1(k,AX)|.

Proof. Part (i) is Lemma 5.1.1 and Corollary 5.1.2.
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Part (ii) follows from the fact that generically quotients into irreducible π ∈ Sur are obtained by
(linear combinations of) specializations of morphisms in SYχ for Y of maximal rank, Corollary 5.3.1
and the fact that Knop’s action is transitive on orbits of maximal rank.

Part (iii) is a consequence of Corollary 5.3.1, the definition of the Siχ above.
Part (iv) follows immediately from Parts (ii) and (iii).

Let us now compare our results with a few well-known examples.

Example 5.3.3. The spherical variety X = U\G. It is known that the little Weyl group of a horo-
spherical variety is trivial (and vice versa: if the little Weyl group of a spherical variety is trivial,
then the variety is horospherical) and it is easy to check that AdmX = A∗

X = A∗. Therefore, our
results translate to the fact that all irreducible representations in the unramified spectrum appear,
at least generically, but the generic multiplicity is equal to the order of the Weyl group. (This is, of
course, expressed by the isomorphisms I(χ) � I(wχ) for generic χ.)

Example 5.3.4. The subgroup H = GLdiag
n of G = GLn × GLn. In this case AdmX = A∗

X is
equal to A∗

GLn
embedded in A∗ as a �→ diag(a, a−1) and WX = W diag

GLn
. Therefore, generically in the

unramified spectrum, X = H\G distinguishes (with multiplicity one) irreducible representations of
the form τ ⊗ τ̃ , where τ is an irreducible representation of GLn and τ̃ denotes its contragradient.
This, of course, holds not only generically and not only for the unramified spectrum.

Example 5.3.5. The space X = Matn under the G = GLn × GLn action by multiplication on the
left and right. The open G-orbit is equal to the spherical variety of the previous example, therefore
the generic description of the unramified spectrum is identical to the previous case.

Remark. As follows immediately from Theorem 5.3.2, the generic multiplicity may be greater than 1
(i.e. the Gel’fand condition may fail to hold) for two reasons: The k-points of the open B-orbit split
into several B-orbits; or the little Weyl group of X does not coincide with the normalizer of −ρ+a∗X .
In addition to the simple SL2-examples that we have seen, we mention another instance of the former.

Example 5.3.6. In [Hir05], Hironaka examines Sp4 as a spherical homogeneous Sp4 × (Sp2)2-space
over a local non-archimedean field. It is discovered that the generic multiplicity is equal to the
order of k×/(k×)2; this is due to the splitting of the X̊ in B-orbits. (Compare also the explicit
computations in [Hir05] with our treatment of ‘case T’ in Proposition 5.2.2.)

The non-coincidence of WX with N (−ρ+a∗X) is very common in parabolically induced examples,
since, as we already mentioned, the little Weyl group of the parabolically induced spherical variety
is equal to the little Weyl group of the original spherical variety for the Levi. The example of U\G,
mentioned above, is an instance of this. However, parabolically induced spherical varieties do not
exhaust the list of such examples.

Example 5.3.7. The group SL2 × SL2 embeds naturally in G = Sp4 as Sp2 × Sp2. Let H be the
Gm × SL2 subgroup thereof (where Gm is a maximal split torus in SL2). It is easy to see that
AdmX = A∗

X = A∗, however it is known that WX is not the whole Weyl group, but a subgroup of
W of index 2.

