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On elliptic curves with p-isogenies over
quadratic fields
Philippe Michaud-Jacobs
Abstract. Let K be a number field. For which primes p does there exist an elliptic curve E/K
admitting a K-rational p-isogeny? Although we have an answer to this question over the rationals,
extending this to other number fields is a fundamental open problem in number theory. In this
paper, we study this question in the case that K is a quadratic field, subject to the assumption that E
is semistable at the primes of K above p. We prove results both for families of quadratic fields and
for specific quadratic fields.

1 Introduction

One of the most important aspects of the study of elliptic curves is the investigation of
the maps between them, and in particular their isogenies. Isogenies of prime degree
are perhaps the most intriguing: a complete understanding would provide much
insight into the arithmetic of elliptic curves, yet we still cannot answer some of the
most basic questions about them. In this paper, we will investigate isogenies of prime
degree over quadratic fields.

Given an elliptic curve E defined over a number field K, and a prime p, we say that
E admits a K-rational p-isogeny if it admits an isogeny, φ, of degree p, satisfying φσ = φ
for any σ ∈ Gal(K/K). Equivalent formulations are that E has a K-rational subgroup
of order p, or that the mod p Galois representation of E is reducible. We simply call
an isogeny rational if it is Q-rational. The key question we would like to answer is
the following: given a number field K, for which primes p does there exist an elliptic
curve E/K admitting a K-rational p-isogeny? Thanks to the work of Mazur, we have a
complete answer to this question over the rationals.

Theorem 1.1 (Mazur [15, Theorem 1]) Let p be a prime such that there exists an elliptic
curve E/Q that admits a rational p-isogeny. Then,

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}.
Although this theorem was proved more than 40 years ago, it has not been possible

to obtain an analogous result for even a single other number field. Perhaps the most
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likely candidate for a similar result is a quadratic field of small discriminant. Recent
work [2, p. 5] has shown that this is possible assuming the generalized Riemann
hypothesis, although removing this assumption seems to be out of reach at this
time.

Apart from the intrinsic interest of studying isogenies of elliptic curves, perhaps
one of the most spectacular consequences of Mazur’s theorem is the role it plays in the
proof of Fermat’s Last Theorem. More generally, in the “modular approach” to studying
Diophantine equations, one associates a Frey elliptic curve to a putative solution of a
Diophantine equation, and applies Ribet’s level-lowering theorem [20, Theorem 1.1] to
relate this Frey curve to a modular form. A key hypothesis in applying Ribet’s theorem
at a given prime p is the nonexistence of a rational p-isogeny.

More recently, the modular approach has been applied over various number fields,
most commonly over real quadratic fields. See [1, 4, 13] for a sample of papers that do
this. In these examples, the Frey curve one constructs is defined over a number field,
K, and in order to apply an analogue of Ribet’s level-lowering theorem [11, Theorem
7], it is again necessary, for a given prime p, to rule out the existence of a K-rational
p-isogeny. Since there is no analogue of Mazur’s theorem over number fields, various
methods have been used to achieve this. A further assumption in this analogue of
Ribet’s theorem is that the elliptic curve one is working with should be semistable at
all primes of K above p, which one may view as a natural condition in its own right.
With the assumption of semistability at the primes of K above p, it is possible to obtain
results akin to Mazur’s theorem, both for families of quadratic fields and for specific
quadratic fields. Our main result is the following.

Theorem 1.2 Let K be a real quadratic field, and let ε be a fundamental unit of K. Let
n be the exponent of the class group of K, and assume n ≤ 3. Let p be a prime such that
there exists an elliptic curve E/K which admits a K-rational p-isogeny and is semistable
at all primes of K above p. Then, either:

• p ramifies in K; or
• p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37}; or
• p splits in K and p ∣ NormK/Q(ε12 − 1).

Although this theorem only considers the case n ≤ 3, where n is the exponent of the
class group of K, we may obtain similar results for larger values of n. For example, in
Section 5, we consider the case n = 100. We also note that the list of primes appearing
in this theorem is the smallest possible: for each p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37} and
n ≤ 3, there exists a real quadratic field K with a class group exponent n and an elliptic
curve E/K which has a K-rational p-isogeny and is semistable at all primes of K above
p (see Remark 5.2).

If we work over a fixed quadratic field, which is not imaginary of class number 1,
then we can obtain more precise results. The following theorem considers certain
“small” quadratic fields, both real and imaginary.

Theorem 1.3 Let K = Q(
√

d)with d ∈ {−5, 2, 3, 5, 6, 7}. Let p be a prime. There exists
an elliptic curve E/K which admits a K-rational p-isogeny and is semistable at all primes
of K above p if and only if p ∈ {2, 3, 5, 7, 13, 37} or the pair (d , p) appears in Table 1.
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d −5 2 3 5 6 7

p 43 11, 19 17, 19 17 11, 17 11, 17

Table 1: Remaining primes.

We highlight the fact that this is an “if and only if ” statement. It is also possible to
produce similar results for quadratic fields with a large class group exponent. As an
example, in Section 5.3, we consider a quadratic field with class group Z/122Z.

We now outline the rest of the paper. In Section 2, we analyze the situation
over the rationals, and prove a result analogous to Theorem 1.3. This result is a
corollary to Mazur’s theorem stated above. In Section 3, we study the mod p Galois
representation of an elliptic curve with a p-isogeny, and we introduce the notions
of isogeny characters and isogeny signatures. Next, in Section 4, by studying the
ramification of these isogeny characters and by investigating certain properties of the
modular curve X0(p), we see how the existence of an elliptic curve with a p-isogeny
places stringent conditions on the prime p. This provides us with a method for ruling
out the existence of such primes. In Section 5, we apply this method, combined with a
study of quadratic points on modular curves, to prove Theorems 1.2 and 1.3. We also
consider further examples.

The Magma [5] code used to support the computations in this paper can be
found at

https://warwick.ac.uk/fac/sci/maths/people/staff/michaud/c/.

2 Elliptic curves with rational p-isogenies

We start with a short analysis of the situation over the rationals. Let E/Q be an elliptic
curve, and let p be prime for which E admits a rational p-isogeny. We will denote the
kernel of this isogeny by Vp , which is a rational cyclic subgroup of order p. The pair
(E , Vp) then gives rise to a noncuspidal point x ∈ X0(p)(Q). The study of the modular
curve X0(p), and in particular the Eisenstein quotient of its Jacobian, allowed Mazur
to prove his celebrated result [15, Theorem 1] (stated in Section 1), which classifies the
primes p for which X0(p) has noncuspidal rational points. This result allows us to
obtain an analogue of Theorem 1.3 quite easily.

