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1. Introduction

In the study of locally finite varieties of groups it has often been illuminating
to consider when a group A is a factor (i.e. quotient of a subgroup) of a group B.
We write A ^ B to express this and say that A is involved in B. It follows from
elementary isomorphism theorems that the relation =<[ is a partial order on any
set of finite groups. The conjecture that we consider in this paper (and to which
we only give the beginning of an answer) is the following:

CONJECTURE. The relation of involvement is a partial well-order on the set
of finite groups of a Cross variety. In other words, in a Cross variety there does
not exist an infinite set of finite groups no one of which is a factor of another.

As evidence that this is an interesting question we mention two results. The
first can be proved by easy arguments about partially ordered sets and the second
can be proved using the techniques of Kovacs and Newman as described in
Chapter 5 of Neumann (1967).

PROPOSITION 1. IfX is any factor closed set of finite groups the following
conditions are equivalent:

i) X is partially well-ordered by involvement
ii) The factor closed subsets of X satisfy the minimum condition
iii) There are at most countably many factor closed subsets ofX.

PROPOSITION 2. Let 33 be a locally finite variety whose finite groups are not
partially well-ordered by involvement. Then, if S is any non-abelian finite
simple group and VI — var(S), 1133 has uncountably many subvarieties.

(This can be compared with a result of Olshanskii (1970): if the finite mono-
lithic groups of a locally finite variety 33 are not partially well-ordered by in-
volvement then, for any prime p not dividing the exponent of 33, 3tp33 contains
uncountably many subvarieties. It was partly by using this result that Olshanskii
obtained the first known set of uncountably many varieties.)
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The conjecture is obviously true for abelian Cross varieties and there is at
least one other case where its truth can be established fairly easily (see Cossey
(1966), my thanks to the referee for supplying this reference):

PROPOSITION 3. / / p and q are distinct primes then the set of finite groups
of 3IP5I4 is partially well-ordered by involvement.

In the case of 9IP9I, the relation of involvement is the same as the subgroup
relation and this simplifies the argument. Since the same thing is true of any set
of finite 2L4-groups (groups which have elementary abelian Sylow p-subgroups
for all primes p) one might hope that the conjecture should not be too intractable
for Cross varieties of iL4-groups. We shall consider the conjecture for the variety
Xp (of all groups of exponent p and nilpotency class at most 2) which is one of
the smallest cases where not all the groups are £/l-groups. In this variety the
relation of involvement is not the same as the subgroup relation — indeed, P. M.
Neumann (unpublished) has shown that there exists an infinite set of finite groups
in Xp no one of which is a subgroup of another. However, the main result of this
paper states that this cannot happen with the involvement relation.

THEOREM. The set of finite groups of Xp is partially well-ordered by
involvement.

We shall not give the complete proof of this theorem (full details can be
found in Atkinson (1970). Instead we give an outline of the proof and the details
of some of the crucial steps. Those parts which are omitted require arguments
which are very similar in spirit (but different in detail) to the arguments involved
in the study of alternating trilinear forms in Atkinson (1973).

This work was carried out while I was supported by an S.R.C. scholarship.
It was supervised by Dr. P. M. Neumann to whom I am indebted for many
helpful suggestions.

2. Proper factor closed subsets of Xp

Let X* denote the set of finite groups of Xp. To prove the theorem we have
to consider an arbitrary infinite subset X of X* and show that for some G,
HeX,G% Hwe have G < H. If, in the notation of Neumann (1967), QSX = X*
this conclusion is easily obtained. For let G eX and let K be any group in X* with
G =< K and G % K; then, as QSX = X*, there is a group HeX such that K < H
and thus G =<! H. In this section we shall describe a useful consequence of the
contrary case QSX <= X*.

In order to state this consequence we define some special factor closed subsets
of X*.For any two non-negative integers a,b let 23(a, b) = {GeX* \ G has a
subgroup H such that [G:H] ^ p" and \H'\ ^ pb}. An obvious calculation
establishes that 33(a, b) is indeed factor closed. The main result of this section
is the following lemma.
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LEMMA 2.1 Any proper factor closed subset X of X* is contained in some
93(«,5).

PROOF. Let E denote the non-abelian group of exponent p and order p3. E is
the unique generating critical group of Xp and so every group of X* is a factor
of some direct power E". Since X ^ X* there exists an integer m such that, for
all GeX,Em+1 not=< G. We shall complete the proof of the lemma by showing
that jEm+1 not=^ G implies Ge5B(a,b) where a and b depend only on m.