5.4 Parabolic induction with an additive character

In applications one often comes across representations induced from ‘parabolically induced’ spherical
subgroups, but not from the trivial (or the modulus of an algebraic) character of those subgroups
but from a complex character of its unipotent radical.
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Example 5.4.1. The Whittaker model is the line bundle LΨ over U\G, where Ψ : U → C× is a generic
character of U ; this means that, if we identify the abelianization of U with the direct product of
the one-parameter subgroups Uα, for α ranging over all simple positive roots, then Ψ = ψ ◦ Λ,
where Λ : U → Ga is a functional which does not vanish on any of the Uα and ψ is a non-trivial
complex character of Ga(k) = k. (Equivalently, Λ lies in the open A-orbit on Hom(U,Ga).) Hence,
the Whittaker model is parabolically induced from the trivial subgroup of A; if Ψ were the trivial
character, then its spectrum would only contain representations whose Jacquet module with respect
to U is non-trivial, and with generic multiplicity equal to the order of the Weyl group. In contrast, for
Ψ a generic character, the spectrum is known to be much richer (e.g. it contains all supercuspidals),
and multiplicity-free for every (not only generic) irreducible representation.

Example 5.4.2. The Shalika model for GL2n is the line bundle LΨ over H\G, where H is parabolically
induced from the maximal parabolic P with Levi L = GLn × GLn and the spherical subgroup
M = GLdiag

n thereof; and Ψ is the character ψ(tr(X)) of UP , where ψ is as above a complex
character of k and X ∈ Matn(k) under the isomorphism UP � Matn. It is known that the Shalika
model, is also multiplicity-free, and it distinguishes lifts from SO2n+1.

We will see that even those cases can be linked to Knop’s theory; more precisely, to an extension
of the Weyl group action to non-spherical varieties.

Let H = M�UP be a parabolically induced spherical subgroup of G, with notation as in § 2.3.
Let Ψ : UP → C× be a character. Any such character of UP factors through a morphism: Λ : UP →
Ga, composed with a complex character ψ of Ga(k) = k. Now, assume that Λ is normalized by
M, and by abuse of notation use the same letter to denote the induced morphism: H → Ga. Let
H0 = ker Λ; the variety H0\G is the total space of a Ga-torsor over H\G (no longer spherical), and
the map

λ : H0\G → H\G
is surjective on k-points for the usual reasons. One is interested in the space C∞

c (H\G,LΨ), that is,
the space of smooth complex functions on H0\G which satisfy f(h ·x) = Ψ(h)f(x) for h ∈ H/H0(k)
and such that λ(supp(f)) is compact.

By repeating exactly the same Mackey-theoretic arguments that we used before, one sees directly
that the k-rational B-orbits on H\G which give rise to a morphism into I(χ), for some unramified
character χ, are those represented by elements ξ such that

H ∩ ξB ⊂ H0. (14)

One sees also that if an orbit Y satisfies this condition, then one can define a rational family SYχ of
morphisms into I(χ) for exactly the same χ as before. Also, by the description of B-orbits in § 2.3,
one sees that the open B-orbit satisfies (14). Denote by BΛ

00 the set of orbits of maximal rank which
satisfy (14). Our goal is to describe the unramified quotients of C∞

c (X,Ψ) in a similar manner as
we did with C∞

c (X); more precisely, we will link it with Knop’s Weyl group action on H0\G.
Since the latter space is not spherical, we need to revisit Knop’s theory and recall the necessary

facts regarding its extension to non-spherical varieties. The complexity of a variety Y with a B-
action is defined as c(Y) = {maxy∈Y codim(yB)}. Let X be a G-variety, not necessarily spherical.
We have c(X) = 0 if and only if X is spherical. We let B0(X) denote the set of closed, irreducible,
B-stable subsets with complexity equal to the complexity of X. Then Knop defines an action of
the Weyl group W on B0: it leaves stable the subset B00 of those B-stable subsets whose general
B-orbit is of maximal rank. In the case of spherical varieties, this action coincides with which that
we discussed above, and B00 is in bijection with the set of B-orbits of maximal rank, hence the use
of the same symbol to denote those. To see how the action is defined in the general case, one repeats
the same steps, by letting Pα act on the B-stable set Y ∈ B0, examining the image of a general
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stabilizer Py in Aut(B\Pα) � PGL2 and considering cases. In addition to the cases that we saw in
the spherical case, one now has the case F\PGL2, where F is a finite subgroup. However, in that
case, there is only one closed, irreducible, B-stable subset of complexity equal to the complexity
of F\PGL2 (namely, the space F\PGL2 itself), and the corresponding element of the Weyl group
will by definition fix it.

