
The Bulletin of Symbolic Logic

Volume 29, Number 1, March 2023

WHICH CLASSES OF STRUCTURES ARE BOTH
PSEUDO-ELEMENTARY AND DEFINABLE

BY AN INFINITARY SENTENCE?

WILL BONEY, BARBARA F. CSIMA, NANCY A. DAY, AND MATTHEW HARRISON-TRAINOR

Abstract. When classes of structures are not first-order definable, we might still try to find
a nice description. There are two common ways for doing this. One is to expand the language,
leading to notions of pseudo-elementary classes, and the other is to allow infinite conjuncts
and disjuncts. In this paper we examine the intersection. Namely, we address the question:
Which classes of structures are both pseudo-elementary and L�1,� -elementary? We find that
these are exactly the classes that can be defined by an infinitary formula that has no infinitary
disjunctions.

§1. Introduction. It is well-known that many properties of structures are
not expressible in elementary first-order logic, even by a theory rather
than a single sentence. Common examples are the property (of graphs)
of being connected, the property (of abelian groups) of being torsion,
and the property (of linear orders) of being well-founded. To capture such
properties, one can pass to extensions of elementary first-order logic. This
paper is about a characterization of the common expressive power of two
such extensions.

The first extension of elementary first-order logic that we consider allows
countably infinite conjunctions and disjunctions; this is, morally, similar
to allowing quantifiers over the (standard) natural numbers. One can then
express properties such as being torsion by saying “for each group element
x, there is an n such that nx = 0,” or formally,

(∀x)
∨∨
n∈N
nx = 0.

This infinitary logic is known as L�1,�. One loses compactness, but
gains other powerful tools. For example, every countable structure is
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2 WILL BONEY ET AL.

characterized, up to isomorphism among countable structures, by a sentence
of L�1,� [11].

The second extension of elementary first-order logic allows existential
second-order quantifiers. For example, the property of a linear order being
non-well-founded can be expressed by the sentence “there is a set with no
least element.” We work with existential second-order quantifiers using the
framework of pseudo-elementary classes (and so replace existential second-
order quantifiers with expansions of the language). More formally, we say
that a class K of �-structures is pseudo-elementary (PCΔ) if there is an
expanded language �∗ ⊇ � and a �∗-theory T such that K consists exactly of
the �-structures admitting an �∗-expansion to a model of T. We will describe
both of these extensions of first-order logic in more detail later.

These two extensions of elementary first-order logic have different
expressive powers. For example, the class of non-well-founded linear orders
is pseudo-elementary but not L�1,�-definable. Also, the compliment of a
pseudo-elementary class is not necessarily pseudo-elementary, but the com-
pliment of an L�1,�-definable class is again L�1,�-definable (by the negation
of the original defining sentence). Nevertheless, there are classes that are not
elementary first-order axiomatizable, but that are both pseudo-elementary
and L�1,�-definable. The class of disconnected graphs is such an example;
we provide a more detailed discussion of various examples in Section 2.3.
The main result of this paper is a complete classification of such properties.

Theorem 1.1. Let K be a class of structures closed under isomorphism. The
following are equivalent:

1. K is both a pseudo-elementary (PCΔ) class and defined by an L�1,�-
sentence.

2. K is defined by a
∧∧

-sentence.

There is some notation in this theorem that we must explain. The∧∧
-sentences in the theorem are the L�1,� sentences which (in normal

form) involve infinitary conjunctions, but no infinitary disjunctions (see
Definition 2.4). For example, the property of being infinite is definable by
the

∧∧
-sentence

∧∧
n∈N

∃x1, ... , xn

(∧
i �=j
xi �= xj

)
.

The negation, the property of being finite, is L�1,�-definable by the sentence

∨∨
n∈N

∀x1, ... , xn

(∨
i �=j
xi = xj

)
,
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PSEUDO-ELEMENTARY AND INFINITARILY DEFINABLE 3

but this sentence is not a
∧∧

-sentence because it involves an infinitary
disjunct. Although

∧∧
-formulas cannot have infinite disjunctions, they can

have finite disjunctions.
The proof of (1)⇒(2) uses an argument inspired by the proof of Craig

Interpolation for L�1,�. This was originally proved by Lopez-Escobar [7]
who also gave the following corollary: a class which is both pseudo-
elementary and co-pseudo-elementary with respect to L�1,� (i.e., both Σ1

1
and Π1

1) is actually L�1,�-definable.
In the direction (2)⇒(1), there are several possible proofs. We give the

simplest and shortest argument in Section 4. A second proof is to note that
any

∧∧
-sentence is equivalent to a closed game formula, and classes defined

by such formulas are known to be PCΔ [2, 6]. We describe this in Section 5.
A third proof, for which we do not give the details, proceeds by coding
computable formulas in models of weak arithmetic. This is an approach
that was taken by Craig and Vaught [3] to prove:

Theorem 1.2 (Craig and Vaught [3]). Every computably axiomatizable
class in a finite language is a basic pseudo-elementary class (PC′).

