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LEMMA ON LOGARITHMIC DERIVATIVES AND HOLOMORPHIC
CURVES IN ALGEBRAIC VARIETIESY

JUNJIRO NOGUCHI

Nevanlinna’s lemma on logarithmic derivatives played an essential
role in the proof of the second main theorem for meromorphic functions
on the complex plane C (cf., e.g., [17]). In [19, Lemma 2.3] it was generalized
for entire holomorphic curves f: C — M in a compact complex manifold
M (Lemma 2.3 in [19] is still valid for non-Kihler M). Here we call, in
general, a holomorphic mapping from a domain of C or a Riemann surface
into M a holomorphic curve in M, and sometimes use it in the sense of
its image if no confusion occurs. Applying the above generalized lemma
on logarithmic derivatives to holomorphic curves f: C — V in a complex
projective algebraic smooth variety V and making use of Ochiai [22,
Theorem A], we had an inequality of the second main theorem type for
f and divisors on V (see [19, Main Theorem] and [20]). Other generali-
zations of Nevanlinna’s lemma on logarithmic derivatives were obtained
by Nevanlinna [16], Griffiths-King [10, § 9] and Vitter [23].

In this paper we first deal with holomorphic curves f: 4* — M from
the punctured disc 4* = {|z| = 1} with center at the infinity c of the
Riemann sphere into a compact Kihler manifold M. Our first aim is to
prove the following lemma on logarithmic derivatives which is a generali-
zation of Nevanlinna [16, III, p. 370] and will play a crucial role in §§ 3
and 4 (see § 1 as to the notation):

Main Lemma (2.2). Let f: 4 — M be a holomorphic curve in M,
o e H'(M, %) a d-closed meromorphic 1-form with logarithmic poles and put
f*o=C(z2)dz. Then we have

m(r, {) < O(log* T(r)) + O(logr)
as r — oo except for re E, where E is a subset of [1, o) with finite linear
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measure.

The difficulty of the present case comes from the fact that the domain
4*% is not simply connected. In the proof we shall apply the negative
curvature method introduced by Griffiths-King [10, Propositions (6.9) and
(9.3)] as in Vitter [23].

In § 3 we shall be concerned with the value distribution of holomorphic
curves f:4* — V in a complex projective algebraic smooth variety V.
Let D be an effective reduced divisor on V. Combining Main Lemma (2.2)
with Ochiai [22, Theorem A] as in [19, § 3] and [20], we shall obtain an
inequality of the second main theorem type

(3.2 KT/r) < N(r, Supp (f*D)) + S(r) ,

where K is a positive constant independent of f and S(r) is a small term
such as

S(r) < O(log*T(r)) + O(logr)

as r—oo outside a set of r with finite linear measure (see Theorem (3.1)).
As a corollary, we shall see that an inequality similar to (3.2) holds for a
holomorphic curve from a compact Riemann surface minus a finite
number of points into V (Corollary (3.3)).

In §4 we shall study the extension problem of big Picard type for
holomorphic curves f: 4* — X in an algebraic subvariety X of general type
in a quasi-Abelian variety A (cf. §4). Let W be the union of subvarieties
of X which are translations of non-trivial closed algebraic subgroups of A.
Then W is a proper algebraic subvariety of X such that each irreducible
component of W is foliated by translations of a non-trivial closed algebraic
subgroup of A (see Lemma (4.1) whose proof is essentially due to Kawamata
[18]). Using Lemma (4.4) due to M. Green by which he completed Ochiai’s
work [22] on Bloch’s conjecture [2], and applying Main Lemma (2.2), we
shall prove the following extension theorem of big Picard type:

THEOREM (4.5). Any holomorphic curve f: 4* — X has a holomorphic
extension f: 4 = 4% U {00} — X unless f(4¥)C W, where X is a completion
of X.

As a corollary of Theorem (4.5) we will see that any holomorphic
mapping f: N — S — X from a complex manifold N minus a thin analytic
set S into X extends meromorphically over N unless f(N—S)c W
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(Corollary (4.7)). Fujimoto ([3], [5]) and Green ([8]) obtained extension
theorems of big Picard type for holomorphic mappings into projective space
omitting hyperplanes in general position or intersecting them with positive
defects (cf. also [4] and [7]). We will discuss the relationship between our
results and those of Fujimoto and Green.