Now let us return to our parabolically induced spherical variety. Let us consider inverse images
of B-orbits under λ. The set {λ−1Y | Y ∈ B00(H\G)} is precisely the set of closed, irreducible,
B-stable subsets of H0\G whose generic B-orbit has maximal rank. Which of those belong to
B00(H0\G)? One sees easily that, for Y a B-orbit on H\G, λ−1Y has complexity 1 (the complexity
of H0\G) if and only if λ−1Y is not a single B-orbit, which is the case if and only if (14) is satisfied.
Therefore we have a natural isomorphism of sets: BΛ

00(H\G) � B00(H0\G). The Weyl group action
on the latter induces a Weyl group action on the former, which differs from the action of W on
B00(X). Then we have the following:

Theorem 5.4.3. In the above setting, let SYχ denote the family of morphisms into I(χ) defined by

the k-rational orbit Y ∈ BΛ
00(X) and let wY denote the image of Y under the Weyl group action

on BΛ
00(X).

Then Tw ◦ SX̊χ �= 0 if and only if w ∈ [W/WP (X)]. For w ∈ [W/WP (X)], Tw ◦ SX̊χ = S
wX̊
wχ . If

there are no orbits Y of maximal rank and simple roots α such that (Y, α) is of type N , then

Tw ◦ SX̊χ̃ ∼ S
wX̊
wχ̃ for every w ∈ [W/WP (X)].

Theorem 5.3.2 extends verbatim to this setting, with WX the ‘little Weyl group’ of H0\G. The
proof is similar to the case of ‘Ψ is trivial’ and is omitted.

6. Unramified vectors and endomorphisms

6.1 Spectral support
Since the results of this paper are all stated for ‘generic’ quotients of the ‘unramified’ Bernstein
component, it is natural to ask to what extent those “generic” quotients are enough to characterize
a vector in our representation. Given a smooth representation π, let us call spectral support (or
simply support) of π its support as a module for the Bernstein center z(S). In other words, it
is the subvariety of the Bernstein variety corresponding to the ideal of z(S) which annihilates π.
Given a vector v ∈ π, we use the phrase the (spectral) support of v for the support of the smallest
subrepresentation of π containing v. Our question can be reformulated as follows. To what extent
is the spectral support of a vector v ∈ C∞

c (X)ur (or one of its quotients) equal to the image BX of
δ−

1
2A∗

X in A∗/W (the unramified component of the Bernstein variety)? We say that v is of ‘generic
support’ if its support is equal to BX .

It is easy to see that not all vectors in C∞
c (X)ur have generic support in general. For instance,

let X = T\PGL2 as in Example 4.7.2. Recall our description of its Jacquet module: we can have
φ ∈ C∞

c (X) whose image in the Jacquet module is non-zero, but is zero when restricted to k×.
In fact, we can generate φ as follows: Choose a suitable φ1 supported in a neighborhood of the
divisor Y1 (in the notation of Example 4.7.2), and apply the automorphism ‘w’ to it (action of the
non-trivial Weyl group element on the left). Let φ = φ1 − wφ1. Since ‘w’ is G-equivariant, we have
R(g)φ = R(g)φ1 −w(R(g)φ1), and therefore the image of all translates φ in the Jacquet module will
be supported at the ‘double origin’. As a result, the support of φ is not generic.

Let K be a hyperspecial maximal compact subgroup of G. The following theorem gives an
assertive answer to our question for K-invariant vectors. For what follows we denote by Sχ̃, Sχ̃,ζ the
B-equivariant functionals into C

χδ
1
2

defined by the open B-orbit X̊.
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The following theorem is clearly false in the case of anomalous non-homogeneous varieties such
as that of Example 3.7.2. Therefore, for the rest of the paper we re-define X to mean the Hausdorff
closure of X̊ (cf. Lemma 3.7.4).