By a basic pseudo-elementary class, we mean the class of reducts of a
basic elementary class (one defined by a single sentence) in an expanded
language. (See Definition 2.9 for the precise definition of PC′.) The latter
two proofs of our main Theorem 1.1 give a strengthening of this result of
Craig and Vaught.

Theorem 1.3. Let K be a class of structures in a finite language that
is axiomatized by a computable

∧∧
-sentence. Then K is a basic pseudo-

elementary class (PC′).

Unfortunately, we do not know how to reverse Theorem 1.3. We
conjecture:

Conjecture 1.4. A PC′ class which is also L�1,�-axiomatizable is
axiomatizable by a computable

∧∧
-sentence.

The argument in Section 4 for (2)⇒(1) of Theorem 1.1 goes through for∧∧
-sentences of Lκ,� for any κ. However, we do not know if (1)⇒(2) holds

for Lκ,� for κ > �1.

Question 1.5. For κ > �1, is every PCΔ class defined by an Lκ,� sentence
actually defined by a

∧∧
-sentence?

We note that interpolation fails in L�2,� [9, Theorem 4.2]. Intriguingly,
Malitz goes on to give a proof system for Lκ,� that goes through L(2<κ)+,κ

that gives rise to an interpolation theorem [9, Section 5]. Shelah [12] uses
this to define a logic L1

κ that is intermediate between Lκ,� and Lκ,κ that

https://doi.org/10.1017/bsl.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.1


4 WILL BONEY ET AL.

has interpolation and other nice properties (when κ = �κ). This suggests
the right answer to Question 1.5 goes through L1

κ instead of Lκ,�. However,
this logic lacks any syntax in the normal sense (formulas are defined by
the existence of winning strategies in a delayed Ehrenfeucht–Fraisse game),
which causes additional problems, e.g., it is not clear what a

∧∧
-sentence

should mean, or what Skolem functions should look like.

§2. Notation and definitions.

2.1. Infinitary logic. For the most part, we follow Marker’s new book [10].
Elementary first-order logic has a number of properties which, while
useful, make it hard to completely characterize structures. For example,
the Ryll–Nardzewski theorem says that any countably categorical structure
is relatively simple: for each n, there are only finitely many automorphism
orbits of n-types. The infinitary logic L�1,� adds more expressive power and
hence allows us to characterize every countable structure up to isomorphism
among countable structures [11].

The infinitary logic L�1,� is defined recursively in the same way as finitary
first-order logic, except that for L�1,� we can take countable conjunctions
and disjunctions. Throughout the paper, let � be a countable language.

Definition 2.1. TheL�1,�(�)-formulas are defined inductively as follows:

1. Every atomic �-formula is an L�1,�(�)-formula.
2. If ϕ is an L�1,�(�)-formula, then so are ¬ϕ, (∃x)ϕ, and (∀x)ϕ.
3. If (ϕi)i∈� are L�1,�(�)-formulas with finitely many free variables, then

so are
∧∧
i∈�ϕi and

∨∨
i∈�ϕi .

In general, we will drop the reference to � when it is clear what we mean.

Definition 2.2. An L�1,� formula is in L�1,� normal form if the ¬ only
occurs applied to atomic formulas.

Every L�1,� can be placed into a normal form. The negation ¬ϕ of a
sentence ϕ in normal form is not immediately in normal form itself; this
gives rise to the formal negation ∼ϕ, which is logically equivalent to ¬ϕ but
is in normal form.

Definition 2.3. For any L�1,�-formula ϕ, the formula ∼ϕ is defined
inductively as follows:

1. If ϕ is atomic, ∼ϕ is ¬ϕ.
2. ∼¬ϕ is ϕ, ∼(∃x)ϕ is (∀x)∼ϕ, and ∼(∀x)ϕ is (∃x)∼ϕ.
3. ∼

∧∧
i∈�ϕi is

∨∨
i∈�∼ϕi and ∼

∨∨
i∈�ϕi is

∧∧
i∈�∼ϕi .
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PSEUDO-ELEMENTARY AND INFINITARILY DEFINABLE 5

Definition 2.4. An L�1,�-sentence ϕ is a
∧∧

-formula if it can be written
in normal form without any infinite disjunctions. More concretely, the∧∧

-formulas are formed by the following inductive process:

1. Every finitary quantifier-free sentence is a
∧∧

-formula.
2. If ϕ is a

∧∧
-formula, then so are (∃x)ϕ and (∀x)ϕ.

3. If ϕ and � are
∧∧

-formulas, then so is ϕ ∨ �.
4. If (ϕi)i∈� are

∧∧
-formulas with finitely many free variables, then so is∧∧

i∈�ϕi .

Remark 2.5. The third condition allowing one to take the disjunction
of finitely many formulas is in some sense unnecessary; any

∧∧
-formula is

equivalent to one in which all of the disjunctions occur on the inside. For
example, (∧∧

i∈�
ϕi

)
∨

(∧∧
i∈�
�i

)

is equivalent to ∧∧
i,j∈�

ϕi ∨ �j.

An L�1,� (or
∧∧

-) formula is computable if, essentially, there is a
computable syntactic representation of the formula (see [1]).

