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Abstract

We develop a conservation law for a multi-class GI/GI/1 queue operating under a general
work-conserving scheduling discipline. For single-class single-server queues, conserva-
tion laws have been obtained for both nonanticipating and anticipating disciplines with
general service time distributions. For multi-class single-server queues, conservation
laws have been obtained for (i) nonanticipating disciplines with exponential service time
distributions and (ii) nonpreemptive nonanticipating disciplines with general service time
distributions. The unifying conservation law we develop generalizes already existing
conservation laws. In addition, it covers popular nonanticipating multi-class time-sharing
disciplines such as discriminatory processor sharing (DPS) and generalized processor
sharing (GPS) with general service time distributions. As an application, we show that
the unifying conservation law can be used to compare the expected unconditional response
time under two scheduling disciplines.
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1. Introduction

The so-called work-conserving property is fundamental to single-server (multi-class) sys-
tems. Let us consider a single-server queue with M job classes. Let Uj(t) denote the unfinished
work at time t of class-j jobs, j = 1, . . . , M , and let U(t) = ∑M

j=1 Uj(t) denote the total
unfinished work in the system. The unfinished work in the system, U(t), is a function that has
vertical jumps at arrival epochs equal in size to the corresponding service requirements of the
job and remains constant when it hits the horizontal axis. We say that the scheduling discipline
is work conserving if U(t) decreases at rate 1(sec/sec) whenever U(t) > 0. A sample path
argument shows that the unfinished work in the system, U(t), is the same regardless of the
work-conserving scheduling discipline being deployed.

In this paper we focus on conservation laws for the time average unfinished work. We refer
to [11] and [23] for the derivation and application of sample-path conservation laws. Let Uj

denote the time average unfinished work of class j , j = 1, . . . , M . The work-conservation
property implies that the total time average unfinished work,

U =
M∑

j=1

Uj , (1)

is a constant that depends only on the interarrival and service time distributions, and its value
is independent of how the server’s capacity is shared among the jobs of the various classes.
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The work-conserving property has led to the development of so-called work-conservation
laws. In the case of a single-class queue Kleinrock [16, Section 4] proved that the expected
conditional response time must satisfy an integral equation. Kleinrock’s original result was
obtained for the subset of nonanticipating scheduling disciplines. A scheduling discipline
is said to be nonanticipating if the scheduling decision is independent of the actual service
requirements of the jobs. O’Donovan [17] generalized this result by deriving a conservation
law for the set of scheduling disciplines that are anticipating, that is, disciplines that may use
information on the (remaining) service time when deciding which job will be served. For
the multi-class case, the work-conserving property allows us to obtain a linear relation that the
expected unconditional response times of the various classes must satisfy. Such a linear relation
has been obtained for (i) nonanticipating disciplines with exponential service time distributions
[4] and (ii) nonpreemptive nonanticipating disciplines with general service time distributions
[16, Section 3.4]. For more information on work-conservation laws, we refer the reader to
[2, Section 3.2], [10, Chapter 6], [13, Sections 11.4–11.5], and [26, Chapter 10].

The application of work-conservation laws has proven extremely successful in the design
of optimal control policies of queueing systems. For instance, it has led to the development of
the achievable region approach; see seminal work by Coffman and Mitrani [4], Dacre et al. [6],
Federgruen and Groenevelt [8], Green and Stidham [11], and Shantikumar and Yao [22].

In this paper we derive a conservation law for a multi-class GI/GI/1 queue with a general
work-conserving scheduling discipline and general service time distributions. Provided the
scheduling discipline is work conserving, the scheduling discipline may be anticipating or
nonanticipating, preemptive or nonpreemptive. We will further show that already existing
conservation laws for multi-class and single-class queues can be obtained as particular cases
of our work-conservation law. Thus, the conservation law developed provides a unifying view
on the already existing conservation laws for single-server queues. We note that our unifying
conservation law covers popular multi-class disciplines such as DPS and GPS with general
service time distributions, a case which was not covered by existing conservation laws. It is
worthwhile to note that, for the case of a single-server single-class queue with an anticipating
service discipline, we obtain an alternative (equivalent) expression for the conservation law that
O’Donovan [17] developed.

The remainder of the paper is organized as follows. In Section 2 we introduce the notation
and assumptions. In Section 3 we develop the unifying conservation law. In Section 4 we use the
new conservation law to compare the expected unconditional response time of a nonanticipating
discipline with that of an anticipating discipline that favors short jobs. In Section 5 we show
that existing conservation laws can be obtained as a particular case of our conservation law.