Corollary 2.1 (Corollary to Mazur’s theorem on isogenies) There exists an elliptic
curve E/Q which admits a rational p-isogeny and is semistable at p if and only if

p ∈ {2, 3, 5, 7, 13, 37}.
Proof Suppose first that E/Q is an elliptic curve which admits a rational p-isogeny
and is semistable at p. By Theorem 1.1, it will suffice to rule out the primes

p ∈ {11, 17, 19, 43, 67, 163}.
For each of these values of p, the modular curve X0(p) has only finitely many
noncuspidal rational points, and we let x ∈ X0(p)(Q) denote one of these. Using
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p 2 3 5 7 13 37

E 14a1 14a1 11a1 26b1 147b1 1225e1

N(E) 2 ⋅ 7 2 ⋅ 7 11 2 ⋅ 13 3 ⋅ 72 52 ⋅ 72

Notes: We have used Cremona’s labeling, and N(E) denotes the conductor of E.

Table 2: Elliptic curves for the proof of Corollary 2.1.

Magma’s small modular curve package, we can write down an elliptic curve F/Q with
a rational subgroup Wp of order p such that the pair (F , Wp) gives rise to the point x.
In each case, the curve F (we have chosen) has additive potentially good reduction at
p (so F is not semistable at p) and its j-invariant is not equal to 0 or 1728. We compute
that 0 < vp(Δ(F)) < 6 in each case. In particular, F is minimal at p.

However, this alone is not enough to rule out the prime p. The pair (F , Wp) is
one representative for the point x ∈ X0(p)(Q), and it is possible that a different
representative is semistable at p. Suppose that (F̂ , Ŵp) also represents the point x ∈
X0(p)(Q) for an elliptic curve F̂/Q with a rational subgroup of order p. We note
that j(F) = j(F̂), so F̂ also has potentially good reduction at p. The curves F and F̂
are isomorphic (over Q), and since j(F) = j(F̂) ∉ {0, 1728}, the curves are quadratic
twists of each other (up to isomorphism over Q) by some square-free d ∈ Z, and
so we may replace F̂ by Fd , where Fd denotes the quadratic twist of F by d. Since
Δ(Fd) = d6 ⋅ Δ(F), we see that

vp(Δ(Fd)) = vp(Δ(F)) + 6vp(d).
It follows that 0 < vp(Δ(Fd)) < 12, so Fd is minimal at p and Fd does not have good
reduction at p. So Fd must have additive reduction at p.

For the converse, it suffices to find elliptic curves which have a rational p-isogeny
and are semistable at p for p ∈ {2, 3, 5, 7, 13, 37}. Table 2 gives an example of such an
elliptic curve in each case. We have chosen an elliptic curve of minimal conductor in
each case. ∎

3 Isogeny characters and isogeny signatures

We will now shift our attention to quadratic fields. In this section, we will introduce
two key concepts: isogeny characters and isogeny signatures. We will define these
concepts in relation to our setup, but they can be defined more generally for elliptic
curves with p-isogenies over arbitrary number fields (see [3]).

For the remainder of the paper, we will let p be a prime and let E/K be an elliptic
curve over a quadratic field K such that:
• E admits a K-rational p-isogeny; and
• E is semistable at all primes p ∣ p.
In this section, we will assume that:
• p ≥ 17; and
• p is unramified in K.
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We denote by φ this K-rational p-isogeny, and we write Vp for its kernel through-
out. The group Vp is a K-rational cyclic subgroup of E[p] of order p. Write GK =
Gal(K/K). The mod p Galois representation of E, ρE , p ∶ GK → GL2(Fp), is reducible,
and we have that

ρE , p ∼ (
λ ∗
0 χp λ−1 ),

where χp denotes the mod p cyclotomic character. We call λ ∶ GK → F×p the isogeny
character of (E , Vp). This character gives the action of GK on Vp , and we can choose
R ∈ Vp such that for all σ ∈ GK ,

Rσ = λ(σ)R.

Throughout, we will let τ denote the generator of Gal(K/Q). By choosing an
automorphism of K extending τ, we may also view τ as an element of Gal(K/Q). The
following lemma describes the isogeny characters of (Eτ , V τ

p ) and (E/Vp , E[p]/Vp).

Lemma 3.1 Let λ be the isogeny character of (E , Vp).
(i) The isogeny character of (Eτ , V τ

p ) is λτ , defined by λτ(σ) = λ(τσ τ−1) for σ ∈ GK .
(ii) The isogeny character of (E/Vp , E[p]/Vp) is χp λ−1.

Proof These statements are well known. We provide some short proofs here as we
were unable to find any in the literature. For (i), let R be a generator of Vp satisfying
Rσ = λ(σ)R for all σ ∈ GK . The point Rτ generates V τ

p . Let σ ∈ GK . Then, τσ τ−1 ∈ GK
and

Rτσ τ−1
= λ(τσ τ−1)R.

Applying τ, we see that

(Rτ)σ = λ(τσ τ−1)Rτ .

So the isogeny character of (Eτ , V τ
p )maps σ to λ(τσ τ−1) as required.

For (ii), let φ be the K-rational p-isogeny with kernel Vp . This means that
(E/Vp , E[p]/Vp) = (φ(E), φ(E[p])). We fix a basis (R1 , R2) of E[p] so that Rσ

1 =
λ(σ)(R1) for any σ ∈ GK . Then, φ(R2) generates φ(E[p]), and for any σ ∈ GK , we
have

φ(R2)σ = φσ(Rσ
2 ) = φ (bσ R1 + (χp λ−1)(σ)R2) = (χp λ−1)(σ)φ(R2),

where bσ is the upper-right entry of the matrix ρE , p(σ) (with respect to the basis
(R1 , R2)). ∎

We will be particularly interested in studying the ramification of the character
λ12. For a prime p of K above p, we will denote by Ip the inertia subgroup of GK
corresponding to p.

Proposition 3.2 [12, Proposition 2.1] Let λ be the isogeny character of (E , Vp). Then,
λ12 is unramified at the infinite primes of K and at all finite primes of K coprime to p. If
p ∣ p is a prime of K, then there exists a unique integer sp ∈ {0, 12} such that

λ12∣Ip = (χp ∣Ip)sp .
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If sp = 0, then we see that λ12 is unramified at p. We now fix, once and for all, a
prime p0 ∣ p of K. We define the isogeny signature of (E , Vp) to be (sp0 , sτ(p0)). We will
also refer to this as the isogeny signature of the associated character λ. This isogeny
signature is one of

(0, 0), (12, 12), (12, 0), or (0, 12).

We will refer to (0, 0) and (12, 12) as constant isogeny signatures, and we will refer to
(12, 0) and (0, 12) as nonconstant isogeny signatures. We note that if the prime p is
inert in K, then the isogeny signature of (E , Vp) is constant, since τ(p0) = p0. Primes
p for which the isogeny signature of (E , Vp) is constant are referred to as Type 1 primes
in [2, 17]. If the isogeny signature of λ is (0, 0), then λ12 is everywhere unramified.

