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SUMMARY

A mathematical method for evaluating the probability that a locus is
monomorphic for the same allele in related species is developed under the
neutral mutation hypothesis. A formula for the proportion of identically
monomorphic loci in related species is also worked out. The results of the
application of this method to Drosophila data do not support Prakash &
Lewontin’s (1968) contention that the strong association between gene
arrangements (inversion chromosomes) and alleles at protein loci is
evidence of coadaptation of genes in the inverted segment of chromo-
somes. Similarly, unlike Haigh & Maynard Smith’s (1972) contention,
the monomorphism of the haemoglobin « chain locus in man can be
accommodated with the neutral mutation hypothesis without invoking
the bottleneck effect.

1. INTRODUCTION

In a study of protein polymorphism in Drosophila pseudoobscura and D. per-
similis, Prakash & Lewontin (1968) discovered strong associations between gene
arrangements (inversion chromosomes) and alleles at the Pt-10 and amylase loci.
For example, gene arrangement ST in chromosome III, which is shared by both
species, always carries allele 1-04 at the Pt-10 locus, while gene arrangement SC in
D. pseudoobscura mostly carries allele 1-06. They claimed that these associations
are evidence for the coadaptation of genes in inversion chromosomes, since the
time after divergence between D. pseudoobscura and D. persimilis is possibly
3 ~ 5 million years. However, since there is virtually no recombination between
different gene arrangements in these species, the monomorphism of the Pt-10 locus
in the ST gene arrangement may also be explained by the nonselective hypothesis
that no mutant gene has spread through the gene pool of ST chromosomes after
the two species diverged (Nei, 1975).

As a related problem, Haigh & Maynard Smith (1972) studied whether the
present monomorphism of haemoglobin « chain locus in man is consistent with the
neutral mutation hypothesis or not. By using the branching process method, they
showed that, if the neutral mutation hypothesis is correct, the frequency of mutant
alleles which have occurred at this locus in the last 50000 generations should
amount to about 59, which is much higher than the observed frequency of
about 0-1 %, From this result, they concluded that the neutral mutation hypothesis
is false or the human population went through a bottleneck recently. In the study
of neutral mutations, however, the branching process method is not appropriate,
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since it assumes an infinitely large population, in which neutral mutations may be
accumulated indefinitely. If we use a method appropriate for finite populations, a
quite different conclusion is obtained, as will be seen later.

In the present paper we shall first develop a mathematical method to evaluate
the probability of identical monomorphism in related species and then examine
whether the monomorphism of the protein loci mentioned above can be accommo-
dated with the neutral mutation hypothesis or not.

2. MONOMORPHISM FOR A PARTICULAR ALLELE IN ONE POPULATION

Let us first consider a randomly mating population of effective size N, and
determine the probability of monomorphism for a particular allele in generation ¢,
given the initial gene frequency at ¢ = 0, under the assumption of neutral muta-
tions. We designate this allele by 4 and all ‘other alleles’ by a. Following Kimura
(1968), we assume that the number of possible allelic states at a locus is very large
and each allele mutates to any other allele with the rate of v per generation. Thus,
A mutates to a (all other alleles) with the rate of v per generation but the mutation
from a to 4 is negligibly small. Namely, we have the case of irreversible mutation.

Let x be the frequency of 4 and ¢(p, z; t) be the distribution of gene frequency
x at time ¢, given the initial gene frequency p. If we assume that all alleles are
selectively neutral, the distribution ¢(p, z; f) satisfies the following Kolmogorov
forward equation.

B T -nftva@h), 1)
where ¢ = ¢(p, x; f). The pertinent solution of (1) has been obtained by Crow &
Kimura (1970) and is given by
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where 0 < z < 1, M = 4Nw,and I'(-) and F(-, -, -, -) denote the gamma and the

hypergeometric functions, respectively.