2. Notation and assumptions

Throughout the paper, we consider a GI/GI/1 queue operating under a work-conserving
discipline. Thus, we have a single server with identically distributed interarrival times and
identically distributed service times. We assume that these random variables are mutually
independent. Since the scheduling discipline is assumed to be work conserving, the total
unfinished work in the system at time t , U(t), is independent of the discipline being deployed.

Let A denote the interarrival time distribution, and let λ = 1/ E[A] denote the mean arrival
rate of jobs. With probability pj an arrival is a class-j job (independent of the interarrival
times and classification of previous jobs). Let λj = λpj denote the mean arrival rate of class-j
jobs. The service time distribution of class j is denoted by Fj (·), and let Fj (·) = 1 − Fj (·)
denote its complementary distribution. Let E[Xj ] and E[X2

j ], j = 1, . . . , M , respectively
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denote the first and second moments of the service time distributions. The load of class j is
given by ρj = λj E[Xj ], and the total load is given by ρ = λ

∑M
j=1 pj E[Xj ] = ∑M

j=1 ρj .
We assume a stable regime, i.e. ρ < 1. As a direct consequence of the renewal assumption,
the system regenerates itself at the beginning of each busy period. Throughout the paper, we
assume that the service time distributions of the various classes have a finite second moment,
i.e. E[X2

j ] < ∞, j = 1, . . . , M . This ensures that, under any work-conserving discipline, the
expected unfinished work at both arrival epochs (denoted by V ) and random epochs (denoted
by U ) is finite; see [14] and [5, Section II.5.6], respectively. In the context of single-class
systems, the subscript denoting the class will be dropped from all variables.

Recall that the total expected unfinished work at a random epoch , U , is independent of
the scheduling discipline; hence, we have U = U

FCFS
, where U

FCFS
denotes the expected

unfinished work under the first come first served policy. In the case of Poisson arrivals, by the
Pollaczek–Khinchin formula we obtain

U = U
FCFS =

∑M
j=1 λj E[X2

j ]
2(1 − ρ)

. (2)

Let Tj (x) denote the expected conditional response time of a class-j job with service time
x. In addition, and bearing in mind the analysis of anticipating disciplines, let Tj (u; x) denote
the expected conditional time that a class-j job with total service time x spends in the system
in order to obtain u units of service, u ≤ x. In particular, Tj (x; x) = Tj (x) denotes the
regular expected conditional response time. We note that, for the set of disciplines that are
nonanticipating, Tj (u; x) = Tj (u) for all u ≤ x. We denote by T j the expected unconditional
response time of class-j jobs, that is, T j = ∫ ∞

x=0 Tj (x) dFj (x). In the analysis we make the
following assumption.

Assumption 1. The function Tj (u; x), j = 1, . . . , M , u ≤ x, has a continuous partial
derivative with respect to x.

This assumption does not seem very restrictive. For instance, for nonanticipating disciplines,
we have Tj (u; x) = Tj (u), and hence ∂Tj (u; x)/∂x = 0 for all u ≤ x. For the shortest
remaining processing time (SRPT), which is the most popular anticipating discipline, an
expression for T (u; x) was provided in [17, p. 575]. Taking the derivative with respect to
x, it is easy to see that a sufficient condition for T SRPT(u; x) to have a continuous derivative
with respect to x is that the service time distribution is a continuous function from the right.

3. A unifying conservation law

In this section we state the main result of the paper. In Theorem 1, below, we develop
a conservation law for a GI/GI/1 multi-class system operating under a general scheduling
discipline and with general service time distributions. In spite of the apparent simplicity of the
derivation, our result generalizes already existing conservation laws, and in Section 5 we will
show that previous laws can be obtained as particular cases of our unifying law.

Before stating our main result, we briefly mention the most important set of disciplines
that Theorem 1, below, covers. For single-class systems, the set of nonanticipating scheduling
disciplines includes among others FCFS, processor sharing (PS), foreground–background (FB),
also known as least attained service (LAS), and last come first served (LCFS). Important
examples of anticipating disciplines are the SRPT [19], [21], the shortest job first, and the
fair sojourn protocol (FSP) [9]. In multi-class systems the most popular disciplines are
nonanticipating, for example, GPS [18], [24], (DPS) [7], [15], and priority disciplines.
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Figure 1: Cumulative contribution over time of the ith class-j job with size x on the unfinished work
(shaded region).