Remark 3.3 Our assumption that E is semistable at the primes of K above p forces
the integer sp appearing in Proposition 3.2 to be 0 or 12. Without assuming this
semistability condition, sp can also take the values 4, 6, and 8 (see [9, pp. 7–9]). This
gives rise to many more possible isogeny signatures. In particular, one of the isogeny
signatures which must be considered is (6, 6). This is the isogeny signature which is the
most difficult to rule out, and it is the reason that the generalized Riemann hypothesis
is assumed in [2, 3]. In the case that K = Q, the case analogous to isogeny signature
(6, 6) is considered by Mazur in [15, pp. 154–155], and is ruled out using some relatively
elementary algebraic number theory to conclude that the class number of Q(√−p)
must be 1.

Lemma 3.4 Suppose that the isogeny signature of (E , Vp) is (a, b).
(i) The isogeny signature of (Eτ , V τ

p ) is (b, a).
(ii) The isogeny signature of (E/Vp , E[p]/Vp) is (12 − a, 12 − b).

(iii) Let Ê/K be an elliptic curve with a K-rational subgroup V̂p of order p. Suppose
ψ ∶ E → Ê is an isomorphism (over K) satisfying ψ(Vp) = V̂p . Then, (Ê , V̂p) has
isogeny signature (a, b).

Proof Parts (i) and (ii) follow from Lemma 3.1 and the definition of isogeny sig-
nature. For (iii), the curve Ê will be a twist of the curve E by a character, θ, whose
order divides 2, 4, or 6. In particular, the order of θ divides 12, and it follows that the
12th powers of the isogeny characters of (E , Vp) and (Ê , V̂p) agree, and so the isogeny
signatures must also agree. We refer to [8, pp. 6–9] for more on how ρE , p is affected
by twisting. We note that (iii) is stated in [17, p. 330]. ∎

A pair (E , Vp) gives rise to a K-rational point on X0(p). Part (iii) of Lemma
3.4 allows us to extend the definition of isogeny signature to noncuspidal points
y ∈ X0(p)(K). We define the isogeny signature of a noncuspidal point y ∈ X0(p)(K)
to be the isogeny signature of any pair (Ê , V̂p) representing y, for Ê an elliptic curve
defined over K and V̂p a K-rational subgroup of order p. If the isogeny signature of y
is (a, b), then parts (i) and (ii) of Lemma 3.4 show that:
(i) the isogeny signature of yτ is (b, a); and

(ii) the isogeny signature of wp(y) is (12 − a, 12 − b).
Here, wp denotes the Atkin–Lehner involution on X0(p).
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4 Eliminating primes

Throughout this section, we will again assume that p ≥ 17 and that p is unramified in
K. We continue to denote by p0 a fixed prime of K above p. We write OK for the ring
of integers of K. We write λ for the isogeny character of (E , Vp), and (a, b) for the
isogeny signature of (E , Vp).

For the remainder of the paper, we will write q for a prime of K above a rational
prime q. We write nq for the norm of the ideal q, and we will denote by σq ∈ GK a
Frobenius element at q.

Our aim in this section is to see how to reduce the number of possibilities for p to a
(small) finite set. Our strategy for bounding, and subsequently eliminating, p is based
on the following key result.

Proposition 4.1 Let λ be the isogeny character of (E , Vp)with isogeny signature (a, b).
Let q ∤ p be a prime of K, let r be the order of the class of q in the class group of K, and
write qr = α ⋅OK . Then,

αa ⋅ (ατ)b ≡ λ12r(σq) (mod p0).
Proof This is a direct consequence of [17, Lemma 1]. We refer also to [12, Proposition
2.2] and [9, Proposition 2.6] for statements that use notation closer to ours. Indeed,
following [12, Proposition 2.2], the quantity Ns(α) is αa ⋅ (ατ)b , and the prime q is
the unique prime in the support of α. ∎

This proposition can then be used to prove the following result, which will be
crucial in our proof of Theorem 1.2.

Corollary 4.2 [12, Corollary 3.2] Let K be a real quadratic field. Let ε be a fundamental
unit of K. Suppose that

p ∤ NormK/Q(ε12 − 1).
Then, the isogeny signature of (E , Vp) is constant.

Proof Suppose that the isogeny signature of (E , Vp) is (12, 0) or (0, 12) (i.e., noncon-
stant). We will show that p ∣ NormK/Q(ε12 − 1). In the notation of [12], Ns(ε) = ε12 or
(ετ)12 (according to whether the isogeny signature is (12, 0) or (0, 12)), and applying
[12, Corollary 3.2] gives that

ε12 ≡ 1 (mod p0) or (ετ)12 ≡ 1 (mod p0).
Taking norms, we have that

p ∣ NormK/Q(ε12 − 1) or p ∣ NormK/Q((ετ)12 − 1).
The result follows since NormK/Q(ε12 − 1) = NormK/Q((ετ)12 − 1). ∎

This result will often allow us to focus on the case of a constant isogeny signature.
We will need different methods to deal with the nonconstant isogeny signatures if K
is imaginary quadratic or if the prime factors of NormK/Q(ε12 − 1) are large.

We can now also obtain a bound on p. The following result is similar to [12, Theorem
2]. The key difference is that we have removed a factor of 2 from the exponent of 3 in
the bound.
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Theorem 4.3 Let K be a real quadratic field, and let ε be a fundamental unit of K.
Write n for the exponent of the class group of K. Let p be a prime such that there exists
an elliptic curve E/K which admits a K-rational p-isogeny and is semistable at all primes
of K above p. Then, either:
• p ramifies in K; or
• p < (1 + 36n)2; or
• p splits in K and p ∣ NormK/Q(ε12 − 1).
Moreover, if n = 1, then p ≡ 1 (mod 12) or p ≤ 19.

Proof We assume that p ≥ 17 with p unramified in K. We let Vp denote the kernel
of the K-rational p-isogeny of E, and write λ for the isogeny character of (E , Vp).
We assume that if p splits in K, then p ∤ NormK/Q(ε12 − 1), which ensures that the
isogeny signature of E is constant (by Corollary 4.2). By interchanging (E , Vp) with
(E/Vp , E[p]/Vp) if necessary, we may assume that the isogeny signature of (E , Vp) is
(0, 0). So, λ12 is everywhere unramified, and it follows that λ12n = 1.

Let M denote the field cut out by λ2 (the fixed field of the kernel of λ2), which will be
an extension of K of degree dividing 6n, and therefore have absolute degree dividing
12n. Then, θ ∶= λ∣GM will be either trivial or a quadratic character. If θ = 1, then E has
a point of order P defined over M. Otherwise, we twist E (viewed as a curve over M)
by the quadratic character θ, to obtain an elliptic curve with a point of order p defined
over M. We then apply Oesterlé’s torsion bound [10, Theorem 6.1], to obtain

p < (1 + 3[M∶Q]/2)2 ≤ (1 + 36n)2 .

If n = 1, then we can obtain improved results. We have λ12 = 1 and also λp−1 = 1.
So λgcd(12, p−1) = 1. Therefore, if p /≡ 1 (mod 12), then λ4 = 1 or λ6 = 1. Applying the
same argument as above, we conclude that there exists an elliptic curve with a point of
order p over a field of absolute degree dividing 4 or 6. Applying the torsion bounds of
[10, Theorem 1.2], we conclude that p ≤ 19 or p = 37, and since p /≡ 1 (mod 12), we
must have p ≤ 19. ∎
Remark 4.4 The idea used in this proof of applying a quadratic twist to reduce the
degree of the field extension being considered is also used in [13, p. 888].