§1. Preliminaries

We set
4% ={zeC;l2z| =21}, A ={1Z12I<T1},
Ir)={zl=r}, d=3a+3, d0=4i(5_a),
T

In this paper we assume that functions on 4* and mappings from 4* are
defined in neighborhoods of 4* in C. Let & be a function on 4* satisfying
(i) ¢& is differentiable outside a discrete set of points,
(ii) ¢ is locally written as a difference of two subharmonic functions.
Then we have

j’ﬁ j _dde = 4i E(re)do — 4L £(e)do
(1.1) 1 ¢t Jaw T Jrm T Jro

where dd°¢ is taken in the sense of currents (cf., e.g., [10]). Let F be a
multiplicative meromorphic function on 4%, i.e., F is a many-valued mero-
morphic function such that the modulus |F| is one-valued. We set

mr, F) = L[ log*|F(re)|do ,
2r Jrom
where log*|F| = max{0,log |F|}. Let D= >,v,a, be a divisor with
integral coefficients v; € Z on 4* and set

n(t’ D) = Z Vi

1s]agl <t

NG, D) = K@dt.

Since |F| is one-valued, the divisor (¥') determined by F is defined on 4*
and so is the divisor (F), (resp. (F).) of zeros (resp. poles) of F. We put

(1.2) T(, F) = N(r, (F)..) + m(r, F) .
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Applying (1.1) to & = log |F |}, we get

(1.3) T(r, i) =T, F)— L[ 1log|F|ds — (log r)j dlog|F |
F 2r Jro rw

(cf. [16, I, p. 369]).
Let M be a compact Kiahler manifold and 2 a (1, 1)-form on M. We
set

T, D) = .[ : _(?_ J- @) 4

for a holomorphic curve f: 4* — M. Let D be an effective divisor on M
and f: 4% — M a holomorphic curve such that f(4*) is not contained in
the support Supp (D) of D. We take a metric ||-|| in the line bundle [D]
determined by D and denote by 2, the curvature form of the metric.
Letting ¢ € H'(M, [D]) be a global holomorphic section of [D] such that
the divisor (¢) determined by ¢ equals D and |¢||<1, we put

1 1
= _— 1 .
m(r, D) o Jro ognaof“dﬁ

Applying (1.1) to & = f*log||s|’, we obtain
T((r, 2)) = N(r,f*D) + m(r, D) — m/(1, D)

1.4
(1.4) +Qogn) | dloglooflF,

where f*D denotes the pull-backed divisor of D by f (cf. [10]). Let Mk
be the sheaf of germs of meromorphic functions which do not identically
vanish, and define a sheaf %% by

dl
Ka, —>0,

(15) 0 —> C* —> M
w (O]
r — dlogy

where C* denotes the multiplicative group of non-zero complex numbers
(cf. [19, §1(b)]). Let we H'(M,%%). Then we have the residue Res ()
which is a divisor homologous to zero such that the line bundle [Res ()]
equals dw, where d: H'(M, A) — H'(M, C*) is the coboundary operator
associated with (1.5) (cf. [19, § 1(b)]). By Weil [24, p. 101] there is a multi-
plicative meromorphic funnction ® on M such that the divisor () equals
Res (0). Since dlog®e H'(M, %%,) and o — dlog® is holomorphic every-
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where on M, we have the decomposition
(1.6) o =dlogb + o, ,

where o, is a holomorphic 1-form on M.

§2. Lemma on logarithmic derivatives
Let f: 4* — M be a holomorphic curve in a compact Kidhler manifold
M with Kihler metric A and the associated form 2, and set
T/r) = T,(r, 2) .

Let w e H'(M, %) and o = dlog ® + w, be the decomposition as (1.6). We
set

Res*(w) = (O©),, Res (w) = (O)., .

Then by [24, p. 101] there is respectively a metric ||-|| in each of [Res*(w)]
and [Res (0)] such that both metrics have the same curvature form £2,;
furthermore there are sections ¢, € H(M, [Res™(w)]) and o, € H(M, [Res*(w)])
such that (¢,) = Res (w), (¢;) = Res*(w), ||o;|| £ 1 and

@2.1) 18] = llae| .
(A

We put f*o = {(2)d=.

Mamn Lemma (2.2). Let the notation be as above. Assume that Supp
(Res (w)) 2 f(d*). Then

2.3) m(r, £) < 18log*T(r) + O(log r)
for r = 1 outside a set of r with finite linear measure.
Proof. Set f*dlog® = {,dz and f*w, = {,dz. Then we have
249 m(r, §) < m(r, §)) + m(r, {;) + log 2.
We first estimate the term m(r,Z,). Take a positive constant C, so that
lo ) < Ch(v, v)

for every holomorphic tangent vector ve T(M). Setting f*Q = s(2)(i/2)
dz N\ dz, we get

(2.5) 16 < Cs2) ,
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so that

m(r, c,>§—1~j log(1 + |c1|2)d0gllog(1+ G sdo)
4r Jrm 2

2 Jrm
(2.6) 1 C, d "
<1y (1 L 4 *Q)
= 2 g\l + 2zr dr Js#m
Since f*£ is a monotone increasing function in r > 1, the inequality