Theorem 1. Consider a GI/GI/1 multi-class queue under a work-conserving scheduling dis-
cipline. Provided that Assumption 1 is satisfied, the expected conditional response times of the
various classes satisfy

M∑
j=1

λj

∫ ∞

x=0
Fj (x)

(
Tj (x) +

∫ x

u=0

∂Tj (u; x)

∂x
du

)
dx = U, (3)

where U denotes the total expected unfinished work in the system which depends only on
the interarrival and service time distributions. If, in addition, we assume that class-j jobs,
j = 1, . . . , M , arrive according to a Poisson process then

U =
∑M

j=1 λj E[X2
j ]

2(1 − ρ)
.

Proof. We consider class j , j = 1, . . . , M . Let Wi
j , i = 1, 2, . . ., denote the cumulative

burden of the ith class-j job to the unfinished work of the system (shaded region in Figure 1).
Formally,

Wi
j :=

∫ di
j

t=0
Ri

j (a
i
j + t) dt,

where ai
j denotes the arrival time of the ith class-j job, di

j denotes its response time, and Ri
j (t)

denotes its remaining service requirement at time t . In particular, Ri
j (a

i
j ) = x denotes the

total service requirement of this job, and Ri
j (a

i
j + di

j ) = 0. Since ρ < 1, the busy period
has a finite length with probability 1. Furthermore, since the superposed arrival process is a
renewal process, the beginning points of the busy periods constitute regeneration points and,
as a consequence, the sequence {Wn

j }∞n=1 is a regenerative process with finite cycle lengths.
Hence, the process {Wn

j }∞n=1 is stationary and ergodic. Applying the Palm inversion formula
[3], [2] to the unfinished work of class j , we obtain Uj = λj E[Wj ]. This equation can also
be obtained by the generalized Little’s law; see [3]. Informally, the equation Uj = λj E[Wj ]
states that the time average of a stochastic process (Uj ) is equal to the arrival rate (λj ) times
the average contribution of each job to the process (E[Wj ]).

We now derive the value of E[Wj ]. Let τ i
j (u; x) denote the amount of time that the ith

class-j job, which has a size equal to x, needs to obtain u ≤ x units of service. In particular,
we note that τ i

j (x) := τ i
j (x; x) = di

j is equal to the response time of the ith class-j job. Note
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that E[τ i
j (u; x)] = Tj (u; x). Then

E[Wj ] = E

[∫ ∞

x=0

∫ τ i
j (x)

t=0
Ri

j (a
i
j + t) dt dFj (x)

]

= E

[∫ ∞

x=0

∫ x

u=0
τ i
j (x − u; x) du dFj (x)

]
.

This corresponds to integrating the shaded area in Figure 1 either horizontally (first equation)
or vertically (second equation). By a simple change of variables and interchanging the order
of the integrals, we obtain

E[Wj ] = E

[∫ ∞

x=0

∫ x

u=0
τ i
j (u; x) du dFj (x)

]

=
∫ ∞

x=0

∫ x

u=0
Tj (u; x) du dFj (x).

By Assumption 1, the function Tj (u; x) has a continuous partial derivative with respect to x;
hence, by partial integration we obtain

E[Wj ] = −Fj (x)

∫ x

u=0
Tj (u; x) du

∣∣∣∣
∞

x=0
+

∫ ∞

x=0
Fj (x)

(
Tj (x; x) +

∫ x

u=0

∂Tj (u, x)

∂x
du

)
dx.

(4)
The second moment of the service time distribution satisfies

E[X2
j ] =

∫ ∞

x=0
x2 dFj (x) =

∫ ∞

x=0
2xF j (x) dx.

By partial integration we obtain
∫ ∞

x=0
x2 dFj (x) =

∫ ∞

x=0
2xF j (x) dx + lim

x→∞ x2Fj (x).

Since the service time distribution has a finite second moment, we find that limx→∞ x2Fj (x) =
0. Let B(y) denote the expected length of the busy period initiated by a job of size y. Note that
B(·) refers to the regular busy period in the GI/GI/1 (and not the subbusy period of a particular
class). Then it follows that

Tj (u; x) ≤ Tj (x; x) ≤ B(x + V ),

where V denotes the expected total unfinished work in the system at an arrival epoch. Let L

denote a constant such that E[min(A, L)] >
∑M

j=1 pj E[Xj ], that is, we truncate the interarrival
times such that the system is still stable. Using Theorem III.3.1 of [12] and Wald’s lemma, it
is easy to show that

E[B(y)] ≤ y + L

E[min(A, L)]/ E[A] − ρ
.