Although it is hidden within its proof, Corollary 4.2 (and consequently Theorem
4.3) relies on the fact that an elliptic curve will have a prime q of potentially good
reduction. In what follows, we will want to choose specific primes q, and we will not
know whether they are of potentially good or of potentially multiplicative reduction
for E. This leads us to separate our analysis into two cases.

4.1 Primes of potentially good reduction

Let q be a prime of potentially good reduction for E. We will write q for the rational
prime below q. Let r be the order of the class of q in the class group of K, and write qr =
α ⋅OK (like in Proposition 4.1). We start by recalling some facts about the Frobenius
element σq and its action on the p-adic Tate module of E, following [9, pp. 10–11]. The
characteristic polynomial of Frobenius for E at q is given by

Pq(X) = X2 − aq(E)X + nq .
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Let β1 , β2 denote the roots of Pq(X). Each root has absolute value√nq. The two roots
are complex conjugates, and we write L = Q(β1) for the field they generate. The field
L is either Q or an imaginary quadratic field. Let P denote a prime of L above p. Then,
β i (mod P) ∈ F×p for i ∈ {1, 2}, and moreover

{λ(σq), (χp λ−1)(σq)} = {β1 (mod P), β2 (mod P)}.
The following result is a direct consequence of Proposition 4.1. We write Res for the
resultant of two polynomials.
Proposition 4.5 [12, Lemma 3.1] Let λ be the isogeny character of (E , Vp)with isogeny
signature (a, b). Let q ∤ p be a prime of potentially good reduction for E, let r be the order
of the class of q in the class group of K, and write qr = α ⋅OK . Then,

p0 ∣ Res(Pq(X), X12r − αa(ατ)b).
If (a, b) = (0, 0), then

p ∣ Res(Pq(X), X12r − 1).
The problem with applying this proposition is that the trace of Frobenius, aq(E),

is unknown. However, we know that ∣aq(E)∣ ≤ 2√nq. We define
Aq ∶= {a ∈ Z ∶ ∣a∣ ≤ 2√nq}.(4.1)

Then, aq(E) ∈ Aq. The set Aq only depends on nq and is therefore independent of the
choice of prime q ∣ q. We will therefore also write Aq for this set.
Remark 4.6 Instead of using the set Aq defined in (4.1), it is possible to run through
all elliptic curves defined over the residue field of q to compute a set of possible values
for aq(E). This is possible because E acquires good reduction at a totally ramified
extension of the completion of K at q. This idea is used, for example, in (parts of) [2].
However, this slows down the computations we will perform in Section 5, and we did
not find it led to improved results in any of the cases we considered.

Next, given an isogeny signature (a, b) ≠ (0, 0), we define
Rq ∶= q ⋅ lcma∈Aq

(NormK/Q (Res(X2 − aX + nq , X12r − αa(ατ)b))) .

If the isogeny signature (a, b) = (0, 0), then we simply define
Rq ∶= q ⋅ lcma∈Aq

(Res(X2 − aX + nq , X12r − 1)) .(4.2)

In each case, Rq is an integer. Moreover, Rq is independent of the choice of prime q

above q, and so we will also write Rq for Rq.
Corollary 4.7 Let λ be the isogeny character of (E , Vp) with isogeny signature (a, b).
Let q be a prime of potentially good reduction for E. Then, p ∣ Rq. If (a, b) = (0, 0), then
Rq ≠ 0.
Proof If q ∤ p, then the main statement follows directly from Proposition 4.5, and
if q ∣ p, then p = q and so p ∣ Rq too, which is why we have included a factor of q
in the definition of Rq. Finally, if (a, b) = (0, 0) and Rq = 0, then for some a ∈ Aq,
the roots of X2 − aX + nq (which are complex conjugate since a ∈ Aq) would both
be roots of unity, and therefore their product, nq, would also be a root of unity, a
contradiction. ∎
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The integer Rq is independent of p. If q1 , . . . , qt are several primes of potentially
good reduction for E, then

p ∣ gcd(Rq1 , . . . , Rqt).

As we will see in Section 5, this idea will allow us to obtain a good bound on p.
However, we have not yet used all the information at our disposal. We will now work
with a fixed prime p that we would like to eliminate and we suppose that q ∤ p. We first
note that we can cut down the possibilities for aq(E). The roots of the characteristic
polynomial of Frobenius reduce to elements of F×p , and so we have that

aq(E)2 − 4 ⋅ nq is a square mod p.

We define

A(p)
q ∶= {a ∈ Z ∶ ∣a∣ ≤ 2√nq and a2 − 4nq (mod p) ∈ F2

p}.(4.3)

We have that aq(E) ∈ A(p)
q . Again, A(p)

q is independent of the choice of prime q ∣ q
and so we will also write A(p)

q for this set.
Now, by Proposition 4.1, we have that

(λ(σq))12r = αa(ατ)b (mod p0),

and this is then used to conclude that p0 ∣ Res(Pq(X), X12r − αa(ατ)b), which gives
Proposition 4.5. However, recalling that χp(σq) ≡ nq (mod p), we can also see that

((χp λ−1)(σq))
12r = χp(σq)12r ⋅ (λ(σq)12r)−1 =

n12r
q

αa(ατ)b (mod p0).

Then, n12r
q = NormK/Q(α)12 = (αατ)12. So

((χp λ−1)(σq))
12r = α12−a(ατ)12−b (mod p0).

An alternative way of seeing this is by swapping (E , Vp) with (E/Vp , E[p]/Vp) and
using Proposition 4.1 along with Lemma 3.1.

For a ∈ A(p)
q , let {γa ,1 , γa ,2} ⊂ F×p denote the reductions of the roots of X2 − aX +

nq. Since aq(E) ∈ A(p)
q , we must have that

{γa ,1 , γa ,2} = {λ(σq), (χp λ−1)(σq)} for some a ∈ A(p)
q .

Lemma 4.8 Let (E , Vp) have isogeny signature (a, b). Let q ∤ p be a prime of K of
potentially good reduction for E, let r be the order of the class of q in the class group of
K, and write qr = α ⋅OK . Then, for some a ∈ A(p)

q , (at least) one of the following two
conditions holds:
(i) γ12r

a ,1 = αa(ατ)b (mod p0) and γ12r
a ,2 = α12−a(ατ)12−b (mod p0); or

(ii) γ12r
a ,2 = αa(ατ)b (mod p0) and γ12r

a ,1 = α12−a(ατ)12−b (mod p0).