A locus is defined as monomorphic if the frequency of the most common allele
is higher than 1—g, where ¢ is a small quantity. The commonly used value of ¢
is 0-01. Therefore, the probability of monomorphism for allele 4 in generation ¢
is given by

1
Pz > 1-q;p)= . B(p, z; t)dx
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<0 G+ )M
xF(—i,i+M+1, M, 1~p)

xF(—i,i1+M+1,M+1,q) exp{——(—i-i-—l)—(M”. (3)
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For a large t [(2v+3N) ¢t > 1], we have the asymptotic formula
P(z > 1-g;p) = (M +1) pg*e=*". (4)

We also note that if the original population was completely homozygous for 4,
ie.p=1, F(—¢,i+M+1, M, 1—p) in (3) is 1. Formula (4) indicates that for
given values of p and ¢ the probability of monomorphism decreases as M and vt
increase, as is expected.

Table 1 shows the probability of monomorphism for allele 4 for various popu-
lation sizes and initial gene frequencies. In all cases ¢ = 0-01 and v = 10~ were
used. The mutation rate of ¥ = 107 seems to be appropriate for average protein
loci in an organism whose generation time is about one year (cf. Kimura & Ohta,

Table 1. Probability of monomorphism for a given allele for various
population sizes and initial gene frequencies

{The mutation rate is 10~7 per generation.)

Initial Time in generations
gene Ve A \
frequencies N 102 108 104 108 108 107 108

1-00 102 0-99989  0-9998 0-9989 0-9899 0-905 0-368 0-000045
10¢ 0-99998 0-9972 0-9890 0-9759 0-892 0-363 0-000044
10 1-0000 1-0000 0-9969 0-701 0-300 0-082 0-000010

0-90 102 0-647 0-898 0-899 0-891 0-814 0-331 0-00004
104 3x10-° 0-046 0-640 0-877 0-803 0-326 0-00004

108 — < 1071 2x10-1° 0-027 0-195 0-074 9x10-¢
0-50 102 0-073 0-495 0-499 0-495 0-452 0-184 0-000023
104 < 10-° 10-? 0-073 0-483 0-446 0-181 0-000022
108 — < 10710 < 10- 5x10-1° 0-022 0-041 5x10-°
0-10 102 0-001 0-0982 0-0999 0-0989 0-0905  0-037 5x10-¢
100 <107  5x10-17 0-001 0-0959 0-0892 0-0362 4x10-¢
10¢ — < 10-1* <10-1 5x10-1* 0-0003 0-0081 1x10-®

1971; Nei, 1975). It is seen that in the case of p = 1 the probability of mono-
morphism gradually declines but the monomorphism may persist for a long period
of time particularly in small populations. Namely, if the effective population size
is 10% or less, the probability that a locus is monomorphic for the original allele is
about 0-36 even at ¢ = 107. A close look at the values of the probability of mono-
morphism for ¢ = 102 ~ 10° indicates that in the early generations the probability
is higher in large populations than in small populations, whereas in the later
generations the reverse is true. This is because the gene frequency distribution is
flatter in small populations than in large populations. Namely, in the early
generations the probability of the frequency of mutant genes exceeding ¢ = 0-01
will be higher in small populations than in large populations, whereas in the later
generations P(x > 1—gq; p) will be larger in small populations because of a larger
effect of genetic drift. In the extreme case of N = oo, P(z > 1—gq; p) is a step
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function of ¢, since mutant genes accumulate deterministically. In this case, the
frequency of mutant genes in the ith generation is given by 1 —e~%, and

Pz > 1—q;p)

is 1 for ¢ < 105 but 0 for ¢ above 10°.

If the original population is polymorphic, the probability of monomorphism
first increases owing to genetic drift unless population size is extremely large, and
then, after reaching a certain maximum value, it starts to decline due to new
mutation. It is interesting to note that if population size is 10% or less the prob-
ability of monomorphism increases up to a value close to the initial gene frequency
around ¢ = 105 On the other hand, if population size is very large, this probability
is small in all generations unless the initial gene frequency is large.

3. IDENTICAL MONOMORPHISM IN TWO POPULATIONS

Consider two related populations 1 and 2 of which the effective sizes are N,
and NV, respectively. We assume that there is no migration between the two
populations after they are separated, so that the gene frequency changes in the
two populations are independent of each other. We also assume that the initial
gene frequency of 4 is p for both populations. Then, the probability that the two
populations are jointly monomorphie for 4 is given by

P(x, > 1-q;p) P(zy 2 1—¢;p), (5)

where z; and z, are the gene frequencies of 4 in populations 1 and 2 at time ¢,
respectively.