4%(r)

d 2
2. res(], )
dr J#m 4%(r)

holds for r = 1 outside a set E, of r with finite linear measure. Combining
this with (2.6), we have

@7) mr,0) < s log(1+ ([ f+0))
2 2rr \J 4
for r ¢ E,; moreover we have
d (" dt d
. *Q = r—_ kil *O) — p_ 2 < 2
ey [ fre=rl B[ ro-rdrm<rTe)
for r e E,, where E, is a set similar to E,. It follows from (2.7) and (2.8)
that
N 1 1 + G 1
2.9 m(r,§) < 2log*T(r) + —logr + —log* > + —log 2
2 2 2r 2

forr ¢ E, U E,
Now we estimate the term m(r, §) in (2.4). Set F = f*6. Then F is

a multiplicative meromorphic function on 4* and by (2.1), |F| = |la,°f]|/
llo,ofll, so that
m(r, F) < LI log—L _df = m,(r, Res(@)) .
=20 Jre O oo fl

On the other hand, N(r, (F)..) < N(r, f*Res”(»)). Thus we see, taking into
account (1.4), that

(2.10) I, F) < T)(r, 2) + G logr + G, ,

where C, and C, are some non-negative constants. Letting C, be a positive
constant such that 2, < C,2, we have
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(211 Ty(r, 20) < CTy(r) .

We complete the proof by combining (2.9) with (2.10), (2.11) and the
following one variable lemma.

LEmmaA (2.12). Let G be a multiplicative meromorphic function on 4*.
Then the inequality

m(r, G’'|G) < 16 log*T(r, G) + O(logr)
holds for r = 1 outside a set E of r with finite linear measure.

Proof. Let w be an inhomogeneous coordinate of the 1-dimensional
complex projective space P'. Then the standard Kéahler form +, on P! is
written as

1
1 gwndw
Yo =TT [wpy 5w A\ 4

By Griffiths-King [10, Proposition (6.9)] we see that the singular form

a(w| + |w| )™
 (log by(1 + [wP)(log by(1 + le"z))2

satisfies
(2.13) Ric¥ = (w| + |w|™H) >

for suitably chosen positive constants a,, b, and ¢ (¢ < 1). Since ¥ is in-
variant by transformations, w — e“’w, with real § € R and G is multipli-
cative, the pull-backed form G*¥ of ¥ by G is well-defined. We set

9.14) JG*T — £t dz A ds = a(G| + |G|
@19 e (Tog b1 + |GPY(log bu(T + [GI)Y
% |glz-—dz Adz.
Then by (2.13) we have
2.15) G*Ric¥ = dd*log ¢ = (G| + |Grl)-2'5zidz Adz.
74

Furthermore, taking dd¢log & in the sense of currents, we get
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(2.16) ddclog¢ = G*Ric ¥ — &((G) + (B)) + (8)0 — (&)= -

Noting that (g).. = Supp (G), + (G)..) < (G), + (G)., we deduce from (2.15)
and (2.16) that

217 (G| + IGI")‘z‘EEi”—dZ N dzZ <1+ (G, + (G).) + dd°log & .
We infer from (1.1) and (2.17) that

T dt & i - .
L 7 o W‘é; dz N\ dz < (1 + &)(NV(r, (G),) + N(r, (G)..))

(2.18)
1 e 1
+ i LM log édd — (log r) Im) dc¢logé o L log &d6 .

@

We have by the definition of & in (2.14)

- 1
4n l g ’ ’ Yy —
(2.19) ol gdo < m(r, 8) + e(m(r G) + m(r G))
+ 10g+a0 + 10g+(10g bo)—z +e log 9.
We put
(2.20) «[4*(&) (G| + |GI") 2n

B(r)-_—f:i“?(tldt.

Then inequalities (2.18), (2.19), (1.3) and ¢ < 1 yield
2.21) B(r) £ m(r, 8) + 4T(r, G) + O(logr) 4+ O(1) .

Let us compute m(r, g):

mir,g) = —— [ log"€(G| +|GI) ™1
4 0

X (log by(L + | GP)(log bi(L + [G))ds
=L log+e(Gl+IGI)*)ds

= 4z
+ ij log(L + log*b, -+ 2log*|G])do
2r Jrm

(2.22) + 1 log(l + log*b, + 2log+i)d0 + log* L
2 Jrm |G| a,
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< T log(1+ o [ £(GI+1G1)do)
+ log(1 + log b, + 2m(r, Q)

+ log(l + log*b, + 2m(r —-)) + log
G a,

(by the concavity of *“log”)
< _;_1 ( + ——A(r)> + 2log* T(r, G) + O(logr) + O(1) .

