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Abstract

Fleischer proved that a linearly ordered set that is separable in its order topology and has countably
many jumps is order-isomorphic to a subset of the real numbers. The object of this paper is to extend
Fleischer's result and to prove it in a different way. The proof of the theorem is based on Nachbin's
extension to ordered topological spaces of Urysohn's separation theorem in normal topological spaces.

1980 Mathematics subject classification (Amer. Math. Soc): 54 F 05, 90 A 10.

Introduction

Fleischer [4] proved that a linearly ordered set is isomorphic to a subset of the
real numbers if and only if it is separable in its order topology and has countably
many jumps. Fleischer's proof is based on a theorem of Birkhoff. (See Roberts
[13, pages 111-116], for a proof of Birkhoff s theorem.)

Fleischer uses the sufficiency half of his result to derive the classic theorems of
Debreu [1] on the existence of continuous order-preserving transformations on
spaces that are connected and separable, or spaces that satisfy the second axiom
of countability.

Fleischer's theorem assumes that the space is completely or linearly ordered.
The object of this paper is to generalize the sufficiency half of Fleischer's theorem
to spaces that may not be linearly ordered. The extension of Fleischer's result to
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partially ordered spaces is based on a separation theorem of Nachbin [10, page
30] which generalizes Urysohn's separation theorem in normal topological spaces
to normally ordered topological spaces.

Preliminaries

A preorder < on a topological space X is a reflexive transitive binary relation
on X. We say that x < y if and only if x < y and not y < x. The preorder is said
to be an order if it is antisymmetric. The preorder < is said to be decisive,
complete or linear if for two elements x, y belonging to X, either x < y or y < x.
It is said to be continuous if the sets {x e X\x < j } and {x e X\y < x) are
closed in X for every y in X. Let A' be a completely preordered set. The order
topology of X is generated by the order intervals {x e X\x < y) and {x e A'l^
< x } f or y in X

Let x, y be two elements such that x < y. This pair of elements constitutes a
jump if (JC, y) = {a e X\x < a < y} is empty.

A subset of E of X is said to be decreasing if b e is, a < b imply that a e £.
Each subset £ of I uniquely determine a smallest decreasing subset d(E)
containing E. Similarly, one defines the concept of an increasing set and the
smallest increasing subset i(E) containing E.

A topological space equipped with a preorder is said to be normally preordered,
if, for every two disjoint closed subsets Fo and Fx of X, with Fo decreasing and F1

increasing, there exist two disjoint open subsets Ao and Ax such that Ao includes
Fo and is decreasing, and A1 includes Fx and is increasing.

A preordered topological space (X, <) is said to be order-separable if there
exists a countable subset Z such that if x, y belong to X and x < y, then there
exists a z in Z such that x < z < y.

Let E1 and E2 be two preordered sets. A function / from El to E2 is said to
be increasing if x, y in E and x < j imply that / (x) < /(y) . A function / on E1

to E2 is said to be order-preserving if it is increasing, and if x < y implies that
/(•*) </(>')• ^ utility function is an order-preserving real-valued function.

Utility functions

The generalization of Fleischer's result is based on the following theorem.

THEOREM 1. Let (X, <) be a normally preordered topological space and suppose
that the preorder < is continuous. Then if (X, <) is order-separable, there exists
a continuous order-preserving real function on (X, <).
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PROOF. This theorem is a consequence of Nachbin's separation theorem [10,
page 30] in ordered topological spacees and, a proof can be found in Mehta [5,
Theorem 1].

We are now ready to prove the following result.

THEOREM 2 (Fleischer). A linearly ordered set X that is topologically separable in
its order topology and has countably many jumps is order-isomorphic to a subset of
the real numbers.

PROOF. We note first that since X is linearly ordered and has the order
topology, the preorder is continuous.

We prove next that X is normally preordered. Let Fo and F1 be disjoint closed
subsets of X, with Fo decreasing and Fx increasing. If Fo and FL exhaust X, then
Fo and Fx are open, and X is normally pre-ordered. If they do not exhaust X,
there is a point d not in Fo or Fv Since the preorder is decisive, we have
a < d < b for every a in Fo and b in Fv Hence, (JC e X\x < d} and {x e X\d
< x } are the required decreasing and increasing open sets containing Fo and Fx,
respectively. Thus {X, <) is normally preordered.

Since X is topologically separable, it has a countable dense subset Z. Suppose
first that there are only finitely many jumps (a,, bt), i = 1, . . . , n. Interpose
between each jump a copy of the open real interval (i, / + 1), / = 1, . . . , n, with
its usual ordering. If there are countably infinite jumps, interpose between each
jump (an, bn), n = 1, 2 , . . . , a copy of the open real interval («, n + 1) with its
usual ordering. Let Z' be the set of all non-integral, non-negative rational
numbers. Enlarge the space X as indicated above and denote it by X'. The order
on X' is obtained in a natural manner from the order in X and from the natural
ordering of the real numbers. It is now a straightforward matter to verify that X'
is order-separable in its extended order topology, with Z U Z ' being the counta-
ble order-dense subset.