2.2. Pseudo-elementary classes. In this section, we follow the book by
Hodges [4]. Many classes of structures can be described by the existence
of some feature that can be added to them; for example, a linear ordering
is non-well-founded if it has a subset with no least element, and a group
is orderable if there exists an ordering. Such classes of structures may not
be elementary, but by thinking of them as pseudoelementary classes we can
still apply the tools of model theory to them. The main notion of pseudo-
elementary class in infinitary model theory is the following:

Definition 2.6. We say that a classKofL-structures is a pseudoelementary
class (PCΔ-class) if there is a language �∗ ⊇ � and an elementary first-order
�∗ theory T such that

K = {M | there is a �∗-structure M∗ expanding M with M∗ |= T}.
Pseudoelementary classes have some nice properties such as being closed

under ultraproducts. (On the other hand, L�1,�-definable classes may not
be closed under ultraproducts.)

Just as there is a distinction in model theory between elementary
classes and basic elementary classes, the former being axiomatized by a
theory and the latter by a single sentence, there is a distinction between
pseudoelementary classes and basic pseudoelementary classes.
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6 WILL BONEY ET AL.

Definition 2.7. We say that a class K of L-structures is a basic
pseudoelementary class (PC-class) if there is a language �∗ ⊇ � and an
elementary first-order �∗ sentence ϕ such that

K = {M | there is a �∗-structure M∗ expanding M with M∗ |= ϕ}.
In finite model theory, it is basic elementary classes that play the more

important role, and indeed in finite model theory the term Δ-elementary class
is often used for what we call elementary classes, while the term elementary
class is reserved for what we call basic elementary classes. Similarly, the
main notion of pseudoelementary class in finite model theory is that of
basic pseudoelementary classes. Basic pseudo-elementary classes seem to
have a connection with computability, e.g., Theorems 1.2 and 1.3.

Some classes seem like they should be pseudo-elementary but do not
immediately fit under the above definitions. For example, consider the class
of multiplicative groups of fields, i.e., a group G is in this class if there is a
field F such that G = F×. The field F is not going to be a subset of the field
G; rather, G will be a subset of F. We can expand our definitions as follows to
allow these types of classes, which we call PC′ and PC′

Δ. The classes PC′ and
PC′

Δ differ from PC and PCΔ respectively in that in addition to expanding
the language, one is allowed to add additional elements.

Definition 2.8. Let � ⊆ �∗ be a pair of languages, with a unary predicate
P ∈ �∗ \ �. Given a �∗-structure A, we denote by AP the substructure of
A | � whose domain is PA (if this is a �-structure; otherwise AP is not
defined).

Definition 2.9. We say that a class K of �-structures is a basic
pseudoelementary class (PC′-class) if there is a language �∗ ⊇ �, with a unary
relation P ∈ �∗ \ �, and a �∗-formula φ, such that

K = {AP | A |= φ and AP is defined}.
We say that K is a pseudoelementary class (PC′

Δ-class) if φ is a first-order
theory.

We will always clarify whether a pseudoelementary class is PCΔ or PC′
Δ,

and whether a basic pseudoelementary class is PC or PC′.
Note that in Definition 2.9, if the language is finite (or we are dealing with

a PC′
Δ-class), it suffices to ask that

K = {AP | A |= φ},
as φ can say that AP is defined.

We have defined four different types of pseudo-elementary classes.
However, it turns out that PCΔ and PC′

Δ classes are actually the same;
so for example, the class of multiplicative groups of fields, which is easily
seen to be PC′

Δ, is PCΔ.
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Theorem 2.10 (Theorem 5.2.1 of [4]). Let K be a class of structures.

1. K is a PCΔ-class if and only if it is a PC′
Δ-class.

2. If all the structures in K are infinite, then K is a PC-class if and only if it
is a PC′-class.

In Example 2.15 we exhibit a class which is PC′ but not PC.
The proof of the first point in [4] is not obvious and quite interesting.

For the second, essentially the only reason that PC and PC′ are different is
that the model might be finite; if a model is infinite, one could just have the
elements of the model “wear two hats,” on the one hand being the domain
of the expansion of the original model, and on the other hand playing the
role of the elements of the new sort P.

2.3. Examples. In this section we will give a few examples of classes of
various types, separating some of the notions defined in the previous two
sections, and including some applications of the theorems of this paper.

The motivating example for this paper was the class of connected graphs.
It is easier to think of the compliment, the class of non-connected graphs.
This class is both PC and definable by a computable

∧∧
-sentence. Thus the

class of connected graphs is both co-PC and definable by a computable∨∨
-sentence (the definition of which should be clear). These classes are not

elementary classes.
Example 2.11. Let � = {R} the language of graphs. The class K of non-

connected graphs is a PC-class. Indeed, an undirected graph G = (G,R) is
disconnected if and only if there is a binary relation C of connectedness such
that:

1. (∀x)(∀y) [R(x, y) → C (x, y)],
2. (∀x)(∀y)(∀z) [C (x, y) ∧ C (y, z) → C (x, z)], and
3. ¬(∀x)(∀y) C (x, y).