Since A(r) and B(r) are monotone increasing, we see that the inequalities

diAm < (AMY,
r
(2.23) d
< B0 < BOY
-

hold for r > 1 outside a set E of r with finite linear measure. Using
the identity, dB(r)/dr = A(r)/r, and combining (2.22) with (2.21) and (2.23),
we have

m(r, g) < log(l + —r(B<r»*) + 210g* T(r, G) + O(log r) + O(1)

2
< 2log*m(r, g) + 4log*T'(r, G) + O(log r) + O(1)

for r ¢ E. Note that 2log*m(r, g) < 2m(r, g)le and 1 — 2/e > 1/4. Hence
we infer that

(2.24) m(r,g) < 16log*T(r, @) + OQogr) + OQ1)
for r ¢ E. This completes the proof.

Remark 1. In the above proof we used the metric form (cf. (2.14))
due to Griffiths-King [10, Proposition (6.9)] as in Vitter [23], whose curva-
ture behaves nicely. If we use the following metric form due to Grauert-
Reckziegel [6] which is simpler than (2.14)

= (L+|GP)|GPgF--dz A dz
T
with any ¢ > 0, we have

Ric & = (G| + lGl‘e)‘zlglz—zi;dz A dz
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and obtain the following estimate:

1
m(r, g) < 8T(r,G) + 4log*— + 8log*T(r, G
2.95) (r, 8 (r, & 8" g*T(r, G)

+ (€C 4+ 2)logr + ¢C, + C,

for r > 1 outside a set E of r with finite linear measure, where C,, i = 1,
2, 3, are non-negative constants independent of r and ¢, and E is independ-
ent of e. Because of the presence of the term 8T(r, G) in (2.25), inequality
(2.24) is better than (2.25), but inequality (2.25) is also sufficient for the
later use in §§ 3 and 4.

Remark 2. It is hoped that Main Lemma (2.2) can be applied to the
study of holomorphic curves in compact Kihler manifolds.

ExampLE. We give an example of f: 4¥* — M and O such that f*6 is
really infinitely many-valued. Let M = C/(Z + ¢Z) be an elliptic curve
with Imz > 0 and #n: C — M the universal covering. Take any two points
a, b of M so that n(a — b) = 0 for all ne Z. Then there is a multiplicative
meromorphic function ® on M such that (@), = a and (@). = b. Since
n(a — b) # 0 for all ne Z, O is infinitely many-valued. Let 7, (resp. 7,)
be the cycle in M defined by 7,: [0,1] 5 t —z(f) € M (resp. y,: [0,1] 5 t —
n(tr)e M). Then {y, r.} is a basis of the first homology group H,(M, Z).
One of the periods E}r—z ”dlog O, j =1, 2, is irrational. Suppose that

1

ori f dlog O is irrational. The covering C 5 Mis decomposed as
Tl Jry

cczclz+cz)=M.

Set 7:[0,1] 3¢t — ny(t) € C/Z = C*, which is a cycle around o (or 0).
1
2ri

4* — C* be the natural inclusion mapping and put f=r,0i:4* —> M.

Then .y = 75, so that the period

I dlogBor, is irrational. Let i:
T

Then f*® is infinitely many-valued.
Let ¢® denote the k-th derivative of ¢. Using Main Lemma (2.2)
inductively, one easily see the following:

COROLLARY (2.26). Let the notation be as above. Then the inequality
T(r,*) < (k + 1N(r, Supp(f*Res(w))) + O(og* T(r)) + O(logr)

holds for r = 1 outside a set E with finite linear measure.
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§3. Inequality of the second main theorem type

Let V be a complex projective algebraic smooth variety of dimension
n, D an effective reduced divisor on V and 2% (log D) the sheaf of
logarithmic 1-forms along D (cf, e.g., [12], [19]). Then {we H%V, UY);
Supp(Res (w)) € D} spans H(V, 2,(log D)) over C (see [19, Proposition
1.2]). Assume that there is a system {w,}**! in H(V, 2%(log D)) such that
&=, N\ NO NG N\ Ny, 1 L1 < 1+ 1, are linearly independent
over C. Let f: 4*—V be a holomorphic curve such that f(4*)# D. Assume
that f is non-degenerate with respect to {w,}i], i.e., f(4*)Z{>] c;¢, = O} for
any (c)eC™*' — {O}. Let 2 be a Kahler form on V and set T/(r)=
T(r,2). Making use of Corollary (2.26) and Ochiai [22, Theorem A] as
in [19, § 3] and [20], we have the following theorem.

THEOREM (3.1). Let {0,}i21C HY(V, 2 (log D)) and f: 4*—V be as above.
Then there is a positive constant K depending only on 2 and {w;}}*1, such
that

3.2) KT/ (r)<N(r, Supp(f*D)) + S(r) ,

where S(r) = OQog*T(r)) + O(Qogr) as r—co outside a set of r with finite
linear measure.