If (a, b) = (0, 0), then these conditions simplify, and we have that for some a ∈ A(p)
q :

(i) γ12r
a ,1 = 1 (mod p) and γ12r

a ,2 = n12r
q (mod p); or

(ii) γ12r
a ,2 = 1 (mod p) and γ12r

a ,1 = n12r
q (mod p).
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This gives us a strategy for eliminating a given prime p. Indeed, if, for all a ∈ A(p)
q ,

(at least) one of the conditions in (i) is not satisfied and (at least) one of the conditions
in (ii) is not satisfied, then we obtain a contradiction.

Remark 4.9 In [17, p. 338], conditions analogous to (i) and (ii) of Lemma 4.8 in the
case of isogeny signature (0, 0) are effectively combined to say that

γ12h
a ,1 + γ12h

a ,2 = 1 + n12r
q (mod p),

where h is the class number of K. This restores a certain symmetry and is sufficient to
bound p. However, combining the two conditions places fewer conditions on p and
reduces the chances of eliminating the prime p.

4.2 Primes of potentially multiplicative reduction

Let q be a prime of potentially multiplicative reduction for E. As before, we will write q
for the rational prime below q, we let r be the order of the class of q in the class group of
K, and we write qr = α ⋅OK . We would like to obtain results analogous to Proposition
4.5 and Corollary 4.7 for primes of potentially multiplicative reduction. If the isogeny
signature of (E , Vp) is (a, b), then we start by defining

Mq ∶= q ⋅NormK/Q ((αa(ατ)b − 1) ⋅ (αa(ατ)b − n12r
q )) .(4.4)

The integer Mq is independent of the choice of prime q ∣ q, and so we will also write
is as Mq .

Proposition 4.10 Let (E , Vp) have isogeny signature (a, b). Let q be a prime of K of
potentially multiplicative reduction for E. Then, p ∣ Mq. If (a, b) = (12, 0) or (0, 12),
then Mq ≠ 0.

Proof Let λ be the isogeny character of (E , Vp), with isogeny signature (a, b). If
q ∣ p, then the statement holds, so we will assume that q ∤ p. Let r be the order of the
class of q in the class group of K, and write qr = α ⋅OK . We then have that (see, e.g.,
[9, Proposition 1.4])

λ2(σq) ≡ 1 or n2
q (mod p).

Then, applying Proposition 4.1, we see that

αa(ατ)b ≡ λ12r(σq) ≡ 1 or n12r
q (mod p0).

Taking norms, we see that

p ∣ NormK/Q(αa(ατ)b − 1) or NormK/Q(αa(ατ)b − n12r
q ),

and we conclude that p ∣ Mq. Finally, it is clear that Mq ≠ 0 if the isogeny signature of
(E , Vp) is nonconstant. ∎

Unfortunately, Mq = 0 for all primes q if the isogeny signature of (E , Vp) is
constant, and so this result will not help us eliminate primes p in the case of a constant
isogeny signature. We will use a different approach for this case.

As in Section 3, we will write x ∈ X0(p)(K) for the noncuspidal point that the pair
(E , Vp) gives rise to, and we recall that we extended the notion of isogeny signature to
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noncuspidal points y ∈ X0(p)(K). We will denote the two cusps of X0(p) (which are
defined over Q) by∞ and 0. We write kq for the residue field of q. If y ∈ X0(p)(K),
then we denote by ykq the reduction of y mod q. Since q is a prime of potentially
multiplicative reduction for E, we have that

xkq = ∞kq or 0kq .(4.5)

We will now assume that E has potentially multiplicative reduction at all primes
q ∣ q. Instead of working with the point x ∈ X0(p)(K), we will instead focus on the
pair (x , xτ), which we view as a rational point on the symmetric square of X0(p),
which we write as

X0(p)(2) =
X0(p) × X0(p)

Sym2
.

We will denote by (x , xτ)Fq the reduction of this rational point mod q. From (4.5), and
our assumption that all primes above q are of potentially multiplicative reduction for
E, we have that

(x , xτ)Fq = (∞,∞)Fq , (0, 0)Fq , or (∞, 0)Fq .(4.6)

If the prime q does not split in K, then there is a unique prime above q and it follows
that (x , xτ)Fq = (∞,∞)Fq or (0, 0)Fq . We start by stating the following result (for
which we do not need to assume that p is unramified in K).

Proposition 4.11 [3, p. 32] Let (q, p) be a pair of primes satisfying one of the following
pairs of conditions:
• q ≠ 2, p and p ≥ 23, p ≠ 37; or
• q = 2 and 23 ≤ p ≤ 2357, p ≠ 37, 41.
Let y ∈ X0(p)(K) and suppose (y, yτ)Fq = (∞,∞)Fq or (0, 0)Fq . Then, y = ∞ or y = 0.

Proof By applying the Atkin–Lehner involution wp (which swaps the cusps) to
(y, yτ) if necessary, we may assume that (y, yτ)Fq = (∞,∞)Fq , and we aim to
prove that (y, yτ) = (∞,∞). We introduce the following notation. We write S =
Spec(Z[1/p]), we write J0(p) for the Jacobian of X0(p), and we write Je(p) for the
winding quotient of J0(p) (defined in as in [10, Definition 2.1]). We then consider the
map

fp ∶ X(2)0 (p)/S �→ J0(p)/S �→ Je(p)/S ,

which is the composition of the Abel–Jacobi map with base point 2∞ and the
projection map to the winding quotient. This is the same map as the one considered
in [14, p. 223], except that we project to the winding quotient instead of the Eisenstein
quotient.

In order to prove that (y, yτ) = (∞,∞), following the argument of [14, p. 225], it
suffices to verify that the map fp is a formal immersion along (∞,∞) in characteristic
q. This is precisely what is done in [3, pp. 29–33] (in particular, we refer the reader to
the d = 2 row in Table 7 of this paper when q > 2 and the associated data file for the
case when q = 2). As noted in [3, p. 32], this computation is really an extension of [10,
Lemma 5.4] to the case of quadratic fields. ∎
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We will describe any pair of primes (q, p) satisfying the conditions of Proposition
4.11 as an admissible pair. The upper bound of 2357 on p in the case q = 2 is simply
taken from [3, p. 32]. We expect this to hold for all p > 2357, and this bound could
most likely be increased if desired. Being able to work with the prime q = 2 will provide
useful information for the computations we carry out in the next section.

Proposition 4.11 already tells us that if (q, p) is an admissible pair with q a prime
that does not split in K, and the unique prime of K above q is of potentially multi-
plicative reduction for E, then E cannot have a K-rational p-isogeny for p ≥ 23 with
p ≠ 37. However, it does not consider the case (y, yτ)Fq = (∞, 0)Fq , which is certainly
possible if q splits in K. Our next result, from the author’s own work, addresses this
case (for which we do not need to assume that p is unramified in K).

Lemma 4.12 [16, Lemma 4.8] Let p and q be primes. Let y ∈ X0(p)(K). Suppose that
(y, yτ)Fq = (∞, 0)Fq . Suppose that q ≠ 2, p and p ≥ 23. Then, wp(y) = yτ .

If the isogeny signature of x ∈ X0(p)(K) is constant, then the isogeny signatures
of the points wp(x) and xτ differ (by Lemma 3.4), so wp(x) ≠ xτ . This observation
combined with Proposition 4.11 and Lemma 4.12 gives the following result.