An undirected graph G is also disconnected if and only if

(∃x �= y)
∧∧
n∈�

(∀u0, ... , un)

× [x �= u0 ∨ ¬R(u0, u1) ∨ ¬R(u1, u2) ∨ ··· ∨ ¬R(un–1, un) ∨ un �= y].

So K is also defined by a computable
∧∧

-sentence.

The prototypical example of a PC-class which is not L�1,�-definable is
class of non-well-founded linear orders.

Example 2.12. Let � = {<} the language of linear orders. The class K

of non-well-founded linear orders is a PC-class as a linear order (S,<) is
non-well-founded if and only if there is a unary relation U such that

(∀x)
[
x ∈ U → (∃y)[y ∈ U ∧ y < x]

]
.

K is not definable by any L�1,� formula.
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8 WILL BONEY ET AL.

A simple example where one can apply Theorem 1.3 is the class of infinite
models.

Example 2.13. Let � be any language and φ a finitary �-sentence. The
class K of infinite models of φ is easily seen to be defined by the conjunction
of φ and the computable

∧∧
-sentence

∧∧
n∈�

(∃x0, ... , xn)

⎡
⎣∧
i �=j
xi �= xj

⎤
⎦ .

By Theorem 1.3, K is a PC′-class, and by Theorem 2.10 it is a PC-class.
Being slightly clever, we can also see that K is a PC-class by noting that
A |= φ is infinite if and only if there is a linear order < on A such that
(∀x)(∃y)[x < y].

We have already mentioned the class of orderable groups.

Example 2.14. Orderable groups are a PC-class. By compactness, they
are also universally axiomatizable (in elementary first-order logic) by saying
that every finite subset can be ordered in a way that is compatible with the
group operation.

Example 2.14 is a particular instance of a more general phenomena:
if we take a PC-class that such that (a) the expanded vocabulary only
adds relations and (b) the added relations are only universally quantified
over, then the resulting class is actually elementary (though it may require
infinitely many axioms). This is very particular case in which we can answer
Conjecture 1.4.

As an application of Theorem 1.2, let us give an example of a PC′-class
which is not a PC-class.

Example 2.15. Define an elementary first-order theory T as follows. The
language of T will be the language of graphs. Fix an enumeration of the
sentences φn in finite languages Ln expanding the language of graphs. Note
that for every finite graph G, we can decide effectively whether there is an
expansion of G to a model of φn. For each n, let Cn be cycle of length n.
Then, let T be the theory that says that there is no cycle of length n for
exactly those n where Cn does not have an expansion to a model of φn.

Note that T is c.e. and universal. By diagonalization, the models of T are
not a PC-class, though by Theorem 1.2 they are a PC′-class.

As suggested by Theorem 2.10, this example uses finite structures in an
integral way.

§3. An application of Craig Interpolation. To prove the direction (1)
implies (2) of Theorem 1.1, we will adapt a proof of the Craig Interpolation
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Theorem for L�1,�. We state the standard Craig Interpolation Theorem here
for completeness.

Theorem 3.1 (Craig Interpolation Theorem [7]). Suppose φ1 and φ2 are
L�1,�-sentences with φ1 |= φ2. There is an L�1,�-sentence � such that φ1 |= �,
� |= φ2, and every relation, function and constant symbol occurring in � occurs
in both φ1 and φ2.

The proof we adapt is not the original proof by Lopez-Escobar, but one
that appears in the book by Marker [10]. The proof of Craig Interpolation
makes use of consistency properties. Consistency properties are the infinitary
equivalent of Henkin-style constructions in finitary logic. Consistency
properties were first introduced by Makkai [8]; the exact definition we use
seems to be due to Keisler [5]. See also Definition 4.1 of [10].

Definition 3.2. Let C be a countable collection of new constants.
A consistency property Σ is a collection of countable sets	 ofL�1,�-sentences
with the following properties. For 	 ∈ Σ:

(C1) If φ ∈ 	, then ¬φ /∈ 	.
(C2) If ¬φ ∈ 	, then 	 ∪ {∼ φ} ∈ Σ.
(C3) If

∧∧
φ∈Xφ ∈ 	, then for all φ ∈ X , 	 ∪ {φ} ∈ Σ.

(C4) If
∨∨
φ∈Xφ ∈ 	, then there is φ ∈ X such that 	 ∪ {φ} ∈ Σ.

(C5) If (∀v)φ(v) ∈ 	, then for all c ∈ C , 	 ∪ {φ(c)} ∈ Σ.
(C6) If (∃v)φ(v) ∈ 	, then there is c ∈ C such that 	 ∪ {φ(c)} ∈ Σ.
(C7) Let t be a term with no variables and let c, d ∈ C :

(a) If c = d ∈ 	, then 	 ∪ {d = c} ∈ Σ.
(b) If c = t ∈ 	 and φ(t) ∈ 	, then 	 ∪ {φ(c)} ∈ Σ.
(c) There is e ∈ C such that 	 ∪ {e = t} ∈ Σ.

Marker [10] includes another condition, that a consistency property
be closed under subsets. However he shows in Exercise 4.1.4 that this is
unnecessary. Keisler [5] states his definition in the same way as ours, and
proves that the closure of a consistency property under subsets is against a
consistency property.