Let R be a compact Riemann surface, R = R — {a,}¢., with distinct
a;€R and g < oo, and a,€ R any point. Then there is a multiplicative
meromorphic function « such that (&) = qa, — >3 @, The modulus |«| turns
out to be an exhaustion function of R. Set

R@t) = {le| < 2} .

Let f: R—V be a holomorphic curve. Put
T ={ %[ ra
1 R(¢t)
for f and

n(t, g‘i vibt) = > v, N(r, g vibt> = J‘:Mﬁ@dt

la(be) 1<t

for a divisor >}3,v;b, on R (cf. §1 and [10, §2]). For r, large enough,
R — R(r,) is a union of 4%, i =1, ---, q, where 4N 4% = @ for i + j and
4, = 4f U {a;} are a neighborhood of a, in R. Moreover the restriction
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1/z, = 1)(a|,,) of 1/x on every 4, gives rise to a local coordinate in 4, and
4¥ is written as 4} = {r, < |2,] < «}. Therefore we have the following
corollary of Theorem (3.1):

CoRrOLLARY (3.3). Let {0,}i2} < HY(V, 2(log D)) be as in Theorem (3.1).
Let f: R—V be a holomorphic curve which is non-degenerate with respect
to {w,};2. Then there is a positive constant K depending only on 2 and
{0} such that

KT/(r) < N(r, Supp (f*D)) + S(r),
where S(r) is a small quantity as in (3.2).

Remark. Assume that dim V=1, and let us calculate sharp K in
(3.2) in the way of the proof. The higher dimensional case will be discussed
in §4. Set T(r) = T/(r, Q) for 2 such that I 92=1

(1) Let V= P! If the assumption of Th:aorem (8.1) for D is satisfied,
D must consist of at least three points. Let D = 3%, w, be an effective
reduced divisor on P! with inhomogeneous coordinate w such that w, = 0,
w,= oo and g = 3. Let w,e P! — D and set

o, = dlog we HY(P!, 2% (log D))

oy = dlog LL=0 =W ¢ gops, g1 (log (D + w) .
(w — wy)*

Then ¢ = w;/w, is a rational function such that the degree deg(¢).. of the
divisor (¢). is ¢ — 1. We have by [18, Theorem 1]

(3.4) T(r,f*¢) = (@ — DT,(r) + O(1) .
Setting f*w, = ¢,dz for i = 1, 2, we obtain

T(r, f*¢) = T(", é) <T@L)+ T, L) + OQogr) + OQ)
(3.5) &

= NG f ) + 3] N, f () + S6).
Hence we have by (3.4), (3.5) and the first main theorem (1.4)

(¢ = DT,() < 3, N, f @) + 50,

which is the famous second main theorem for meromorphic functions on C.
(2) Let V be an elliptic curve. Then inequality (3.2) holds if D
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consists of one point a@,€ V. On the other hand, H(V, 2} (log a,)) = H(V,
;) is of dimension 1, where £ denotes the sheaf of germs of holomorphic
1-forms over V, so that the assumption of Theorem (3.1) is not fulfilled,
but we can derive (3.2) for D = @, by the method of the proof of Theorem
(3.1) as follows. Take any point @, € V — {a,;}. Then there is a multipli-
cative meromorphic function ® such that (§) = @, — a,. Set w, = dlogB e
H(V, 25(og(a, + a,)) and let o, H(V,2}) and w, 0. We put ¢ =
@,/w,. Then ¢ is a rational function on V such that deg (¢)., = deg (a, + a,) =
2, so that by [18, Theorem 1] we have

(3.6 T(r,f*¢) = 2T(r) + OQ1) .
Letting f*w, = ,dz, i = 1, 2, we see that

T(r, f*) = T(r, —g-) < T(r,8) + T(r,5) + OClog 1) + O(1)

= N(r, f(ay) + N(r, f(a)) + S() .
Therefore it follows from (3.6) and (3.7) that

Tir) < N(r, f(a0)) + S(r) .

(3) Let V be a compact Riemann surface of genus > 2. Then
dim H(V, 2%) = 2, so that the condition of Theorem (3.1) is satisfied with
D = 0. This implies the well-known fact that the isolated singularity of
a holomorphic curve in V of genus > 2 is removable.