Together with the fact that limx→∞ x2Fj (x) = 0, we obtain

lim
x→∞ Fj (x)

∫ x

u=0
Tj (u; x) du ≤ lim

x→∞ Fj (x)
x2 + (V + L)x

E[min(A, L)]/ E[A] − ρ
= 0. (5)
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Thus, (4) becomes

E[Wj ] =
∫ ∞

x=0
Fj (x)

(
Tj (x) +

∫ x

u=0

∂Tj (u; x)

∂x
du

)
dx.

Recall that Uj = λj E[Wj ], j = 1, . . . , M . Now the result follows after summing over all the
classes and invoking the work-conservation property, (1). When the arrival processes of the
various classes are Poisson, the time average total unfinished work is given by (2).

In the context of a multi-class queue, the most important disciplines are nonanticipating. In
Corollary 1, below, we specialize Theorem 1 to this set of disciplines.

Corollary 1. In addition to the conditions of Theorem 1, assume that the scheduling discipline
is nonanticipating. Then

M∑
j=1

λj

∫ ∞

x=0
Fj (x)Tj (x) dx = U, (6)

where U is the expected unfinished work in the system which depends only on the interarrival
and service time distributions. If the arrival processes of the various classes are Poisson then

U =
∑M

j=1 λj E[X2
j ]

2(1 − ρ)
.

Proof. The proof follows readily from Theorem 1 after noting that, for a nonanticipating
discipline, we have Tj (u; x) = Tj (u), and hence ∂Tj (u; x)/∂x = 0 for all 0 ≤ u ≤ x.

We note that Corollary 1 covers important multi-class disciplines such as DPS and GPS.
For instance, Corollary 1 was used in [1] to study the asymptotics of the expected conditional
response time in a DPS queue when the service time grows to ∞.

4. Performance of anticipating disciplines

In this section we show that the conservation law derived in Theorem 1 may be useful in
evaluating the effect that deploying an anticipating service time discipline has on the expected
unconditional response time.

Proposition 1. Consider a single-class queue with exponentially distributed service times. Let
π1 denote a work-conserving nonanticipating discipline, and let π2 denote a work-conserving
anticipating discipline such that, for all 0 ≤ u ≤ x,

∂T π2(u, x)

∂x
≥ 0. (7)

Then

T
π1 ≥ T

π2
,

where T
π1 and T

π2 denote the expected unconditional response time obtained under π1 and
π2, respectively.
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Proof. Since π1 is nonanticipating and noting that the exponential assumptions imply that
F(x) dx = E[X] dF(x), from Corollary 1 we obtain

U = λ

∫ ∞

x=0
F(x)T π1(x) dx

= λ E[X]
∫ ∞

x=0
T π1(x) dF(x)

= ρT
π1

.

In the case of π2, the conservation law, (3), can be written as

U = ρT
π2 + λ

∫ ∞

x=0
F(x)

∫ x

u=0

∂T π2(u; x)

∂x
du dx.

Taking the difference we obtain

ρ(T
π1 − T

π2
) = λ

∫ ∞

x=0
F(x)

∫ x

u=0

∂T π2(u; x)

∂x
du dx.

The final result follows as a direct consequence of (7).

Proposition 1 shows that ∂T π2(u, x)/∂x ≥ 0 for all 0 ≤ u ≤ x is a sufficient condition for
an anticipating discipline π2 to have a smaller expected unconditional response time compared
to any nonanticipating discipline, i.e. discipline π2 discriminates against large jobs. The set of
scheduling disciplines that satisfy (7) is large. Using O’Donovan’s expression [17, p. 575] it is
easy to verify that (7) is indeed satisfied for SRPT. We expect that policies such as FSP, shortest
job first (preemptive and nonpreemptive), and SMART [25] will also satisfy (7) since they all
discriminate against large jobs.

In future work we plan to investigate whether a precise evaluation of the term ∂T (u, x)/∂x

allows us to obtain precise bounds on the expected unconditional response time of anticipating
disciplines.

5. Relation with previously obtained conservation laws

The derivations of existing conservation laws for the single-class and multi-class systems
were obtained by different approaches. In this section we show that these conservation laws
can all be obtained as a particular case of the unifying conservation law as stated in Theorem 1.