A consistency property is in some sense a recipe for building a model.

Theorem 3.3 (Model Existence Theorem). If Σ is a consistency property
and 	 ∈ Σ, there is M |= 	.

We are now ready to prove our variant of the Craig Interpolation Theorem.
We strengthen the hypotheses to assume that one of the sentences is a∧∧

-sentence, and in return, we get that the interpolant is also a
∧∧

-sentence.
The proof follows the same structure as that of the Craig Interpolation
Theorem in [10] (Theorem 4.3.1).
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Theorem 3.4. Suppose φ1 is a
∧∧

-sentence and φ2 is an L�1,�-sentence
with φ1 |= φ2. There is a

∧∧
-sentence � such that φ1 |= �, � |= φ2, and every

relation, function and constant symbol occurring in � occurs in both φ1 and φ2.

Proof. Let C be a countable collection of new constants. Let �i be the
smallest language containing φi and C, and let � = �1 ∩ �2.

Let Σ be the collection of finite sets of sentences 	 containing only finitely
many new constants that can be written as 	 = 	1 ∪ 	2, where 	1 is a finite
set of

∧∧
-�1-sentences and 	2 is a finite set of �2-sentences, and such that for

all �-sentences �1 and �2, with �1 a
∧∧

-sentence, if 	1 |= �1 and 	2 |= �2

then �1 ∧ �2 is satisfiable.
In the rest of the proof, we make the convention that if 	 ∈ Σ and we write
	 = 	1 ∪ 	2, then 	1 and 	2 are the witnesses that 	 ∈ Σ, i.e., 	1 consists of∧∧

-�1-sentences, 	2 consists of �2-sentences, and they satisfy the satisfiability
condition above.

We claim that Σ is a consistency property. The following claim will verify
many of the conditions.

Claim. Fix 	 ∈ Σ and write 	 = 	1 ∪ 	2. If φ is a �i -sentence (and a∧∧
-sentence if i = 1) with 	i |= φ, then 	 ∪ {φ} ∈ Σ. �

Proof. We will show the case i = 1. We can write	 ∪ {φ} = (	1 ∪ {φ}) ∪
	2. If 	1 ∪ {φ} |= �1 and 	2 |= �2, with�1 a

∧∧
-sentence, then since 	1 |= φ,

	1 |= �1. Hence �1 ∧ �2 is satisfiable. �

We now check the conditions of a consistency property.

(C1) Suppose for a contradiction that φ,¬φ ∈ 	 = 	1 ∪ 	2. If φ ∈ 	i
while ¬φ ∈ 	j for i �= j, then φ is a �-sentence such that 	i |= φ
and 	j |= ¬φ, so since φ ∧ ¬φ is not satisfiable, this witnesses that
	 ∈ Σ. If both φ,¬φ ∈ 	i , then 	i |= φ ∧ ¬φ. Now since φ ∧ ¬φ is
unsatisfiable, letting�1 be any unsatisfiable �-sentence, we also have
that 	i |= �1. Letting �2 be any �-sentence such that 	j |= �2, we
see that �1 ∧ �2 is unsatisfiable and provides a witness to the fact
that 	 ∈ Σ.

(C2) This follows from the claim.
(C3) This follows from the claim.
(C4) Write 	 = 	1 ∪ 	2. We have two cases which are different, depending

on whether
∨∨
φ∈Xφ ∈ 	1 or

∨∨
φ∈Xφ ∈ 	2.

First suppose that
∨∨
φ∈Xφ ∈ 	2. Let	2,φ = 	2 ∪ {φ}. We claim that

for some φ ∈ X , 	2,φ ∪ 	1 ∈ Σ. If not, then for each φ ∈ X there are
�-sentences�2,φ and�1,φ , with�1,φ a

∧∧
-sentence, such that 	2,φ |=

�2,φ and 	1 |= �1,φ , and such that �2,φ ∧ �1,φ is unsatisfiable. So
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�2,φ |= ¬�1,φ . Since

	2 |=
∨∨
φ∈X
φ,

we have that

	2 |=
∨∨
φ∈X
�2,φ.

On the other hand,

	1 |=
∧∧
φ∈X
�1,φ.

This formula is a
∧∧

-sentence as each �1,φ is. Finally,∨∨
φ∈X
�2,φ |= ¬

∧∧
φ∈X
�1,φ,

which contradicts that 	 ∈ Σ.
Now suppose that

∨∨
φ∈Xφ ∈ 	1; then X is finite. We begin in

a similar way as before. Let 	1,φ = 	1 ∪ {φ}. We claim that for
some φ ∈ X , 	1,φ ∪ 	2 ∈ Σ. If not, then for each φ ∈ X there are
�-sentences�1,φ and�2,φ , with�1,φ a

∧∧
-sentence, such that 	1,φ |=

�1,φ and 	2 |= �2,φ , and such that �1,φ ∧ �2,φ is unsatisfiable. So
�1,φ |= ¬�2,φ . Since

	1 |=
∨∨
φ∈X
φ,

we have that

	1 |=
∨∨
φ∈X
�1,φ.