6.7

§4. Extension theorem of big Picard type

Let A be a quasi-Abelian variety (see [11] and [12]), ie., A is ang
algebraic group which is commutative and admits the exact sequence

00— (C*H)r—> A p>A0 >0,

where A, is an Abelian variety. Taking the natural embedding (C*)' C
(PY), we have a smooth completion A = (P')! X »: A of A with boundary
divisor D which has only normal crossings, and the canonical projection
p: A > A, One may regard p: A — A, as a fibre bundle over A, with fibre
(P') and structure group (C*)’. Let X be an algebraic subvariety of A
which is of general type or equally of hyperbolic type (cf. [11]). In the
present case, X is of general type if and only if the group {e€ A; X + a =
X} of translations which preserve X is finite (see [11] and [12]). Let
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W be the union of subvarieties of X which are translations of non-trivial
closed algebraic subgroups of A.

LemmA (4.1). Let X and W be as above. Then W is a proper algebraic
subvariety of X, of which each irreducible component is foliated by trans-
lations of a non-trivial closed algebraic subgroup of A.

Remark. This lemma was proved in [21] when dim X = 2. In [13],
Kawamata proved it in the case when A is an Abelian variety. To prove
it in the present form, we need further consideration. The idea of the
following proof is due to Kawamata.

Proof. Let n: C™— A be the universal covering with m = dim A,
A = C™[A with a discrete subgroup 4 (cf. [12]), and 2: C™ — {O} — P™"! the
natural mapping into the projective space P™-! of lines in C™ through the
origin O. Let U be a small open set in P! and set

s(X) = %JU(X + n(s(x)), x) Cc A X U

for a holomorphic section s € I'(U, C™ — {0}), where X is the Zariski closure
of X in A and “+ z(s(x))” stands for the natural action of A on A. Hence
s(X) is an analytic subset of 4 X U. We set
Y, = N sX)cAxU.
ser(u,cm-{0})

Then Y, is again an analytic subset of A X U and we see that a point
(a,x) € A X U belongs to Y, if and only if a + ¢(f) € X for every ¢ € C,
where ¢(t) is the analytic 1-parameter subgroup of A such that d¢/d#(0) =
x. Let B, denote the Zariski closure in A of the analytic 1-parameter
subgroup of A associated with the vector x. Then we have that

4.2 (@,x)e Yye=a+ B,CX.

Let U’ be another small open set in P™~!, Then it follows from (4.2) that
Y, coincides with Y. in A x (U N U’), so that Y = U, Yy is a well-defined
analytic subset of A X P™-! and so algebraic in A X P™!. Let ¥,= YN
(A X P™") and p: A X P"'— A be the projection. Then by (4.2) and
the definition of W, p(Y,) = W. Since p is proper and rational, Wis a
closed algebraic subvariety of X. Now we must show that WX and each
irreducible component of W is foliated by translations of a non-trivial
closed algebraic subgroup of A. Since there are only countably many
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non-trivial closed algebraic subgroups in A as in the case of an Abelian
variety (cf. [12]), we denote them by {B;};;. We see by (4.2) that

(4.3) ae W& a4+ B, W for some B, .

Let h,: X — A/B, be the restriction of the natural morphism from A onto
the quotient A/B; on X and put

W, = {x ¢ X; dim,h;*(h(x)) = dim B,} .

Then W, is a proper algebraic subvariety of X because X is of general
type, and W = |, W, by (4.3). Let W, = (U, W, be the irreducible decompo-
sition of W,. We get a countable covering W = |J,;W,,. It is clear that
every W,; +# X. By virtue of Baire’s theorem we see that W + X and that
an irreducible component of W must be one W,, which is foliated by
translations of B,.

Let Z be an algebraic subvariety of A and Z., the set of regular
points of Z with the inclusion mapping i: Z,, — A. Let J(Z.,) (resp. J(4))
be the »-th holomorphic jet bundle over Z,, (resp. A) (see [22]). Then the
mapping i naturally induces a bundle homomorphism i,: J(Z,.,) — J,(4).
Since A is a quasi-Abelian variety, there is a regular isomorphism </, (A)
= AXC™ Letqg:A X C™—C'™ be the projection and set

L = qoiy: J(Zug) —> C™ (cf. [22]) .

We denote by j.g the v-th jet of a holomorphic curve g: (C, 0) — Z,., from
a neighborhood of the origin 0 of C into Z,.

LEMMA (4.4). Let X and W be as in Lemma (4.1). Let g: (C,0)— X
be a holomorphic curve such that g(0) ¢ W and g(0) € Z,.,, where Z is the
Zariski closure of the image of g in X. Then the differential

dL: T(J(Z) — T(C*™)

is injective at j,g for all large v, where T(-) denotes the holomorphic tangent
bundle.

This lemma is a refined version of a lemma due to M. Green by which
he completed the work of Ochiai [22] on Bloch’s conjecture [2]*. M. Green
showed it in case A is complete, i.e., A is an Abelian variety, but his
proof works in the non-complete case.