For the remainder of the proof G will denote a group in X* such that
Em+1 not =< G. Let n be the greatest integer for which E" =< G; so that n ^ m. Then
there exist subgroups H and K of G such that K<\H and /f/K s £". Among
all pairs (H,K) satisfying this condition we choose one with | H | minimal; it
follows then that K ^ H'. Since H/K £ E" there exist elements au--- ,a2neH
such that the n elements c; = [a2i-i>

 aii\ — [a2i> au-i\~1 a r e independent
modulo K and all other commutators [a,, aj]eK. Clearly, H = <at,•••, a2B),
# ' = <<:!,...,<:„*:> and | i f ' | ^p 4 " 2 .

Choose a subgroup T such that T x H' = G' and let C be the subgroup
C = {x6G|[x,H] g T}. Then C is the preimage of CG/T(HTIT) and so, as
| ) ' | = \H'\, [G: C] ^ p4"2*2"= ,p8n\

Now let z and t be arbitrary elements of C. We shall show that [z, f] e [z, fl]
'. Suppose that this is not so. Consider any relation of the form

Since r]"=iC>nd K are contained in H' we have that [z,f]0In+1e[
and, from our supposition, <xn+1 = 0 (mod p). Thus (*) implies that n?=ici"
eX[z,fl][(,fl] and so we may write f]"=1c"' = fcs where keK ^ H' and
s e [z, H][f, H] . Consequently

flci'k-1 = seH'nT = 1
i = l

and thus Y[1=icVeK an<^ ^Tom o u r assumption on cu ••-,cn we have at = 0

(mod p) for i = 1, • • • , n .

Thus, putting cn+1 = [z, f], we have that cu •••, c n + 1 are independent modulo

K[z,H][t,H] and it follows that

This contradiction shows that [z, r ]e[
It follows that, for some u,veH and WGH' , we have [z,f] = [z,M][t,t>]w.

Since [ u ' S ^ e H ' this implies that [zvJu'^eH' and so zceCf/u"1

the preimage of the centraliser of tu~lH' in G/H'. Thus
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ze(C(tu~i modH')H)nC £ (J (CO""1 modH')H)nC £ C.
ueH

But z is an arbitrary element of C and so it follows that

C = |J (C(m " 1 mod if ')#) n C.

Now C(*M- 1 modH') depends only on the coset u~lH' and not on u itself.
Since |H/H' | = p2n C is the union of p2n subgroups and so one of these sub-
groups has index not exceeding p2n. Thus, for some weH ,\C: (Citw'1 mod H')H)
nC]^ p2n. From this it follows that [C: C{tw~l mod// ' )OC] ^ p4n. Hence,
given any element t e C, we can find w e H such that

[C: C O " 1 modH' )nC] ^ p4".

Consider an arbitrary subgroup of C generated by In +1 elements
*i» •" > '211+1 which are independent modulo C'H'. As we have just shown there
exist elements w1,"-,w2 n + 1 of H such that

[C: CC^wf1 modfl ' )n C] g p4" for i = 1, ••• ,2n + 1.

Now H can be generated by In elements and so there exist integers <xu ••• ,a2 n + 1

not all zero modulo p such that n?=V w°'eH'. Then

2n+l 2n+l 2n+l 2n+l

* = n «•' = n <?' n ^" = n (^r^
andsoxsatisfies[C:C(x mod/ /O^C] ^ p(2"+1)4" and

Each element y of C induces by commutation a linear mapping CjC'H' -*
C'H'/H' with rank P(y) say. The function )S(y) satisfies fi(y + z) g jS(y) + )?(z),
j3(̂ ,y) = J5(J) for any non-zero scalar k and /?(0) = 0. Also, we have shown that
given any 2n + 1 dimensional subspace X of CjC'H' there is a non-zero element
x of X such that j3(x) ^ (2n + l)4n. By Lemma 2.7 of Atkinson (1973) there is a
subspace D\C'H' of C/C'H' such that [C:D] ^ p2" and, for all deD/C'H',
fi(d) ^ 8n(2n + I)2. A theorem of P. M. Neumann (1970) now gives that
\D'H'IH'\^ pM«2(2"+1)4. However, the index of D in G is

[G: C\\C: D] ^ p
8 " 3 + 2» ^ p8m3 + 2m

and also

ID'I <: p 6 4 " 2 ( 2 n + 1 ) 4 < j,64.m2(2m+l)4

and so the proof is completed.