Theorem 6.1.1. The support of every φ ∈ C∞
c (X)K is generic. In fact, if Sχ̃(φ) = 0 (as a functional)

for almost every χ̃, then f = 0.

Proof. The second statement, although it appears stronger, is actually equivalent. First, by our
main theorem, if Sχ̃(φ) = 0 as a morphism into I(χ) (not as a functional), then SYχ̃ (φ) = 0 for every
orbit Y of maximal rank. Moreover, I(χ) contains a unique (up to scaling) non-zero K-invariant
vector whose value at one is non-zero; so, to say that the value of the functional Sχ̃ applied to φ is
zero, for a K-invariant φ, is the same as saying that Sχ̃(φ) = 0 as an element of I(χ).

Assume Sχ̃(φ) = 0 for almost every χ̃. By Lemma 4.7.4, it suffices to show that the functionals
SYχ̃ , for Y of smaller rank, vanish on φ and all of its translates. We consider two cases separately:
Y a Borel-orbit in the open G-orbit; and Y a Borel-orbit in a different G-orbit.

6.1.2 Proof within the open G-orbit. We use induction on the dimension of Y to show that if
SZχ̃ (φ) vanishes identically for all orbits Z of dimension larger than the dimension of Y, then SYχ̃ (φ)
also vanishes.

First, if Y is raised of type U by some simple root α to an orbit Z, then we can apply Theo-
rem 5.2.1 to deduce the vanishing of SYχ̃ (φ) from the vanishing of SZχ̃ (φ).

Now, assume that there exists a simple root α raising Y of type T or N . Again by Theorem 5.2.1,
we would like to deduce the vanishing of SYχ̃ (φ) from the vanishing of S

wαY
χ̃ (φ) (respectively S

wαY
χ̃,ζ (φ)

in case N). The point to be careful about here is that AdmY may be contained in one of the divisors
where Twα is not an isomorphism. However, by the remark in § 4.4.4, that divisor can only be Q−α
and that implies that Twα does not ‘kill’ I(χ)K .

This finishes the case where Y is contained in the open G-orbit.

6.1.3 Proof on smaller G-orbits. Let Y be a k-rational Borel orbit, belonging to a non-open
G-orbit Z. Since Z itself is a spherical variety, it suffices by the proof of the previous case to assume
that Y = Z̊ (the open B-orbit in Z). Also, we may inductively assume that the theorem has been
proven for all larger G-orbits containing Z in their closure. Let Z1 be a B-orbit on Z̊ and let V1

be a B-orbit on a larger G-orbit as in Proposition 4.6.3, containing Z1 in its closure. (Here we are
using the fact that X was redefined as the Hausdorff closure of X̊.) By Proposition 4.6.3 we know
that SZ1

χ is a residue of SV1
χ , therefore since the latter is identically zero on φ, the former must also

be. This completes the proof of the theorem.

6.2 The Hecke module of unramified vectors
The result of the previous section allows us to present a weak analog of the main result of [GN04,
GN06], namely a description of the Hecke module of K-invariant vectors. (These vectors are com-
monly called ‘spherical’, but to avoid a double use of this word we will only call them ‘unramified’.)
Note that C∞

c (X)K ⊂ C∞
c (X)ur.

Let H(G,K) denote the convolution algebra of K-biinvariant measures on G. Recall the Satake
isomorphism H(G,K) � C[A∗]W . Since all vectors in C∞

c (X)ur have spectral support over the image
of δ−

1
2A∗

X inA∗/W , H(G,K) acts on C∞
c (X)K through the corresponding quotient, which will be de-

noted by HX . Let KX denote the fraction field of HX , hence naturally KX � C(δ−
1
2A∗

X)NW (−ρ+a∗X).

Theorem 6.2.1. The space C∞
c (X)K is a finitely generated, torsion-free module for HX .