Expression (5) is, however, only for a particular allele. If the original population
contains more than one allele, the two descendant populations may be jointly
monomorphie for any of the alleles. Therefore, the total probability of identical
monomorphism in the two descendant populations is given by

n
Py =i§1P(x1 > 1-¢;p) Pz, > 1—¢;p;), (6)

where p, is the initial frequency of the ¢th allele and n is the number of alleles
present in the initial population. Note that, if Ny = N,, P(z, > 1—¢q; p,;) becomes
equal to P(x, > 1—gq; p,).

Table 2 shows the values of Pj;, for various population sizes and initial gene
frequencies. The mutation rate used is again 10~7 per locus per generation, and the
effective size is assumed to be the same for the two descendant populations. In
case (1) the initial population is monomorphic for a single allele with p = 1, so
that P;;; = P¥x > 1—gq; 1). In this case, the probability of identical mono-
morphism gradually declines with increasing time but remains high for a long
period of time. If population size is 10% or less, the probability is 0-13 or more even
after 10 million generations. In larger populations the probability is smaller
except in the early generations, but it is still appreciably high even at ¢ = 109 if
N is around 10°. In the case of N = oo, Py, becomes a step function of ¢, taking
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the value of 1 for ¢ < 10 and 0 for ¢ above 105. On the other hand, if the initial
population is polymorphic for a number of alleles, the probability of identical
monomorphism is very small in the early generations but steadily increases if
population size is not very large. In the case of N < 10* the probability becomes
appreciably high for ¢ = 10° ~ 107. After reaching a maximum value, however, it
again starts to decline. In large populations (> 108) the probability almost never
becomes high.
Table 2. Probability of identical monomorphism
in two related populations

(It is assumed that the effective population sizes and the initial frequency (p;) of each
allele are the same for both populations. The mutation rate is 10~7 per generation.)

Time in generations

Effective P A ~
size (N) 102 103 104 108 108 107 108
(1) py = 1-00
102 0-99978 0-99976 0-998 0-98 0-82 0-14 2x10-9
104 0-99996 0-9943 0-989 0-95 0-80 0-13 1-9x 10-?
108 1-00000  1-000 0994 049 0-09 0007  1x10-10
(2) p = 0:90, p, = 0-10
102 042 0-816 0-818 0-80 0-67 0-111 1-9x 102
104 < 1020 0-0025 0-41 0-78 0-65 0-108 1-6 x 10—°
108 -— < 10-20 < 10-1® (-0007 0-04 0-005 8x 10-11
(3) p, = 0:50, p, = 0-50
102 0-011 0-49 0-50 0-49 0-41 0-068 1x10-°
104 — < 10-18 0-01 0-47 0-40 0-066 1x10-°
108 — —_ < 102 < 10-2® 0-001 0-003 5x 1011
(4) p, = 0:50, p, = 0-40, p; = 0-10
102 0-007 0-41 0-42 0-41 0-34 0-057 9x 10-10
104 —_ < 10-18 0-007 0-39 0-33 0-055 8x 10-10
108 — — < 1070 < 10-20  0-0006 0-003 4x 1011

4. PROPORTION OF IDENTICALLY MONOMORPHIC LOCI
IN TWO POPULATIONS

In the above formulation we considered the probability of identical mono-
morphism for a single locus. This probability is equal to the expected proportion of
identically monomorphic loci if all loci have the same initial gene frequencies and
the same mutation rate. In practice, however, both initial gene frequencies and
mutation rate would vary with locus except in special cases. The proportion of
identically monomorphic loci between two populations in the presence of varying
initial gene frequencies can be obtained by taking the average of P;,, in (6) with
respect to the initial frequencies.