3. Groups with bounded derived subgroups

In the remainder of the proof of the theorem we have to consider an infinite
set of groups X whose factor closure is not the whole of %*. We know that,
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For some a and b, X £ 23(a, b). In the case b = 0 arguments very like those
ased in Atkinson (1973) in the study of alternating trilinear forms can be used and
so these details will be omitted. Instead, in this section, we concentrate on the case
3 = 0 and explain the main ideas. In the general case a group G e 23(a, b) can be re-
garded as a mixture of a group in 33(a,O) and a group in 33(0, b) because it has
1 subgroup H such that H e $8(0, b) and G/H' e 23(a, 0). Because of this the general
;ase can be attacked with the results from the two special cases and here again
sve omit the details.

A useful property of X* which was important in section 2 was that X* is
:he factor closure of the set {£"}"= 1 and these groups are easily described. We
low consider a corresponding set of groups which may be used in the study of
8(0, b). We define En to be the extraspecial group of exponent p and order p2n+i

so that Et = E) and we have the following result:

LEMMA 3.1 Every group in .8(0, b) is a subgroup of Eh
nfor some n.

The proof of this is not unlike the proof of Theorem 2.2 of Atkinson (1973)
ind so will be omitted. In the remainder of this section we investigate conditions
vhich guarantee that Eb

n is a subgroup of the group G in 58(0, b). This requires
mother definition. For any non-abelian group G e X* we define m(G), the minimal
ank of G, as follows: with every maximal subgroup M of G' there is an associated
ilternating bilinear form induced by commutation in G/M; m(G) is the minimum
>ver all maximum subgroups M of G' of the ranks of these forms. Two simple
acts about the minimal rank of G which concern a subgroup H of index p" are

a) if m(G) > In then H' = G'
b) m{H) ^ m(G) - In.

LEMMA 3.2 Let G be a group in X* which satisfies the following two con-
litions

i ) | G ' | = / , b ^ l
ii) m(G) = 4b2

Then E\ is a subgroup of G.

PROOF. Since G is not abelian Ex is a subgroup of G. Suppose inductively
hat E[ ^ G, i < b. Let A = C{E\) SO that [G: A] < p2b\ By a) above A' =G' .
iince (Ety < A' there exist c, deA such that [c, d]$ (£/) ' . Clearly <£i, c, d>
= E\+1 and this completes the proof.

LEMMA 3.3 Let G be a group in X* which satisfies the following two con-
litions

i) \G'\ = p", bZl
ii) m(G) = 4b2Nn where N = | GL(b,p)\ + 1

"hen G has a subgroup isomorphic to Eb
n.
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PROOF. Let M = Nn. We first construct subgroups Du •••, DM of G such that
D; s E\ and, for i ^ y, [£)„ Dy] = 1, The existence of Dt is guaranteed by Lem-
ma 3.2. Suppose inductively that D1; ••• , !) , , i<M, have been constructed and
satisfy all the required conditions. Let A = C(Dt •••!>;) so that [G: ^1] g p2il>2.
By a) above A' = G' and by b) m(A) 2: 4b2Nn — 4ib2 ^ 4b2. Applying Lemma
3.2 to yl we obtain a subgroup D1 + 1 •£ A,D, + l ^ E\ and for all j g i,
[DJ^DJ+J] = 1. This completes the inductive step.

Since, for each i, Dt s E\ we may choose generators cP},d;(1), ••-.c*/0,df°
of Di such that

[ c « d « ] = e « ' " l g r , s ^ b

[c(
r), CW] = [^r),d^s)] = 1 1 ^ r, s ^ d

and e ^ , •••, e-t) are generators for G'.
Now there are less than N choices for a generating set of b elements for G'

and hence among the Nn generating sets {c}1*, ••• ,c\b)}f=1 for G' one must occur
at least n times. By relabelling Du ••• ,DM and by relabelling the generating sets
for each D; we may assume that e-j)= e£J) for j = I , - - , b and i, k = l, — n.
If we let Fy = <c,°'),d,a)| 1 ^ i ^ n> then we have F7- s £„ and since the F ;

clearly generate their direct product the lemma is proved.
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