Moreover, we have C∞
c (X)K ⊗HX

KX � (C(δ−
1
2A∗

X)WX )|H1(k,AX)|.
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Remark. The isomorphism above is not canonical since it depends, as we shall see, on the choice of
one K-invariant vector.

Proof. The fact that C∞
c (X)K is torsion-free over HX follows from Theorem 6.1.1.

Now let (Siχ)i denote the operators of Theorem 5.3.2 (in particular, they are equal to the oper-

ators SX̊χ̃ if there are no pairs (Y, α) where Y is a B-orbit of maximal rank, α is a simple root and

(Y, α) is of type N). Fix a φ0 ∈ C∞
c (X)K and define a map C∞

c (X)K → (C(δ−
1
2A∗

X))|H1(k,AX)| by

φ �→
(
Siχ(φ)
Siχ(φ0)

)
i

.

We claim, first, that the image of this map lies in the WX-invariants. Indeed, by Theorem 5.3.2,
for w ∈WX the quotients Siχ and Siwχ are isomorphic (through Tw). Since there is a unique line of
K-invariant vectors in I(χ), it follows that Siχ(φ) = c(χ) · Siχ(φ0) for some constant c(χ), rational
in χ, and since Siχ and Siwχ are isomorphic, it follows that this constant is the same for χ and for
wχ. This proves that we have a map C∞

c (X)K → (C(δ−
1
2A∗

X)WX )|H1(k,AX)|.
We have shown in Theorem 6.1.1 that for a non-zero φ ∈ C∞

c (X)K it is not possible that
Siχ(φ) = 0 for every χ, i; this establishes that the map is injective.

We prove surjectivity of the map when tensored with KX . Note that the space of morphisms
C∞
c (X) → I(χ) generically has dimension equal to r := (N (ρ + a∗X) : WX) · |H1(k,AX)|. Sup-

pose that C∞
c (X)K ⊗HX

KX had smaller dimension over KX . Then the basis (Siχ)i of the space
of morphisms C∞

c (X) → I(χ) satisfies a linear relation
∑

i ci(χ)Siχ = 0 (with ci(χ) rational)
when restricted to the subspace generated by C∞

c (X)K . Given φ ∈ C∞
c (X)ur, we claim that∑

i ci(χ)Siχ(φ) = 0 for generic (and, hence, every) χ. Indeed, for generic χ the image of the Siχ in
I(χ) is irreducible and unramified, hence if

∑
i ci(χ)Siχ(φ) is non-zero, then one of its G-translates,

when convolved with the characteristic function of K, should be non-zero. Since the Siχ are G-
equivariant and R(Kg)φ ∈ C∞

c (X)K , we have R(Kg)
∑

i ci(χ)Siχ(φ) =
∑

i ci(χ)Siχ(R(Kg)φ) = 0 by
assumption. It follows that

∑
i ci(χ)Siχ = 0 on the whole space, contradicting what we know about

the dimension of the space of morphisms into I(χ). This proves the stated isomorphism.

Finally, recall from § 4.6 that we may regularize the Siχ (by multiplying by a suitable regu-
lar function of χ) so that they are regular for every χ. Then φ �→ (Siχ(φ))i defines an injection
C∞
c (X)K ↪→ C[δ−

1
2A∗

X ]|H1(k,AX)|. Since the latter is a finitely generated HX-module, it follows that
C∞
c (X)K is also finitely generated.

6.3 A commutative ring of endomorphisms

In this section we assume, for simplicity, that is, H1(k,AX) = {1}, that is, each B-orbit of maximal
rank contains only one rational B-orbit.