In the following we assume that a population which is in equilibrium with
respect to mutation and genetic drift is split into two populations of the same size
as that of the ancestral population. This assumption seems to be satisfactory in
many cases, since average heterozygosity for a random set of loci is generally more
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or less the same for closely related species. Under this assumption, the distribution
of the expected number of alleles whose frequency is y at a locus is given by
D(y) = M(1-y) 1y (Kimura & Crow, 1964). Therefore, the proportion of
identically monomorphic loci is given by

_ 1
Ppy = fo O(y) Pow > 1—g, 9) dy. (7)

If (204 3N)t > 1ort > H(2v) where H = 4Nv[(144Nv) is the expected average
heterozygosity per locus, the above formula can be written as

Py = (M +1)g*Me-2t, (8)
approximately, since
Pl > 1-¢;y) = (M +1)yg*e™
in this case and

f:y%(y)dy = (M +1).

Thus, if v = 1077, N = 105 ¢ = 107 and ¢ = 0-01, then 9-79%, of the neutral loci
are expected to be monomorphic for the same alleles between two populations.
In the derivation of (7) and (8) we assumed that mutation rate is the same for
all loci. If it varies with locus, the probability of identically monomorphic loci is
expected to be higher than that for the case of the same mutation rate. A rough
approximation of this probability can be obtained by using the method of Taylor
expansion. If ¢t > A [(2v) for all loci, the expectation of P, over loci can be

written as _ _
E(Pyyy) = Prp[1+(2t—8N log, q)20%[2] (9)

approximately, where v in P;,, is replaced by the mean (%) of v over loci, and o2 is
the variance of mutation rate. o2 is probably of the order of %2 or less. If 02 = %2
and ¢ = 0-01, _ _

E(Pry) = Prayl + (2ot +9-2M)2]. (10)

Therefore, if 5 = 10-7, N = 105, and ¢ = 107, E(P,,,) is 0-364. This is much larger
than the value for the case of the same mutation rate for all loci.

5. IDENTICAL MONOMORPHISM BETWEEN D. PSEUDOOBSCURA
AND D. PERSIMILIS

Let us now examine whether the identical monomorphism at the Pt-10 locus in
gene arrangement ST of D. pseudoobscura and D. persimilis is consistent with the
neutral mutation hypothesis or not. For this purpose we must know the mutation
rate and effective population sizes of these species. We estimate these quantities
under the ‘null hypothesis’ of neutral mutation. Under this hypothesis, the
mutation rate is constant per year rather than per generation and has been esti-
mated to be 10-7 per locus per year for electrophoretically detectable alleles at
average protein loci (Kimura & Ohta, 1971; Nei, 1975). D. pseudoobscura and
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D. persimilis seem to have about ten generations in a year, so that the mutation
rate per generation is estimated to be 10— per locus. In the absence of any data on
the mutation rate for the Pt-10 locus, we assume that it is the same as this. The
effective population size can be estimated from the average heterozygosity per
locus, since this is given by A = 4Nv/(4Nv+1) at steady state (Kimura, 1968).
The average heterozygosity for protein loci has been estimated to be 0-12 in
D. pseudoobscura (Prakash, Lewontin & Hubby, 1969) and 0-105 in D. persimilis
(Prakash, 1969). Since the latter estimate was obtained from laboratory strains,
we assume in this paper that the average heterozygosity is 0-12 for both species.
Therefore, the value 4Nv is estimated to be 0-136. Qur estimate of v is 10-8, so that
we obtain N = 3-4 x 105, We note that the estimate of N does not change very
much even if we use the alternatiye formula for expected heterozygosity,

H = 1-1/J(8Nv+1),

by Ohta & Kimura (1973).

One might object to the above computation, since what we need is the effective
size for the population of ST chromosomes rather than for the total species. The
relative frequency of ST chromosomes in D. pseudoobscura varies locally and is
1 ~ 809, (Dobzhansky, 1971), while in D. persimilis it is 1 ~ 209/ (Spiess, 1965).
However, the average heterozygosity for this chromosome in D. pseudoobscura is
close to that for the whole genome (Prakash & Lewontin, 1968). It is also possible
that the relative frequency of ST chromosomes in these species was reduced only
recently. For these reasons we use the above estimate in the present computation.
We note that the assumption of a large IV is unfavourable for the neutral mutation
hypothesis, since it gives a smaller probability of identical monomorphism.