As X is finite this a
∧∧

-sentence. On the other hand,

	2 |=
∧∧
φ∈X
�2,φ

and ∨∨
φ∈X
�1,φ |= ¬

∧∧
φ∈X
�2,φ,

which contradicts that 	 ∈ Σ.
(C5) This follows from the claim as (∀x)φ(x) |= φ(c) for all c ∈ C .
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(C6) If (∃x)φ(x) ∈ 	, then choose c ∈ C which does not appear in 	.
Suppose that (∃x)φ(x) ∈ 	1; the case where (∃x)φ(x) ∈ 	2 is
similar. We claim that 	 ∪ {φ(c)} ∈ Σ. Since (∃x)φ(x) ∈ 	1, φ(x)
is a

∧∧
-formula, and thus so is φ(c).

Suppose that 	1 ∪ {φ(c)} |= �1 and 	2 |= �2, where �1 is a∧∧
-sentence. Write �1 = �1(c) and �2 = �2(c). We have 	1 |=

φ(c) → �1(c), and so since c does not appear in 	1, 	1 |= (∀x)
[φ(x) → �1(x)]. Similarly, 	2 |= (∀x)�2(x). Also, 	1 |= (∃x)φ(x)
and so 	1 |= (∃x)�1(x). So (∃x)�1(x) ∧ (∀x)�2(x) is satisfiable,
say in a model M. Note that the constant c does not appear
in the formula (∃x)�1(x) ∧ (∀x)�2(x), so we may choose the
interpretation of c in M such that M |= �1(c). Then M |= �1(c) ∧
�2(c). So �1 ∧ �2 is satisfiable, and 	 ∪ {φ(c)} ∈ Σ.

(C7) Let t be a term with no variables and let c, d ∈ C :
(a) This follows from the claim.
(b) Suppose c = t ∈ 	 and φ(t) ∈ 	. Write 	 = 	1 ∪ 	2. Consider

 = 	 ∪ {φ(c)} = 	1 ∪ 	2 ∪ {φ(c)}. Suppose c = t ∈ 	i and
φ(t) ∈ 	j . The case i = j follows from the claim, so we consider
the case i �= j. Suppose that 	i |= �i and 	j ∪ {φ(c)} |= �j .
Then 	i |= c = t ∧ �i and 	j |= c = t → �j , so c = t ∧ �i ∧
(c = t → �i) is satisfiable. So �i ∧ �j is satisfiable.

(c) Pick e ∈ C which does not appear in 	 = 	1 ∪ 	2. Then if
	1 ∪ {e = t} |= �1 and 	2 ∪ {e = t} |= �2, write �1 = �1(e)
and �2 = �2(e). Then since e does not appear in 	1 or 	2,
	1 |= �1(t) and 	2 |= �2(t). Thus �1(t) ∧ �2(t) is satisfiable.
Given a model of �1(t) ∧ �2(t), setting the interpretation of
c to t, we get a model of �1 ∧ �2. So �1 ∧ �2 is satisfiable.

Since φ1 |= φ2, {φ1,¬φ2} /∈ Σ as otherwise by the Model Existence
Theorem there would be a model of φ1 ∧ ¬φ2. By definition of Σ, there are
�-sentences�1 and�2, with�1 a

∧∧
-sentence, such that φ1 |= �1, ¬φ2 |= �2,

and �1 ∧ �2 is not satisfiable. So we have that φ1 |= �1, �1 |= ¬�2, and
¬�2 |= φ2. Hence φ1 |= �1 and �1 |= φ2.

Thus �1 is the desired interpolant, except that it may contain constants
from C. Write �1 = �(c̄), where � is an �-formula with no constants from
c̄. Neither φ1 nor φ2 contains constants from C, and so φ1 |= (∀x̄)�(x̄) and
(∃x̄)�(x̄) |= φ2. Since (∀x̄)�(x̄) |= (∃x̄)�(x̄), we can take (∀x̄)�(x̄) as the
interpolant. �

We get the following corollary, which is (1) implies (2) of Theorem 1.1.
Interestingly, when we apply the interpolation theorem in the proof, one
of the languages contains the other (i.e., we have �1 ⊇ �2 so that � = �1 ∩
�2 = �2). If it were not for our added assumptions on the form of the formulas
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involved, finding an interpolant would be trivial as we could just take the
sentence in the smaller language.

Corollary 3.5. Let K be a class of �-structures closed under isomorphism.
If K is both a PCΔ-class and L�1,�-elementary, then it is defined by a∧∧

-sentence.

Proof. Let �∗ ⊇ � be an expanded language and let X be a set of first-
order sentences such that K is the class of reducts to � of models of �1 =∧∧
φ∈Xφ. Note that �1 is a

∧∧
-sentence.