Proposition 4.13 Let (E , Vp) be an elliptic curve over K with a K-rational subgroup of
order p. Let q be a prime for which all primes of K above q are of potentially multiplicative
reduction for E. Suppose that (q, p) is an admissible pair, and that, if q = 2, then q is inert
or ramified in K. Then, the isogeny signature of (E , Vp) is nonconstant.

In order to deal with the case in which q = 2 and 2 splits in K, we will use the
following result.

Lemma 4.14 Suppose that the isogeny signature of (E , Vp) is constant. Suppose that
(2, p) is an admissible pair such that 2 splits in K and both primes of K above 2 are of
potentially multiplicative reduction for E. Let q2 denote a prime of K above 2, and let r
be the order of the class of q2 in the class group of K. Then,

p ∣ 212r − 1.

Proof This may be viewed as a special case of part of [2, Proposition 4.1]. We may
assume, by replacing (E , Vp) with (E/Vp , E[p]/Vp) if necessary, that the isogeny
signature of (E , Vp) is (0, 0). By Proposition 4.11, the point (x , xτ) ∈ X0(p)(2)(Q)
that (E , Vp) gives rise to must satisfy (x , xτ)F2 = (∞, 0)F2 . It follows that either xkq2

=
0kq2

or xτ
kq2
= 0kq2

. By replacing (E , Vp) by (Eτ , V τ
p ) if necessary, we may assume that

xkq2
= 0kq2

. We note that the isogeny signature remains (0, 0).
From the proof of Proposition 4.10, we know that

λ2(σq2
) ≡ 1 or n2

q2
(mod p).

Since xkq2
= 0kq2

, applying the argument of [2, p. 19], we must be in the second
case: λ2(σq2

) ≡ n2
q2
(mod p). Since the isogeny signature of (E , Vp) is (0, 0), using

Proposition 4.1, we obtain

1 ≡ λ12r(σq2
) ≡ n12r

q2
≡ 212r (mod p),

where we have used the fact that nq2 = 2 in the final step. ∎
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Remark 4.15 In [17, p. 338], it is claimed that if the isogeny signature of (E , Vp) is
constant, if q ∣ q is of potentially multiplicative reduction for E, and if (q, p) is an
admissible pair, then p − 1 ∣ 12h, where h is the class number of K. The argument
leading to this seems to be incorrect. A correct condition is p ∣ n12r

q − 1, where r is
the order of the class of q in the class group of K, which is part of [2, Proposition 4.1]
(referred to in the proof of Lemma 4.14).

Remark 4.16 It is perhaps worth noting at this point that the results of this section
could be suitably extended to number fields of larger degree (we refer to [3] for a
selection of such results). There are two main reasons we have chosen to focus on the
case of quadratic fields. First, we can produce strong results in the case of quadratic
fields. This is due to the fact that the methods we use turn out to be very effective
in the case of quadratic fields. It is also due to the extensive work done on studying
quadratic points on the modular curves X0(p) of small genus. Second, as discussed in
Section 1, applications of the modular approach (for solving Diophantine equations)
over totally real fields are most common over (real) quadratic fields, and so we hope
that our results will be directly useful in this setting.

5 Computations

In this section, we apply the results of Section 4 to certain specific quadratic fields and
families of quadratic fields. We start by outlining the basic strategy.

As in Sections 3 and 4, we let p be a prime and let (E , Vp) be an elliptic curve over
a quadratic field K with a K-rational subgroup of order p, and we assume that E is
semistable at the primes of K above p. For the moment, we do not make any further
assumptions on p (in particular, p could ramify in K, or p could be less than 17). Our
strategy consists of three main steps. In each step, we try and eliminate the prime p as
a possible K-rational p-isogeny prime for E.

Step 1. Assume that p ≥ 23, p ≠ 37, that p is unramified in K, and that the isogeny
signature of (E , Vp) is constant.

Requiring p ≥ 23 and p ≠ 37 means that (q, p) will be an admissible pair for any
q ≠ 2, p, and for q = 2 when p ≤ 2357 and p ≠ 41. We may assume, by replacing (E , Vp)
by (E/Vp , E[p]/Vp) if necessary, that the isogeny signature of (E , Vp) is (0, 0).

We now choose auxiliary primes q1 , . . . , qt , with q i ≥ 3 for all i. By Proposition
4.13, unless q i = p, it is not possible for both primes of K above q i to be of potentially
multiplicative reduction for E, and so there is a prime qi ∣ q i of potentially good
reduction for E. We compute the integers Rq i (which we recall are independent of
the prime chosen above q i ), and applying Corollary 4.7, we have that

p ∣ gcd(Rq1 , . . . , Rqt).

If q i = p for some i, then p ∣ Rq i and so this still holds. This leaves us with a finite set
of primes p which we are unable to eliminate (which we hope is fairly small).

For each remaining prime, we may then perform a finer analysis to try and
eliminate it. We use Lemma 4.8 to try and achieve a contradiction with each prime
qi . Furthermore, if (2, p) is an admissible pair, then we may also use q = 2 to try and
eliminate p. Indeed, if 2 is inert or ramified in K, then by Proposition 4.13, the unique
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prime of K above 2 must be of potentially good reduction for E, and we may apply
Lemma 4.8. Otherwise, we may apply Lemma 4.8 in combination with Lemma 4.14.

Step 2. Assume that p ≥ 17, that p is unramified in K, and that the isogeny signature
of (E , Vp) is nonconstant.

In this case, p must split in K. Furthermore, by Corollary 4.2, if K is a real quadratic
field with fundamental unit ε, then p ∣ NormK/Q(ε12 − 1).

We now use auxiliary primes q1 , . . . , qt ≥ 2. For each auxiliary prime q, either
there is a prime of K above q which is of potentially good reduction for E, in which
case p ∣ Rq by Corollary 4.7, or there is a prime of K above q which is of potentially
multiplicative reduction for E, in which case p ∣ Mq by Proposition 4.10. In both cases,
we have p ∣ Rq Mq , and Rq Mq is independent of p for each q.

Step 3. We consider the primes p = 11, 17, and 19, the primes that ramify in K, and
any primes that we were unable to eliminate in Steps 1 and 2.

For each of these primes, we study X0(p)(K) directly to try and eliminate it.
We note that it is not possible to eliminate the primes 2, 3, 5, 7, 13, and 37. To see

this, it is enough to consider the base change to K of the elliptic curves appearing in
Table 2.

The following lemma will be useful in Steps 1 and 3.

Lemma 5.1 Let K = Q(
√

d) be a quadratic field, and suppose that

d ∉ {−1,−3,−5,−7,−11,−15,−31,−71,−131}.