2) M. Green gave the proof of the lemma at “Conference on Geometric Function
Theory” held at Katata, Sept. 1-6, 1978.
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Let X be the Zariski closure of X in A.

THEOREM (4.5) (big Picard theorem). Let X and W be as above. Then
any holomorphic curve f: 4* — X has a holomorphic extension f: 4 = 4* U
{00} — X unless f(4*) c W.

Proof. We fix a Kahler form 2 on A and set T,(r) = T,(r, 2). By
(2.10), (2.11) and [16, I, p. 369], it suffices to prove that T,(r)/log r is bounded
as r— oo, Let Z be the Zariski closure of f(4*) in X. Then f(z) ¢ W and
f(z) € Z,, for z € 4% except for some discrete set of points. Making use
of Lemma (4.4) and Main Lemma (2.2) (more precisely, Corollary (2.26))
as in [19], we have

(4.6) T(r) < K,log*T(r) + K,logr

for r = 1 outside a set E of r with finite linear measure, where K, and
K, are non-negative constants independent of . We may assume that f
is not a constant curve. Then we see that T(r) 1 o as r1 co. Since T(r)
is a convex increasing function in log r, T(r)/log r is monotone increasing.
Therefore we have by (4.6)

1im 24" < g, ,
-~ logr

which completes the proof.

COROLLARY (4.7). Let f: N— S— X be a holomorphic mapping from
a complex manifold N minus a thin analytic set Sinto X. If f(N—S) ¢ W,
then f extends to a meromorphic mapping f: N — X.

Proof. We take an embedding X C P¥ into some projective space P¥
with a homogeneous coordinate system (w,, - - -, wy) such that f(N — S)¢
{w, = 0}. Let f; = f*(w,/w,). It is enough to prove that every f, extends
to a meromorphic function on N. By virtue of Hartogs’ theorem, we may
assume that N=4 X 4*' and S = {c0} X 4*'(k=dimN). Put § =
{2 € 4¥1; 4% x {2’} C f-(W)}, which is a thin analytic set of 4*'. By
Hartogs’ theorem, it suffices to show that f, extends meromorphically over
4 X (4** — 8'). For each 2z, ¢ 4 — 8§, the holomorphic curve f(-, 2():
4* 3 z,— f(z,, 2;) € X does not lie in W. By Theorem (4.5), f is extendable
over 4, so that f,(-,2}) is meromorphic in 4. We put fi(z, 2;) = 2¢®"-
84z, z), where p(z;) € Z and g0, zp) # 0, 0. Take a small neighbo'rhood”
U of . Then we see that u(2’) is bounded in 2’ ¢ U. Therefore f(z,, )
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is meromorphic in 4 X U, and so is in 4 X (4** — S’).

Remark. Fujimoto ([3], [5]) and Green ([8]) proved extension theorems
of big Picard type for holomorphic mappings into. P* omitting more than
n + 1 hyperplanes in general position. Their results will be discussed in
Example 1 below. Here, let us give a simple and new observation to
another theorem of Green [8, Parts 4 and 5] from the viewpoint of this
paper. He proved the following interesting theorem:

Let f: C — V C P" be a holomorphic curve into a subvariety V of PY
omitting dim V + 2 non-redundant hyperplane sections of V. Then f is
algebraically degenerate, i.e., f(C) is contained in a proper subvariety of V.

Here ‘“non-redundant” means that no one of the hyperplane sections
is contained in the union of the others. Let D be the sum of the dim V +
2 hyperplane sections of V. Let #: V>V — D be a desingularization
of V— D and V’ a smooth completion of V’ with boundary divisor D’ of
normal crossing type. Setting g(V’) = dim H(V’, 2%(log D’)) which is
called the logarithmic irregularity of V’ ([12]), we have by the assumption
for D

(4.8) g(V)) < dim V' .

We may assume that f can be lifted to a holomorphic curve f': C— V’
such that zof =f Let a: V'— A be the quasi-Albanese mapping (see
[12]), X = a(V’) the Zariski closure of «(V’) in A, G the identity component
of the group {¢ e A; X + a = X}, h: A— A/G = A, the canonical mapping
onto the quotient A/G = A, and X, = A(X). Then (4.8) implies that X, is
of positive dimension and of general type. Let W, be the union of sub-
varieties of X, which are translations of non-trivial closed algebraic sub-
groups of A,. By Lemma (4.1), W, is a proper algebraic subvariety of X.
Put f, = hoaof’:

c—Lsvi—t sxca
¢ lh
WICX1CA/G=A1'

Then we have f,(C) © W, by Theorem (4.5) if f, is not a constant curve,
so that f is algebraically degenerate. Thus inequality (4.8) implies the
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algebraic degeneracy of f’; this is just a non-complete version of Bloch’s
conjecture (see [2], [22]).