At any rate, if we assume v = 108 and N = 3-4x 108 and take t = 5 x 107
generations corresponding to 5 million years, the probability of identical mono-
morphism at the level of ¢ = 0-01 becomes

Pry = (Zp}) (M +1)2¢*¥e20t
= 0-14(Zp)

approximately. Therefore, if the Pt-10 locus was monomorphic for the 1-04 allele
when the two species were separated, the probability that the locus is still mono-
morphic for the same allele is about 14 9,. The evolutionary time used in this
computation is probably an overestimate. The estimate of genetic distance between
the two species has suggested that it could be as small as 250000 years (Nei, 1975).
It is then clear that the present monomorphism at this locus is in no way incon-
sistent with the neutral mutation hypothesis. That is, Prakash & Lewontin’s
conclusion that the strong association of alleles at the Pt-10 locus with gene
arrangements is evidence of coadaptation of genes in the inverted segment of
chromosomes is not justified.

There are a number of examples of less strong association between alleles at
protein loci and gene arrangements within populations of Drosophila (e.g. Kojima,
Gillespie & Tobari, 1970; Nair & Brncic, 1971; Mukai, Mettler & Chigusa, 1971).
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Some authors have taken these as evidence for the coadaptation of genes. All these
associations, however, can also be explained by mutation and genetic drift, since
the absence of recombination between different gene arrangements is expected to
produce strong linkage disequilibria between loci located on the inverted segment
of chromosomes (Hill & Robertson, 1968; Sved, 1968).

Prakash et al. (1969) and Prakash (1969) studied the genetic polymorphism for
24 randomly chosen protein loci in D. pseudoobscura and D. persimilis. Their data
indicate that 11 out of the 24 loci (46 %,) are monomorphic for the same allele in
the two species at the level of ¢ = 0-01. On the other hand, if we assume v = 108,
M = 0-12,t = 5x 107, the expected proportion of identically monomorphic loci
for the two species becomes 12 %, from formula (8). Thus, the difference between the
expected and observed proportions is substantial. This difference can be explained
either by the overestimation of ¢ or by the interlocus variation of mutation rate or
both.

6. MONOMORPHISM IN MAN AND CHIMPANZEE

In their study of the possible cause of the monomorphism in the human haemo-
globin a locus, Haigh & Maynard Smith (1972) computed the expected frequency of
mutant genes at present under the assumption that the locus was completely
monomorphic about 50000 generations (1 million years) ago. If we make the same
assumption, the probability that the haemoglobin e locus is still monomorphic at
present is easily computed by formula (3) or (4). Before using these formulae,
however, we must know the effective population size and mutation rate.

The effective population size can be estimated from the average heterozygosity
for protein loci in man, as in the case of Drosophila. The estimate of average
heterozygosity from 71 protein loci by Harris & Hopkinson (1972) is 0-07, while
Nei & Roychoudhury’s (1974) estimate from 74 protein loci is 0-10. In the past the
generation time in man was probably about 20 years, so that we obtainv = 2 x 10-¢
per generation. Then, the effective population size under the ‘null hypothesis’ of
neutral mutation is estimated to be 14000 from the average heterozygosity of
0-10. This number is much smaller than the current human population, but we note
that the increase in human population has occurred only recently after introduction
of agriculture (about 10000 years ago). We also note that the effective size is much
smaller than the census size in populations with overlapping generations, possibly
one third of the latter or less (Nei, 1970). Furthermore, the practice of polygyny
in primitive human societies as docamented by Neel (1970) in Yanomama Indians
would further reduce the effective population size. On the other hand, the mutation
rate for the haemoglobin « chain locus can be estimated from the rate of amino
acid substitution in this polypeptide in evolution and the detectability of protein
differences by electrophoresis and becomes 10~8 per locus per generation (Haigh &
Maynard Smith, 1972). This estimate is a half of our estimate for average protein
loci but seems to be reasonable, since haemoglobin o chain is a relatively small
polypeptide (composed of 141 amino acids compared with 300 ~ 400 amino acids
of an average polypeptide).

https://doi.org/10.1017/50016672300015822 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300015822

Identical monomorphism 39

At any rate, if we assume N = 14000, v = 10-% and ¢ = 50000, then the
probability of monomorphism for the haemoglobin a chain locus at the level of
g = 0-01 becomes 0-78 by using (4). In practice, however, the frequency of variant
alleles at this locus seems to be about 0-001 (Hunt, Sochard & Dayhoff, 1972).
Therefore, if we use ¢ = 0-001, the probability is 0-68. This is slightly smaller than
the above value but still very high. It is noted that even if we use N = 10°, which
corresponds to an average heterozygosity of 0-44, the probability is still 0-16 for
g = 0-01 and 0-08 for ¢ = 0-001.

