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INEQUALITIES FOR RATIONAL FUNCTIONS
WITH PRESCRIBED POLES

G. MIN

ABSTRACT. This paper considers the rational system P(ag, a..... ay) =

{ﬁnﬂ%?:k).P € Pn} with nonreal elements in {ac}p_, C C\ [-1,1] paired by
comkﬁllex conjugation. It gives a sharp (to constant) Markov-type inequality for real

rational functions in Pp(ar, as. ..., an). The corresponding Markov-type inequality
for high derivatives is established, as well as Nikolskii-type inequalities. Some sharp
Markov- and Bernstein-type inegualities with curved majorants for rational functions
inPn(ag, a. ..., a,) are obtained, which generalize some results for the classical poly-
nomials. A sharp Schur-typeinequality isalso proved and plays akey rolein the proofs
of our main results.

1. Introduction. Let P, be the set of all real algebraic polynomials of degree at
most n, and let T, be the set of all real trigonometric polynomials of degree at most n.
The following two inequalities are fundamental to the proofs of many inverse theorems
in polynomial approximation theory and of course have their own intrinsic interest, see,
for example, Borwein and Erdélyi [3, Chapter 5], Cheney [6], Lorentz [9], Milovanovic,
Mitrinovi€ and Rassias [10, Chapter 6], Natanson [11], Rivlin [15].

MARKOV INEQUALITY. Theinequality
IPAll-ra < MPfIPalli-1y
holdsfor P, € Py.

BERNSTEIN INEQUALITY. Theinequality

IPh()| < x e (—=1.1)

n
ﬁHPnH[—M}v
holds for P, € P,,.

In the above theorems and throughout this paper, ||.||a denotes the supremum norm
on A C R. There are many results on the Bernstein’s and Markov’s inequalities and
their generalization. For the interested readers, see, for example, Borwein and Erdélyi
[3], Milovanovit, Mitrinovi€ and Rassias [10, Chapter 6] and Rahman and Schmeisser
[14] and references therein. Here we just mention that, in 1970, at a conference on
“Constructive Function Theory” held in Varna, Bulgaria, P. Turan raised the following
problem:
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PROBLEM. Determine max_j<x<1 |P,(X)| for al polynomials P,(x) of degree at most

n satisfying the restriction that
|Pn(X)]
11 su =1
5 71<>P<1 V1—x2

Rahman [13, Theorem 1] completely solved the above problem by
THEOREM A. Let P, € Py, satisfy |Pn(X)| < +v/1— X2 for x € [—1,1]. Then

(12) IPAll < 2(n—1).

and it is sharp by P,(x) = (1 — x?)U,_2(X), where U,_»(X) is the classical Chebyshev
polynomial of the second kind.

For the case of the restriction
(1.3) IPa(¥)] < (1 —33)Y2,

Lachance[7] obtained the following Bernstein- and Markov-type inequalities
THEOREM B. Let P, € P, and P, satisfy (1.3). Then

(1.4) P/ <2n+1)(1—x)L —1<x<1,
and
(1.5) [Palli—1y < n(n+ 1)%,

and these inequalities are sharp to constant respectively.

Rahman and his associates have extensively investigated these kinds of inequalities
for classical polynomials. For more details, see, for example, [10, Section 6.1.4] and
references therein.

Ontheother hand, the Bernstein-Markov typeinequality doesnot exist for thearbitrary
rational function, for example, considering r(x) = —%,then Irl—1y < 1butr(d) = %
(cf. Lorentz [9]).

However, we can develop Bernstein-Markov type inequalities for rational functions
with restricted denominators(cf. Borwein [2]). Recently, Borwein and Erdélyi and Zhang
[5] considered the inequalities of rational functions with prescribed poles. We first
introduce some notationsin order to state their main resullts.