Let �2 be an L�1,�(�)-sentence defining K. We have that �1 |= �2, so by
the Interpolation Theorem, there is a

∧∧
-�-sentence � such that �1 |= � and

� |= �2.
Every M ∈ K has an expansion which is a model of �1 and hence is itself

a model of �; and every model of � is a model of�2, and hence in the class K.
So � defines K. �

§4. The Skolem argument. For the direction (2)⇒(1) of Theorem 1.1, we
must prove the following theorem. The proof works for sentences from Lκ,�
for any κ, though the reader should feel free to take κ = �1. (The logic Lκ,�
is defined in the same way as L�1,� except that we allow conjunctions and
disjunctions of size < κ.)

Theorem 4.1. Let K be a class of structures closed under isomorphism.
If K is defined by a

∧∧
-sentence of Lκ,�, then it is a pseudo-elementary (PCΔ)

class.

We have extended the notion of a
∧∧

-formula from L�1,� to Lκ,� using the
same definition (see Definition 2.4).

Remark 4.2. One can extend this theorem to
∧∧

-theories (sets of∧∧
-sentences) because every

∧∧
-theory can be turned into a

∧∧
-sentence

by taking the conjunction, but this might change the logic. For instance,
any uncountable first-order theory T is a

∧∧
-theory in L�1,�, but not a∧∧

-sentence in L�1,� (this can be proved by noting the lack of countable
models). Of course, T is a

∧∧
-sentence in L|T |+,�.

Morally, the idea of the proof is to Skolemize the language to be left
with a universal

∧∧
-theory in an expanded language, and then the infinitary

conjunctions can be dropped. The main construction is the following lemma.

Lemma 4.3. Let ϕ(x̄) be a
∧∧

-formula in Lκ,�(�). There is an expanded
language �ϕ ⊃ � and a set Φ(ϕ) of first-order �ϕ-formulas with the same free
variables that verifies ϕ in the following sense:

1. Given any �ϕ-structure A+ and ā ∈ A+,

∀� ∈ Φ(ϕ),A+ |= �(ā) =⇒ A+ |= ϕ(ā).
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2. Given any �-structureA, there is an expansionA+
ϕ such that for all ā ∈ A,

A � ϕ(ā) ⇐⇒ ∀� ∈ Φ(ϕ),A+
ϕ � �(ā).

Proof. Construction: We work by induction on the formula ϕ(x̄).
Although there is no prenex normal form for formulas of Lκ,�, formulas
are defined inductively. In particular, we follow the definition given for∧∧

-formulas from Definition 2.4, using Remark 2.5 to assume that any finite
disjunctions occur only as part of finitary, quantifier-free formulas.

1. ϕ(x̄) is a finitary, quantifier-free formula.
Set �ϕ = � and Φ(ϕ) = {ϕ(x̄)} (in fact, this works for any finitary
formula).

2. ϕ(x̄) is (∃y)�(x̄, y).
Set �ϕ = �� ∪ {f�(x̄) | � ∈ Φ(�)} where each f� is a new function
symbol, and set

Φ(ϕ) =
{
�

(
x̄, f�(x̄)) | �(x̄, y) ∈ Φ(�)

}
.

3. ϕ(x̄) is (∀y)�(x̄, y).
Set �ϕ = �� and

Φ(ϕ) = {(∀y)� (x̄, y) | �(x̄, y) ∈ Φ(�)}.
4. ϕ(x̄) is

∧∧
i∈I �i(x̄).

Set �ϕ = ∪i∈I ��i where the union is disjoint over �; that is, new
functions in ��i and ��j are distinct in �ϕ . Then set

Φ(ϕ) =
⋃
i∈I

Φ(�i).

This works: We verify the construction inductively using the same cases.
Is is easy to argue inductively that given any �ϕ-structure A+ and ā ∈ A+,

∀� ∈ Φ(ϕ),A+ |= �(ā) =⇒ A+ |= ϕ(ā).

1. Immediate.
2. Suppose that for all � ∈ Φ(ϕ), A+ |= �(ā). Then, for each �(x̄, y) ∈

Φ(�), A+ |= �(ā, f�(ā)). By the induction hypothesis, A+ |=
�(ā, f�(ā)). So A+ |= (∃y)�(ā, y), i.e., A+ |= ϕ(ā).

3. Suppose that for all � ∈ Φ(ϕ), A+ |= �(ā). Then, for each �(x̄, y) ∈
Φ(�), A+ |= (∀y)�(ā, y), and so for each b ∈ A+, A+ |= �(ā, b). By
the induction hypothesis, A+ |= �(ā, b) for each b ∈ A+. So A+ |=
(∀y)�(āy), i.e., A+ |= ϕ(ā).

4. Suppose that for all � ∈ Φ(ϕ), A+ |= �(ā). Then, for each �i and each
�(x̄) ∈ Φ(�i), A+ |= �(ā). By the induction hypothesis, A+ |= �i(ā)
for each i, and so A+ |= ϕ(ā).
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Now we will show inductively how to define A+
ϕ and verify that

A � ϕ(ā) ⇐⇒ ∀� ∈ Φ(ϕ),A+
ϕ � �(ā).

1. Immediate.
2. FixA. By induction, we have an expansionA+

� . Expand further to form
A+
ϕ by picking each f� to be a Skolem function for �; that is, ensure

A+
ϕ � ∀x̄

(
(∃y)�(x̄, y) ↔ �(x̄, f�(x̄))) .