Let x ∈ X0(p)(K) be a noncuspidal point, and suppose wp(x) ≠ xτ (which will be the
case if the isogeny signature of x is constant). Then,

p ∉ {23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 73, 79, 83, 89, 101, 131}.(5.1)

Proof Suppose that p is one of the primes in (5.1). For p ≤ 73, the papers [6, 7]
compute all quadratic points x ∈ X0(p)(K) that satisfy wp(x) ≠ xτ ; such points are
called exceptional. The recent paper [18] does the same for p ≥ 79, and we will use this
result for p = 101 in our example in Section 5.3. In each paper, we simply consult the
tables and read off the possible fields over which these exceptional quadratic points
are defined. ∎

5.1 Families of quadratic fields

We start by proving Theorem 1.2.

Proof of Theorem 1.2 We assume that there exists an elliptic curve E/K which
admits a K-rational p-isogeny and is semistable at the primes of K above p. We apply
the strategy described at the start of this section. Even though the quadratic field K is
not fixed, knowing the exponent, n, of the class group of K will be enough to do this.
We will assume that p ≥ 23, p ≠ 37, that p is unramified in K, and that if p splits in K,
then p ∤ NormK/Q(ε12 − 1). These assumptions on the prime p mean that the isogeny
signature of (E , Vp) is constant, and we need only focus on Step 1 of the strategy
outlined above. We are aiming to achieve a contradiction.
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We will choose several auxiliary primes q. For each auxiliary prime q we choose,
and a prime q ∣ q, we do not know two things:
• whether q splits, is inert, or ramifies in K; and
• the order, r, of the class of q in the class group of K.
If q is inert in K, then r = 1 and nq = q2. Otherwise, q is split or ramified in K, nq = q,
and r ∣ n. This means that for each q, we have 1 + d(n) possibilities for the pair (nq , r),
where d(n) denotes the number of positive divisors of n. Computing the integer Rq

defined in (4.2) only requires this pair as input, and so we simply run through all
1 + d(n) possibilities, obtain an integer Rq for each of these, and take their lowest
common multiple at the end. We may then apply Lemma 4.8 to try and eliminate even
more primes, again running through all 1 + d(n) possibilities. We use the auxiliary
prime q = 2 if (2, p) is an admissible pair. Using the auxiliary primes 3 ≤ q ≤ 19,
followed by q = 2, we were able to eliminate all possibilities for the prime p, other
than p = 73 in the case n = 3, which we rule out by applying Lemma 5.1. ∎

We note that it took under a 10th of a second to perform the necessary computations
to obtain this result.

We have considered n ≤ 3 here, but we can also prove similar results for larger
values of n, with the caveat that the size of the set of constant isogeny signature primes
which we are unable to eliminate sometimes increases. For example, the constant
isogeny signature primes we are unable to eliminate in the case n = 100 are

p ∈ {97, 151, 241, 401, 601, 1201, 1801}.

We expect that we should be able to eliminate these extra primes, but the method we
use does not achieve this.

Remark 5.2 In contrast to the case n = 100 above, as noted in Section 1, it is not
possible to eliminate the primes p ≤ 19 or p = 37 appearing in Theorem 1.2, and we
may construct the appropriate elliptic curves to verify this. Indeed, for a given field K,
if p ∈ {2, 3, 5, 7, 13, 37}, then we may use the base change to K of the corresponding
elliptic curve appearing in Table 2. For p ∈ {11, 17, 19}, we may search for a quadratic
field K for which the elliptic curve X0(p) has positive rank over K and follow the
strategy of the proof of Theorem 1.3. For n = 1, 2, and 3, it turns out that we can use the
fields K = Q(

√
29),Q(

√
10), and Q(

√
79), respectively. Alternatively, for n = 1, we

could use Theorem 1.3 and use the fields K = Q(
√

2) andQ(
√

3). These computations
are presented in the accompanying Magma files.

The following result demonstrates that knowing the splitting behavior of certain
primes can produce strong results.

Theorem 5.3 Let K be a real quadratic field in which the primes 2 and 3 are inert, and
let ε be a fundamental unit of K. Let p be a prime such that there exists an elliptic curve
E/K which admits a K-rational p-isogeny and is semistable at all primes of K above p.
Then, either:
• p ramifies in K; or
• p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 37}; or
• p splits in K and p ∣ NormK/Q(ε12 − 1).
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Proof We proceed as in the proof of Theorem 1.2 and need to only consider Step 1
of the strategy outlined at the start of this section. We assume that p ≥ 23, p ≠ 37, that
p is unramified in K, and that the isogeny signature of (E , Vp) is constant. We aim to
obtain a contradiction. We start by using the auxiliary prime q = 3. Since 3 is inert in
K, we know that the unique prime above 3 is a principal ideal and has norm 32. By
Proposition 4.13, the unique prime above 3 must be of potentially good reduction for
E and so p ∣ R3. The largest prime factor of R3 is 1489 and 41 ∤ R3, so we may also now
use the auxiliary prime q = 2, since (2, p) will be admissible for all remaining primes
p. We again apply Proposition 4.13 to conclude that the unique prime above 2 must be
of potentially good reduction for E, and so p ∣ R2. So

p ∣ gcd(R3 , R2) = 754471972800 = 26 ⋅ 34 ⋅ 52 ⋅ 72 ⋅ 132 ⋅ 19 ⋅ 37,

giving the required contradiction. ∎
Similarly to Theorem 1.2, we cannot eliminate the primes p ≤ 19 or p = 37 from

the statement of this theorem. This can be seen by considering the field K = Q(
√

29)
again (as in Remark 5.2) in which the primes 2 and 3 are inert.

5.2 Small real quadratic fields

We will consider the real quadratic fields K = Q(
√

d) for d ∈ {2, 3, 5, 6, 7}. Each of
these fields has class number 1.

Lemma 5.4 Let K = Q(
√

d), where d ∈ {2, 3, 5, 6, 7}. Let p be a prime such that there
exists an elliptic curve E/K which admits a K-rational p-isogeny and is semistable at
all primes of K above p. Then, either p ∈ {2, 3, 5, 7, 13, 37} or the pair (d , p) appears in
Table 1.

In order to prove Theorem 1.3 (for d > 0), we will also need to prove the converse
of this statement. We do this afterward.

Proof We start by applying Theorem 1.2. It remains to consider the primes p ∈
{11, 17, 19} and the primes that split in K that divide NormK/Q(ε12 − 1), for ε a
fundamental unit of K.

The only field K in our list for which there exists a prime p ≥ 23, p ≠ 37 that splits
in K and divides Norm(ε12 − 1) is K = Q(

√
6). In this case, the element ε = 5 + 2

√
6

is a fundamental unit for K. The prime factors of Norm(ε12 − 1) are 2, 3, 5, 11, and 97,
and we must therefore consider p = 97, which splits in K. We now follow Step 2 of the
strategy outlined at the start of the section. By replacing (E , Vp)with (E/Vp , E[p]/Vp)
(or by (Eτ , V τ

p )) if necessary, we may assume that the isogeny signature of (E , Vp) is
(12, 0). We will apply Corollary 4.7 and Proposition 4.10 using the auxiliary prime
q = 5 to obtain a contradiction. We compute the integers R5 and M5, which we recall
are independent of the prime chosen above 5. We compute that

R5 = 210 ⋅ 310 ⋅ 515 ⋅ 132 ⋅ 172 ⋅ 194 ⋅ 232 ⋅ 412 ⋅ 732 ⋅ 2412 ,
M5 = 210 ⋅ 38 ⋅ 515 ⋅ 432 ⋅ 4332 .