5.1. Single-class queue

5.1.1. Nonanticipating discipline. It is straightforward to derive a work-conservation law for a
single-class, nonanticipating scheduling discipline. Setting M = 1 in Corollary 1 we obtain

U = λ

∫ ∞

x=0
F(x)T (x) dx,

which is precisely the conservation law for the single-class system as stated in [2, Section 2.3],
[16, Section 4.9], and [17].
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5.1.2. Anticipating discipline. In this section we show how the conservation law for a general
anticipating scheduling discipline obtained by O’Donovan [17, Equation (9)] can be retrieved
from the unifying conservation law. Setting M = 1 in Theorem 1 we obtain

U = λ

∫ ∞

x=0
F(x)

(
T (x) +

∫ x

u=0

∂T (u; x)

∂x
du

)
dx

= λ

∫ ∞

x=0
F(x)

d

dx

(∫ x

u=0
T (u; x) du

)
dx

= λ

∫ ∞

x=0

∫ x

u=0
T (u; x) du dF(x),

where the last equality is obtained by partial integration and (5). Making the change of variable
u = x − r , and integrating the inner integral by parts we obtain

U = λ

∫ ∞

x=0

∫ x

r=0
(−r∂rT (x − r; x)) dF(x),

where the notation ∂r denotes a differential with respect to the variable r . Now by interchanging
the order of the integrals we obtain

U = λ

∫ ∞

r=0
r

∫ ∞

x=r

(−∂rT (x − r; x)) dF(x),

which is precisely the conservation law as stated in O’Donovan [17, Equation (9)]. Note that,
owing to the definition of T (x − r; x), we have −∂rT (x − r; x) ≥ 0.

5.1.3. Nonpreemptive anticipating discipline. Baccelli and Brémaud [2, p. 163] developed a
conservation law for the subset of anticipating scheduling disciplines that are nonpreemptive
(for example, nonpreemptive shortest job first). In this case the expected conditional sojourn
time can be expressed as T (u; x) = u + V (x) for all 0 ≤ u ≤ x, where V (x) denotes the
expected waiting time in the queue for a job of size x ≥ 0, i.e. the elapsed time between
the arrival time and the time at which the job starts to be served. Setting M = 1 in (3) and
substituting the expression for T (u; x), we obtain

U = λ

∫ ∞

x=0
F(x)

(
x + V (x) +

∫ x

u=0

dV (x)

dx
du

)
dx

= 1

2
λ E[X2] +

∫ ∞

x=0
F(x)

d(xV (x))

dx
dx

= 1

2
λ E[X2] +

∫ ∞

x=0
xV (x) dF(x),

where the last equality is obtained by partial integration. This expression is the same as the
conservation law stated in [2, p. 163].

5.2. Multiclass queue

5.2.1. Nonanticipating discipline and exponential service time distributions. A conservation
law for nonanticipating disciplines with exponential service times was obtained in [4] (see also
[10, Section 6.2]). From the assumption of exponential service time distributions it follows
that, for j = 1, . . . , M ,

Fj (x) dx = E[Xj ] dFj (x). (8)
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Substituting (8) into (6) we obtain

U =
M∑

j=1

λj E[Xj ]
∫ ∞

x=0
Tj (x) dFj (x) =

M∑
j=1

ρjT j ,

which is precisely the conservation law as stated in [4] and [10, Section 6.2].

5.2.2. Nonpreemptive nonanticipating discipline and general service time distributions. Fi-
nally, let us consider a nonpreemptive nonanticipating scheduling discipline with general service
time distributions. Such a policy specifies which class to serve whenever a job leaves the system.
For example, the server may visit the classes in some order: fixed, random, or following a
priority rule. The policy is nonanticipating if this decision is made based only on the past history
and current state of the system. Within one class, the job that will be served can be determined
with a nonpreemptive nonanticipating policy like FCFS or random order of service. Under a
nonpreemptive nonanticipating scheduling discipline, the expected conditional response time
for a class-j job of size x satisfies Tj (x) = x+V j for all x ≥ 0, where V j denotes the expected
waiting time in the queue for a class-j job (which is independent of x), i.e. the elapsed time
between the arrival time and the time at which the job starts to obtain service. Substituting this
into (6) we obtain

U =
M∑

j=1

λj

∫ ∞

x=0
Tj (x)F j (x) dx

= 1

2

M∑
j=1

λj E[X2
j ] +

M∑
j=1

λjV j

∫ ∞

x=0
Fj (x) dx

= 1

2

M∑
j=1

λj E[X2
j ] +

M∑
j=1

ρjV j ,

which is equivalent to the conservation law as stated in [16, Section 3.4] and [20].
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