In the above computation, however, we assumed, following Haigh & Maynard
Smith, that the human population was monomorphic about 50000 generations
ago. This assumption, however, may be erroneous. In the absence of this know-
ledge, a more reasonable question to be asked is: what is the probability that a
neutral locus becomes temporarily monomorphic at equilibrium with » = 108 and
N = 140007 This probability can be obtained by Kimura’s (1971) formula

Pry = ¢™. (11)

This becomes 0-77 if ¢ = 0:01 and 0-68 if ¢ = 0-001. On the other hand, if we
assume N = 105, it becomes 0-16 for ¢ = 0-01 and 0-06 for ¢ = 0-001.

One might think that N = 14000 or even N = 105 is too small for this computa-
tion since the present human population is much larger. However, the increase of
genetic variability (heterozygosity) after population increase is so slow (the rate
of increase per generation being equal to twice the mutation rate), that we must use
the effective size in the early process of human evolution (Nei, Maruyama &
Chakraborty, 1975). Furthermore, the probability of temporary monomorphism
depends on M = 4Nw, so that, as long as the estimate of M is reliable, the prob-
ability must be reliable.

It is clear from the above computation that, unlike Haigh & Maynard Smith’s
conclusion, the present monomorphism of the haemoglobin « locus can be explained
by the neutral mutation hypothesis without invoking the bottleneck effect. The
difference in conclusion between Haigh & Maynard Smith and us arises mainly
because they have assumed effectively an infinite population size in the study of
increase of new mutations while we have considered finite population size.
Apparently they thought that the human population in the past was very large,
and regarded the effective size of the order of 2500 as a bottleneck. (Their N
represents the actual population size and they assumed that it is about four times
larger than the effective size (our N).) As shown above, however, if we assume that
the effective size of human population was about 14000 until recently, there is no
need to assume the bottleneck effect.

Incidentally, Haigh & Maynard Smith used the same formula as (11) to compute
the probability of temporary monomorphism in the human population about
10000 years (500 generations) ago. However, their criterion of monomorphism was
very strict: it was complete fixation of an allele with ¢ = 1/2N. Therefore, the
probability of temporary monomorphism they obtained was smaller than our
computations.
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Recently, King & Wilson (1975) showed that the haemoglobin « chain locus in
chimpanzee is also virtually monomorphic for the same allele as that in man, the
frequency of variant alleles being about 19,. Let us now examine whether this
identical monomorphism in the two species is consistent with the neutral mutation
hypothesis or not. King & Wilson studied the average heterozygosity for 44 protein
loci in chimpanzee. Their estimate was 0-02, while the average heterozygosity in
man for the same set of protein loci was 0-05. This suggests that the effective
population size for chimpanzee is smaller than that for man. For simplicity,
however, we assume that the effective size is 14000 and the same for both species,
which is unfavourable for the neutral mutation hypothesis. The generation time
in chimpanzee seems to be about 15 years, so that we take 18 years as the average
generation time for the human and chimpanzee lineages. The mutation rate for the
a locus then becomes 9 x 10~7 per generation. There is a great deal of controversy
on the time after divergence between man and chimpanzee. A group of anthropo-
logists believe that it is about 15 million years, while the immunological study by
Sarich & Wilson (1967) suggests that it is about 5 million years.

At any rate, if we use the above estimates and assume that the ancestral popu-
lation of man and chimpanzee was monomorphic when these species diverged, the
probability of identical monomorphism at the haemoglobin « locus in these two
species is computed to be 0-41 at the level of ¢ = 0-01 if the divergence time is
5% 108 years and 0-15 if this is 15x 10° years. If we use ¢ = 0-001 for man and
g = 0-01 for chimpanzee, the probabilities for { = 5 x 10¢ years and ¢ = 15 x 108
years becomes 0-38 and 0-14, respectively, Therefore, the identical monomorphism
in these species is again consistent with the neutral mutation hypothesis.