6.3.1 Definition of the map. Let D ∈ EndH(G,K)(C∞
c (X)K). It induces an endomorphism of

C∞
c (X)K ⊗HX

KX � (C(δ−
1
2A∗

X)WX ) which is KX -linear. If it is also C(δ−
1
2A∗

X)WX -linear (in
other words, if Sχ ◦ D ∼ Sχ on C∞

c (X)K), then we call D ‘geometric’. Of course, if (C∞
c (X))ur

is generically multiplicity-free (i.e. WX = NW (−ρ + a∗X)), then every endomorphism is geometric,
but this will not be the case in general. The map D �→ c(χ), where c(χ) is given by the relation
Sχ ◦ D = c(χ)Sχ, defines a ring homomorphism EndH(G,K)(C∞

c (X)K)geom → C(δ−
1
2 A∗

X). In fact,
by Theorem 5.2.1, the image lies in invariants of the little Weyl group WX . Moreover, since by
Theorem 6.2.1 C∞

c (X)K is a finitely generated HX-module, every HX -algebra of endomorphisms
is a finitely generated module over HX ; and since the integral closure of HX in C(δ−

1
2A∗

X)WX is
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C[δ−
1
2A∗

X ]WX (the variety A∗
X/WX is normal), it follows that the image of the above homomorphism

must lie in C[δ−
1
2A∗

X ]WX . We conjecture that the image is the whole ring.

Conjecture. There is a canonical isomorphism.

(EndH(G,K)C
∞
c (X)K)geom � C[δ−

1
2 A∗

X]WX .

The reason that we believe that these endomorphisms exist in general is the following analogy
with invariant differential operators on X.

As was proven by Knop in [Kno94b], the algebra of invariant differential operators on a spherical
variety (over an algebraically closed field K in characteristic zero) is commutative, and isomorphic
to K[ρ+a∗X ]WX . Here, a∗X is isomorphic to the Lie algebra of what we denote by A∗

X . This generalizes
the Harish-Chandra homomorphism (if we regard the group G as a spherical G × G variety), and
in fact the following diagram is commutative.

z(G) �� D(X)G

K[a∗]W �� K[ρ+ a∗X ]WX

(15)

What we propose is a similar diagram for the p-adic group, which on the left side will have the
Satake isomorphism for H(G,K) (or, equivalently, the unramified factor of the Bernstein center)
and on the right side the ‘geometric endomorphisms’ that we defined above, which should be viewed
as an analog for the invariant differential operators.

H(G,K) �� (EndH(G,K)C∞
c (X)K)geom

C[A∗]W �� C[δ−
1
2A∗

X ]WX

(16)

Remark. The reader should not be confused by the fact that in Knop’s result the Lie algebra a∗X is
offset by ρ while in ours the torus A∗

X is offset by δ−
1
2 , which is equal to −ρ: the discrepancy is a

matter of definitions, and to fix it we could have denoted by I(χ−1) what we denoted by I(χ), but
of course this would contradict the conventions in the literature.

Our interest in this conjecture comes from the fact that the analog of invariant differential oper-
ators suggests the possibility of a ‘geometric’ construction of these endomorphisms, while spectral
methods do not seem to suffice in general.

However, it is easy to prove the conjecture in the cases that X is generically multiplicity-free or
parabolically induced from a multiplicity-free one. Then these endomorphisms will be provided by
the Hecke algebra of G or, respectively, of a Levi subgroup acting ‘on the left’.

Theorem 6.3.2. The Conjecture of § 6.3.1 is true if:

(i) the unramified spectrum of X is generically multiplicity-free, in which case the geometric
endomorphisms are all of the endomorphisms of C∞

c (X)K ; or

(ii) the spherical variety X is ‘parabolically induced’ from a spherical variety whose unramified
spectrum is generically multiplicity-free.

Proof. In the first case, C[A∗]W surjects onto C[δ−
1
2A∗

X ]WX . The claim that these are all of the
endomorphisms follows from Theorem 6.1.1.
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In the second case, as we saw in § 2.3, the subtorus A∗
X and the Weyl group WX coincide with

those associated to the corresponding spherical variety of the Levi. Hence, C[δ−
1
2A∗

X ]WX is surjected
upon by the Bernstein center of L acting ‘on the left’.

Acknowledgements

I would like to thank professors Joseph Bernstein, Daniel Bump, Dennis Gaitsgory, Hervé Jacquet,
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