X' is normally preordered because the extended preorder is decisive and
continuous.

Hence, all the conditions of Theorem 1 are satisfied, and we conclude that there
is a continuous utility function on X' whose restriction is continuous on X. It
follows that X is order-isomorphic to a subset of the real numbers.

REMARK. The proof of Fleischer's theorem given above is based on Nachbin's
separation theorem and is different from the one given by Fleischer.

In the above theorem, the assumption that X is linearly ordered is required
only to prove that X is normally preordered. For normally preordered spaces that
may not be linearly ordered, we have the following generalization of Fleischer's
result.
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THEOREM 3. Let (X, < , /) be a normally preordered topological space with a
topology t such that < is t-continuous. If X is toplogically separable and has
countably many jumps, then there is a continuous order-preserving real-valued
function f on X, provided that the order intervals {x e X\x < y} and {x £ X\y <
x), fory in X, belong to t.

PROOF. Enlarge the space X to X' as in Theorem 2. The preordering on X is
extended to X' in the following way. Consider a jump (an, bn). The preordering
on the open real interval (n, n + 1) that is interposed between (an, bn) is defined
to be the preordering induced by the natural preordering of the real numbers.
Each element of the open real interval (n,n + 1) is defined to be not comparable
with every other element of X', including points in other jumps. By doing this
with each jump we obtain a preordering on X' that is an extension of the
preordering on X. Note that X' has no jumps.

We now claim that X' is normally preordered. To prove this, let F and G be
disjoint closed subsets of A" with F decreasing and G increasing. Let Fx be the
intersection of F with X, and let Fj be the intersection of F with the jumps of X.
Gx and Gj are defined similarly.

Since the topology on A" is the natural topology on the union of two spaces,
Fx and Gx are disjoint closed subsets of X, with Fx decreasing and Gx

increasing. Since X is normally preordered, there exist disjoint open sets A and
B, with A decreasing and B increasing, such that A contains Fx and B contains
Gx. Since the real line is normally preordered, we conclude that there exist
disjoint open sets C and D, with C decreasing and D increasing, such that C
contains Fj and D contains Gj. Hence A U C is a decreasing open set containing
F, and B U D is an increasing open set containing G. Therefore X' is normally
preordered.

As in Theorem 2, X' is order-separable. Thus all the conditions of Theorem 1
are satisfied, and we conclude that there is a continuous order-preserving function
on X' whose restriction is continuous on X.

REMARK 1. The real-valued function / in Theorem 3 establishes a weak
order-isomorphism between (X, <) and the real numbers, in the sense that x < >>
implies f(x) < f(y)- The converse implication may not hold, since (X, <) is only
partially preordered.

REMARK 2. Theorems 1 and 3 are useful in applications because every compact
ordered space is normally ordered (see Nachbin, [10, page 48]).
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REMARK 3. It is easily verified that Debreu's theorems [1] follow directly from
Theorem 3, so that we have obtained a new generalization of these fundamental
theorems based on Nachbin's theory of normal preorders. Observe that Theorem
3 is a common generalization of Fleischer's theorem and Debreu's theorems.

Conclusions

In Theorem 3 we proved the existence of a continuous utility function on a
partially preordered topological space. We conclude by commenting on some
related results in the literature.

Eilenberg [2] proved that a connected and separable completely preordered
topological space is order-isomorphic to a subset of the real numbers. Debreu [1]
proved the existence of a continuous utility function on a completely preordered
space that is second countable or connected and topologically separable. Debreu's
proof is based on the concept of a gap. A direct proof of Debreu's theorem based
on Nachbin's theory of normal preorders is given in Mehta [6]. For further
discussion of the post-Debreu developments, the reader is referred to Mehta [7].

Peleg [11] and Fishburn [3] have proved the existence of utility functions on
strictly partially ordered topological spaces. Similar results have also been ob-
tained by Richter [12]. Peleg's theorem is related to Debreu's theorems. It is
proved in Mehta [8] that Peleg's theorem is a generalization of the Debreu
theorems. Debreu's theorems, therefore, are a consequence of Peleg's theorem and
the theorem of Fleischer. It is proved in Mehta [9] that Fleischer's theorem on
linearly ordered sets is itself a consequence of Peleg's theorem. The exact nature
of the relationship between the generalization of Fleischer's theorem proved in
this paper and Peleg's theorem is an open question and certainly deserves further
study.
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