The above probabilities decrease if we consider the haemoglobin # locus together
with the « locus. By using electrophoresis, King & Wilson (1975) showed that the
B locus in chimpanzee is monomorphic for the same allele as that of man at the
level of ¢ = 0-01, while the human f locus is also monomorphic except in some
Negroid populations. Since the « and £ loci are unlinked and produce polypeptides
of nearly equal length, the probability of jointly identical monomorphism at the
two loci is (0:38)2 = 0-14 if the divergence time is 5 million years. On the other
hand, if the divergence time is 15 million years, the probability becomes 0-02.
Namely, this probability is rather small for a chance event. This seems to suggest
that if ¢ = 15 x 108 years is correct, the neutral mutation hypothesis is false, or if
the neutral mutation hypothesis is correct, ¢ = 15 x 106 is too long. This conclu-
sion is strengthened if we assume that the human and chimpanzee haemoglobins
are identically monomorphic at the level of amino acid sequence. (Electrophoresis
is believed to detect only about one third of amino acid differences.) In fact,
Wilson & Sarich (1969) have shown that the probability of identity of haemoglobin
a and f chains is very small if the divergence time is 15 x 10 years, though they
neglected the possibility of polymorphism. They took this as evidence to support
their earlier contention that the divergence time is about 5 million years.
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7. DISCUSSION

In the above computation of the probabilities of identical monomorphism in
Drosophila, man, and chimpanzee, we made a number of assumptions about the
parameters to be specified. Some of these assumptions may be incorrect but seem
to be satisfactory to get a rough idea about the probabilities under the ‘null
hypothesis’ of neutral mutation. Particularly in the problems raised by Prakash &
Lewontin (1968) and Haigh & Maynard Smith (1972), the probability of mono-
morphism is so large, that changes in the assumptions do not appear to affect our
conclusions. In the case of identical monomorphism in man and chimpanzee, our
conclusion is somewhat sensitive to the assumption about the divergence time.
At the present time, however, we cannot deny the neutral mutation hypothesis on
this basis, since we do not know the correct divergence time.

Our mathematical model also depends on an assumption, which is not necessarily
valid when it is applied to electrophoretic data, namely our assumption that the
new mutations are always different from the alleles pre-existing in the population
may not hold, since there is some chance of back mutation with respect to the net
charge of a protein particularly when the two species to be compared are distantly
related. This effect, however, tends to increase the probability of identical mono-
morphism more than the value obtained by our formula. Therefore, it does not
affect our conclusions about the Pt-10 locus in Drosophila and the haemoglobin
loci in man and chimpanzee. We note that, if allele differences are studied at the
codon (amino acid) level, our formulae should hold fairly accurately.

In the present paper we are mainly concerned with monomorphism. The
mathematical method developed here, however, can be applied to polymorphic
loci as well. For example, man and chimpanzee share allele PGM! at the phospho-
glucomutase-1 locus, the allele frequency being 0-26 in man and 0-77 in chimpanzee.
The probability that the allele frequency is smaller than the observed frequencies
in the two species can be evaluated by formula (5), if the initial gene frequency is
given.

Recently, Ayala & Tracey (1974) reported that a number of polymorphic loci
show similar gene frequencies between different species of the Drosophila willistoni
group, though most of them have gene frequencies close to 0 or 1. They took this as
evidence against the neutral mutation hypothesis. To derive an objective con-
clusion, however, the probability that two species have similar gene frequencies
should be evaluated. This probability can be obtained by using the same technique
as the above. Namely, the probability that the frequency of an allele lies between
¢, and g, in the two populations that diverged ¢ generations ago is given by

[Py 2 1~q5;p)—P(x, > 1—qy; p)] [Py 2 1—¢,; p)— Pz, > 1—q5; D))

Unfortunately, however, we do not have the reliable estimate of divergence time
for the D. willistoni group.
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