Then fix ā ∈ A.

A � ϕ(ā) ⇐⇒ ∃b ∈ A, A � �(ā, b)

⇐⇒ ∃b ∈ A, ∀� ∈ Φ(�), A+
� � �(ā, b)

⇐⇒ ∃b ∈ A, ∀� ∈ Φ(�), A+
ϕ � �(ā, b)

⇐⇒ ∀� ∈ Φ(�), A+
ϕ � �(ā, f�(ā)).

3. Fix A and set A+
ϕ = A+

� . Fix ā ∈ A.

A � ϕ(ā) ⇐⇒ ∀b ∈ A, A � �(ā, b)

⇐⇒ ∀b ∈ A, ∀� ∈ Φ(�), A+
� � �(ā, b)

⇐⇒ ∀� ∈ Φ(�), A+
ϕ � (∀y)�(ā, y).

4. Fix A and set A+
ϕ to be the joint expansion of all of the A+

�i
’s; here

we crucially use that the new functions in the different languages are
distinct. Fix ā ∈ A.

A � ϕ(ā) ⇐⇒ ∀i ∈ I, A � �i(ā)

⇐⇒ ∀i ∈ I, ∀� ∈ Φ(�i), A+
�i

� �(ā)

⇐⇒ ∀i ∈ I, ∀� ∈ Φ(�i), A+
ϕ � �(ā)

⇐⇒ ∀� ∈
⋃
i∈I

Φ(�i), A+
ϕ � �(ā).

This completes the proof. �

From this lemma, the proof of the theorem is immediate.

Proof of Theorem 4.1. Letϕ be a
∧∧

-sentence ofLκ,�. Apply Lemma 4.3
to ϕ. Since ϕ is a sentence (has no free variables), Φ(ϕ) is a collection of
sentences. Then

Mod ϕ = {A | there is A+ expanding A with A+ � Φ(ϕ)}. �
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§5. Game formulas. In this section, we show how the direction (2)⇒(1)
of Theorem 1.1 follows from known results on game formulas.

Definition 5.1. A closed game formula1 is an expression of the form

∀y1∃z1∀y2∃z2 ···
∧∧
n

ϕn(x̄, y1, z1, y2, z2, ...),

where each ϕn is an elementary first-order formula. Such a formula is
computable if the sequence ϕn is computable.

Satisfaction for such formulas is defined by a game played between two
players, with player I playing the ∀ quantifiers and player II playing the
∃ quantifiers; player II wins, and the formulas is satisfied, if he can make
ϕn(x̄, y1, z1, ...) true for every n. Alternatively, satisfaction can be defined
by the existence of Skolem functions (which turn out to be the winning
strategies for player II).

Note that each ϕn has finitely many free variables. Also, the “closed”
adjective refers to use of conjunctions in the formula.

Every (computable)
∧∧

-formula is equivalent to a (computable) closed
game formula by moving all of the quantifiers to the front. In doing this, one
must take care to rename bound variables so that each variable is quantified
over a single time. This may seem at first to be false by a reader familiar with
the fact that one cannot do this and obtain an L�1,� formula, but one can
do this and obtain a closed game formula. For example,∧∧

n

∃x̄nφn(x̄n) ⇐⇒ ∃x̄1∃x̄2 ···
∧∧
n

φn(x̄n).

We can define the game formula inductively; for the inductive step, we have∧∧
i

∀y1
i ∃z1

i ∀y2
i ∃z2

i ···
∧∧
n

ϕin(x̄i , y
1
i , z

1
i , y

1
i , z

2
i , ...)

⇐⇒ ∀y1
1∃z1

1∀y2
1∃z2

1∀y1
2∃z1

2∀y3
1∃z3

1∀y2
2∃z2

2∀y1
3∃z1

3 ···
∧∧
i,n

ϕin (x̄i , y
1
i , z

1
i , y

1
i , z

2
i , ...).

Essentially we need to merge �-many sequences (or quantifiers) of order
type� into a single sequence of order type�, maintaining the order of each
of the individual sequences inside the amalgamated sequence.

So we can get we get the direction (2)⇒(1) of Theorem 1.1 as well as
Theorem 1.3 as a corollaries of the following theorem.

1An important note is that in general a closed game formula is not an element of L�1,� or
even L�1,�1 . It is not in the first logic because there are infinitely many quantifiers in front of
infinite conjunction, and it is not in the second logic because the quantifiers are not added in
a well-founded way.
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Theorem 5.2 (Theorem 2.1.4 of [6], Corollary 6.7 of [2]).

1. Any class of �-structures defined by a closed game formula is PCΔ.
2. Any class of �-structures defined by a computable closed game formula is

PC′.

The proof given in the previous section is, however, much simpler. Indeed,
the proof in Section 4 gives a proof of the first item above because the Skolem
functions for closed game formulas are still finitary functions because each
stage of the game has only finitely many plays before it (and because each
of the formulas ϕn has finitely many free variables). This proof could be
further generalized to consider longer games, showing that any class defined
by a higher analogue of closed game formulas is PC in some infinitary logic
Lκ,�.
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