ExampLE 1. Let D, 0<i<n+ k, ben + k + 1 distinct hyperplanes
of P* and set V= P* — >#** D,. Then we have

g(V) = dim H(P", Q5. (log > »** D)) =n + k.

Assume that 2> 1. Then g(V) > dim V. Leta: V— A = (C*)*** be the
quasi-Albanese mapping and f: C — V a holomorphic curve. As in Remark
above, we see that aof(C) lies in a translation of a closed algebraic sub-
group of A, so that f(C) lies in a proper linear subspace of P*. This fact
was proved in Green [7, Theorem 2].

Suppose that £ = 1 and the D,’s are in general position. We take a
system (w,, w,, - -+, w,) of homogeneous coordinates of P" so that D, =
{wy;=0}fori=0,1,..-,nand D,,, = {w, +---+ w, = 0}. Putx, = w,/w,
for i=1, ..., n. Then the quasi-Albanese mapping a: V— (C*)"*! is
written as

1+x1+ e +xn) e (C*)”“.

“:V9(xn"'yxn)"')(xl,"',xm n

Set X={(y, -+, Yus) € CH*"* s Ny =14+ + -+ +y.}. Thena: V-
X is biregular and so X is of general type. Let II denotes the union of
diagonal hyperplanes of > 7+! D, (see [15, Example 16, p. 395] and [4, p. 243]).
Let W be the proper algebraic subvariety of X as in Lemma (4.1). Then
W = a(ll). In this case, Fujimoto [4, Theorem 5.5] and Green [8, Part 8]
showed Theorem (4.5) (cf. also [1], [5] and [7]). In case n = 2, the figure
of Win X is as follows:

Fig. 1
Here each W, = C* and W= W, U W, U W,.
ExampLE 2 ([14, Example 1, p. 92]). Let @ = >i., L, lbe a complete
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quadrilateral in P? as in Kobayashi [14, Example 1, p. 92], and set V =
P* — . Take a homogeneous coordinate system (w,, w,, w,) of P? such
that

L0={w0=0}: L1={w1:=0}, L2={wo_‘w1=0},
L3={w2=0}: L4={wo—‘wz=0}°

Then we have the quasi-Albanese mapping
. 1 ]- *)4
a: Vs (x,x) ?xn x — 1, Exz,xz—']- e (C**,

where x;, = w,/w,, i = 1,2. Thusa(V) =X = {(y,, -+, ) € (C*)'; y. = 2y, —
1, ¥,=2y, — 1} and @: V— X is biregular. Since there is no C* in
X, W = @. Therefore any holomorphic curve f: 4* —V is extendable to a
holomorphic curve f: 4 — P%. Kobayashi [14, p. 92] proved this fact by
showing that V is hyperbolically embedded in P2

ExamprE 3 ([19, §4(b)]). Let X = {(x;, - -, %..0) € (C*)"; X, =1+
X%+ o+ Xy Xy =%+ --- +x,} and n=3. Then X is of general
type. For the simplicity, let n = 3. Let W be the proper algebraic sub-
variety of X as in Lemma (4.1). Then we see that

W=W,uUuW,u---UuW,,

where W, = (C*)* and W, = C* for i = 2, 3, 4, 5. The figure of W in X
is illustrated as follows:

Wi

Fig. 2

ExamvpLE 4 ([22, §5]). Let A=E, X--+X E, be a product of four
elliptic curves E, belonging to distinct isogeny classes. Let X be the
hypersurface of A as defined in Ochiai [22, § 5]. Then the algebraic sub-
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variety W of X as in Lemma (4.1) consists of several elliptic curves which
are mutually disjoint.

Lastly we pose a problem and a conjecture related to Theorems (4.5)
and (3.1).

ProBLEM. What can we say of the Kobayashi hyperbolicity of X or
X — W in Theorem (4.5)?

Remark. Green [9] gave a nice criterion of the Kobayashi hyperboli-
city, but in the present case his criterion does not work since an irreducible
component W’ of W may admit a non-constant holomorphic curve f: C —
W’ omitting the other components of W (see Examples 3 and 4).

The case (2) of Remark to Theorem (3.1) suggests that the following
conjecture may be true:

CoONJECTURE. Let A be an Abelian variety and D an effective reduced
divisor on A. Let Q¢ c¢([D]) be a semi-positive definite (1, 1)-form in the
first Chern class ¢,([D]) e H"' (A, C) of [D]. Then we have

T(r,2) < N(r,f*D) 4 S(r)

for algebraically non-degenerate holomorphic curves f: 4* (or C) — A,
where S(r) = O(log* T(r, 2)) + O(logr) as r — o outside a set of r with
finite linear measure.
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