Since 97 is not a prime factor of R5 or M5, we may eliminate the prime p = 97 for the
case of a nonconstant isogeny signature.
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We now continue with Step 3 and consider the primes 11, 17, and 19. We will
consider the case K = Q(

√
6), the other cases being similar. We must eliminate

the prime p = 19. We start by computing that X0(19)(K) = X0(19)(Q) = Z/3Z. Let
x ∈ X0(19)(K) denote the point corresponding to (E , Vp), which is the unique
noncuspidal point in X0(19)(K). We now use exactly the same argument as in the
proof of Corollary 2.1. Let p1 and p2 denote the two primes of K above 19. The curve
E is the quadratic twist of a curve F, defined over K, which has potentially good
reduction at p1 and p2 and satisfies 0 < vpi (Δmin(F)) < 6 for i ∈ {1, 2}. It follows that
vpi (Δmin(E)) > 0, so E must have potentially good, nonsemistable, reduction at p1
and p2, which allows us to eliminate p = 19. ∎

Proof of Theorem 1.3 for d > 0 By Lemma 5.4, it will be enough to find an
appropriate elliptic curve for each value of p. For p ∈ {2, 3, 5, 7, 13, 37}, we may simply
use the base change to K of the elliptic curve appearing in Table 2. It remains to deal
with the primes p ∈ {11, 17, 19} in Table 1. In each case, X0(p) is an elliptic curve,
and using Magma, we can directly compute that X0(p)(K) has rank 1, along with
a generator, Q, for the free part of its Mordell–Weil group. We may then write down,
usingMagma’s “small modular curve package,” an elliptic curve E/K with a K-rational
p-isogeny representing the point mQ for (small) integers m, and test its reduction type
at each prime above p. In each case, we found a suitable elliptic curve using m = 1
or 2. ∎

5.3 An example with large class group

We consider the quadratic field K = Q(
√

d), with d = 47 ⋅ 67 ⋅ 101. The class group of
K is Z/122Z.

Proposition 5.5 Let K = Q(
√

d) with d = 47 ⋅ 67 ⋅ 101. There exists an elliptic curve
E/K which admits a K-rational p-isogeny and is semistable at all primes of K above p if
and only if p ∈ {2, 3, 5, 7, 11, 13, 19, 37}.

Although the class group of K is large, our quadratic field is now fixed, and we know
the splitting behavior of each auxiliary prime q in K, as well as the order of any q ∣ q
in the class group of K.

Proof We start by following Step 1 of the strategy described at the start of this section
with the auxiliary primes 3 ≤ q ≤ 20, followed by q = 2. We were able to show that if
p ≥ 23 with p ≠ 37, then the isogeny signature of (E , Vp) cannot be constant.

We then proceed with Step 2 and compute Norm(ε12 − 1), for the fundamental unit
ε = 13535 + 24

√
d. Although this has several large prime factors, it in fact has no prime

factors ≥ 23 that split in K.
Next, we continue with Step 3. We start by eliminating the prime p = 17 like in

the proof of Lemma 5.4. It remains to eliminate the primes that ramify in K, namely
p = 47, 67, and 101. We work directly with the corresponding modular curves X0(p).
By Lemma 5.1, each gives rise to a point x ∈ X0(p)(K) satisfying wp(x) = xτ . By [6,
p. 337], the modular curve X0(67) has a single noncuspidal rational point, and
no points defined over real quadratic fields. Applying the arguments of Corollary
2.1 (see also the proof of Lemma 5.4), the pair (E , Vp) will not give rise to the
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noncuspidal rational point, and so we may eliminate p = 67. Next, we consider p = 47.
The curve X0(47) is hyperelliptic, and the Atkin–Lehner involution coincides with
the hyperelliptic involution. We therefore obtain a rational point on the quadratic
twist of X0(47) by d. However, this twisted curve has no points over Q101, and so
we obtain a contradiction. Finally, if p = 101, then we would obtain a rational point
on the twisted modular curve X(d)0 (101) (see [19, pp. 323–324]). In this case, we may
apply [19, Theorem 1.1(5)] to obtain a contradiction. To see this, we start by writing
M = Q(

√
−101). The prime 67 ramifies in K and is unramified in M, and each prime

of M above 67 is not principal (and therefore not totally split in the Hilbert class field
of M). This proves that X(d)0 (101)(Q67) = ∅.

For the converse, it suffices to write down suitable elliptic curves for p = 11 and
p = 19. We argue exactly as in the proof of Theorem 1.3 (for d > 0). The only difference
is that we were unable to compute the Mordell–Weil group of X0(p)(K) directly using
Magma. Instead, we find suitable points by first working with the quadratic twist of
X0(p) by d. ∎

5.4 An imaginary quadratic field

We consider the imaginary quadratic field K = Q(
√
−5), which has class number 2.

We note that we cannot obtain a finite list of possible primes in the case that K is
imaginary quadratic of class number 1. This is because, in this case, if the isogeny
signature of (E , Vp) is nonconstant, then Rq = 0 for all primes q. This is unsurprising,
since if K is any number field that contains the Hilbert class field of an imaginary
quadratic field, then there are infinitely many primes for which there exist curves
which admit K-rational p-isogenies (see [2, p. 2] for more details on this).

Proof of Theorem 1.3 for d = −5 If the isogeny signature of (E , Vp) is constant,
then we may use the proof of Theorem 1.2 to eliminate all primes p ≥ 23 with p ≠ 37.
We will therefore focus on the case that the isogeny signature of (E , Vp) is nonconstant
and proceed with Step 2. As usual, by interchanging (E , Vp) with (E/Vp , E[p]/Vp) if
necessary, we may assume that the isogeny signature of (E , Vp) is (12, 0). We use the
auxiliary primes 3 and 7. We have that for p ≥ 17,

p ∣ gcd(R3M3 , R7M7),

and this tells us that p ∈ {17, 43, 71}. The prime 71 does not split in K, so we may
eliminate it. Next, we proceed with Step 3 and eliminate the primes 11, 17, and 19 as in
the proof of Lemma 5.4.

For the converse, we must exhibit an appropriate elliptic curve when p = 43. The
curve X0(43) is of genus 3. We start by searching for rational points on the elliptic
curve X+0 (43), and pull them back to try and find a point x ∈ X0(43)(K)/X0(43)(Q).
We were able to do, and then using Magma, we wrote down a representative elliptic
curve E defined over K. We found that this curve was not semistable at p0 ∣ 43.
However, the quadratic twist of E by a certain element of valuation 1 at p0 has good
reduction at both primes of K above 43, and this twisted elliptic curve will still have a
K-rational 43-isogeny. ∎
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