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SOME REMARKS ON ABSTRACT DIFFERENTIAL 
OPERATORS 

BY 

M. A. MALIK 

1. Let A be a closed linear operator with domain DA dense in a Banach space 
B; DA is also a Banach space under the graph norm. By JSf(5; DA) we represent the 
space of continuous linear mappings from B to DA and R(X; A) = (XI—A)~1 

denotes the resolvent of A; X e C (complex plane). Let @(R) represent the space of 
test functions on R (real line) with Schwartz topology and let &(J?(B; DA)) 
= £e(3)\Se(B\Dj$) denote the space of £e(B\ AJ-valued distributions. For 
E G ®\S£(B\ DA)) we define AEby the relation (AE, <p>=A<E9 <?>> for all 9 e ®(R). 
We also define 8 ® I by the relation <S ® /, <p> = 9(0)7 for all 9 e 9{P)\ S is the 
Dirac distribution and / t h e identity operator. EeQ}'(S£(B\ DA)) is called an ele­
mentary solution of the operator L=(l/i)(dldt)—A if LE=B ® /. 

In this note, we study the support of the solution of Lu=0 and the nonexistence 
of an elementary solution of L by imposing conditions on the growth of the re­
solvent R(X; A). These results are related to a paper by S. Agmon and L. Nirenberg 
[1]. Throughout this note "const." may not always be the same constant. 

2. We prove 

THEOREM 1. If ue2'(J£(B\ DA)) satisfies the equation Lu=0 and the resolvent 
R{X\ A) exists on a ray T(arg A=0;O<0<II) where it satisfies 

(1) \R(X;A)\ < const. e~PlImM 

for some p>0 then supp w<= (-00, 0]. * 

Proof. Let ue@\<£(B\ DA)) be a solution of Lt/=0. Consider a sequence 
<pe e @(R) such that <p8 -> 8 as e -> 0. It is easy to verify that the convolution 
v=u * (pe also satisfies the equation Lv=0. Choose a function £ e @(R) vanishing 
outside the interval [-T, T]; T> p. Then the support of Çv is contained in [-T, T] 
and 

(2) )§im-A€v--iev. 
As £v and %v are of compact support, their Fourier transforms are vector valued 
entire functions and satisfy the equation 

(3) (A/-̂ )(&T) = -i{fv). 

From the Paley-Wiener theorem [2] and the hypothesis on the resolvent, we 
obtain 
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(4) |ft?(À)| < const. ^-p)iimAi 

for À G T while | £v(X)\ is bounded on the real axis. Applying the Phragmen-Lindelof 

theorem, we conclude that \£v(X)\ = 0(e(T~p)llmM) in the upper half plane. But then 
the Paley-Wiener theorem implies that gv vanishes for t> T— p and so v(t) vanishes 
for T—p<t<T. Repeated applications of this technique imply that v = u*cpe 

vanishes for t>0. Making e -> 0, we conclude that the supp «<=(—oo, 0]. 

THEOREM 2. IfR(X ; A) exists on rays I \ (arg A = 01 ; 0 < 01 < II) and Y2 (arg A = 02 ; 
II < 62 < 211) where it satisfies the inequality 

(5) \R(X;A)\ < const. e-
plIm" 

for some p>0, then the operator L=(l/i)(d/dt)—A has no elementary solution in 

Proof. Suppose Ee@'(3?(B; DA)) satisfies the equation LE=8 ® /. It can be 
verified that 

(6) \jt(iv)-Am= -i?v + <psI 

where v=E*<pe and <pe9 $ are same as in the proof of Theorem 1. The Fourier 
transform of (6) along with the hypothesis leads to 

(7) |^(A)| = \R(X;A)\ | f t $ ) + £(A)7| < const. ^ ( r ^ + s ) | I m A | 

for A e T j U T2. Using the arguments as in the proof of Theorem 1, one concludes 
that the supp v^{t: \t\<e}. Making e -> 0 we find that the supp E is concentrated 
at the origin. Therefore, 

(8) £ = 2 ^ ® S * ; UkeJ?(B;DA) 

and so its Fourier transform is a polynomial. But for A e r x u T2 one has 

(9) \E(X)\ < const. e- p | I m A | , from where \E(X)\ ->0 as |A| ->oo 

along I \ u T2; contradiction. Hence L has no elementary solution. 

THEOREM 3. If there exists a region in the complex plane where the resolvent 
R(X; A) does not exist then the operator L has no elementary solutions with compact 
support. 

Proof. If E is a distribution with compact support and satisfies LE=8 ® /, it 
is easy to verify that the Fourier transform ls(A) is an entire function and satisfies 

(\I—A)E{X) = L This implies that the resolvant R(X; A) = E(X) exists throughout 
the plane contradicting the hypothesis. 
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