We denote

(1.6) Pm(as, a. ..., an) = {% Pe Pm}
d

i — P(t)

.7 Tm(a]_. az,..., an) = {m. Pe Tm},
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where {ac}f; C €\ [—1, 1] isafixed set of polessuch that TT[-; (X — a) € Pn. In other
words, the nonreal poles form complex conjugate pairs. We define the numbers { ¢, } -,

by
ct+ct
= ka ok < 1.
that is,
(1.8) c=a—ya2—1 ol <Ll

Note that (ay + \/aZ — 1)(ax — /a2 — 1) = 1, throughout this paper, /a2 — 1 will be
always defined by (1.8) except special statement.

We denote
n Ja2—1 ~
(1.9 Bn(X) := ﬁ%(z —) (> 0), By(t) := By(cost),
k=1 & —X
which are called the Ber nstein factor sand they play important rolesin [5], where /a2 — 1
(k = 1.....n) is defined by (1.8). Throughout this paper, B,(X) and B,(X) are aways
defined by (1.9).

Borwein, Erdélyi and Zhang (cf. [5, Theorem 3.1]) obtained a remarkable extension
of the well-known Bernstein-Szeg6 inequality for system Tp(ag, as, . . . . ay), that is,

THEOREM C (BERNSTEIN-SZEGO-TYPE INEQUALITY). Let the nonreal elements in
{a&}=; C €\ [—1. 1] be paired by complex conjugation. Then

(1.10) P'(t)% + B2(t)P2(t) < B2(t) max P2, teR

for everyPin Th(ag, @z, . ... an), and this inequality is best possible.

They [5] aso got a Markov-type inequality for rational system P,(a;.az. ..., an)
with real poles and a Bernstein-type inequality respectively (cf. [5, Corollary 3.4] and
[5, Theorem 3.5]):

THEOREM D. (i) (Bernstein-type Inequality) Let the nonreal elementsin {ax}z_; C
C \ [—1, 1] be paired by complex conjugation. Then

1
V1-x2

holds for every P € Pn(as, ay, ... . an), and it is best possible.

(if) (Markov-type Inequality) Let {ax}p-, C R\ [—1.1] real poles. Then

(111 P <

IBa)|[|Pl[-1.7- X € (=1.1)

n (& 1+gl)?
1.12 Plliig < Pll;_
1.12) Pl < 575 (2 Ty ) IPlee
n l+|Ck|)2
_2( IPlli-1.1
kZ::ll—|Ck| Pli-s

https://doi.org/10.4153/CJM-1998-008-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-008-3

INEQUALITIES FOR RATIONAL FUNCTIONS 155

hold for every P € Py (a1, @y, . . ., a),n=12.....

For more information about inequalities of rational functions with prescribed poles
on the unit disk or on the whole real axis, see, for example, Borwein and Erdélyi [3,
Section 7.1], [4], Li, Mohapatra and Rodriguez [8], Petrushev and Popov [12]. Thisis
an area of current research activity.

It's natural to ask if we can extend (1.12) to the case of complex poles (with complex
conjugation) outside of [—1. 1]: {ax}p-; C C \ [-1,1]?

In the present paper, we first consider this question. We obtain a sharp (to con-
stant) Markov-type inequality and our Markov-type inequality is more compact (cf.
Theorem 2.1). Then, we deduce two Nikolskii-type inequalities for rational system
Pn(ar. a, . ... a) with {a}p; C €\ [—1.1] (cf. Theorem 2.4 and Theorem 2.5). We
also get a corresponding Markov-type inequality for high derivatives for rational sys-
tem Pn(ag, a. .. .. an) with {a}p,; C €\ [—1.1] (cf. Theorem 2.2). Moreover, we
get some sharp (to constant) Markov-type and Bernstein-type inequalities for the ra-
tional functions with some curved majorants in rational system Pp(as. ay, . . . . an) with
{ak}p-; € €\ [—1,1] (cf. Theorem 2.6 and Theorem 2.7), which extend Theorem A and
Theorem B in some sense. A sharp Schur-typeinequality is also proved and plays a key
role in the proofs of our main results.

This paper is organized as follows. In Section 2 we formulate the main results.
Section 3 gives two lemmas which will be used to prove our main results. Section 4
contains proofs of Theorems 2.1-2.5. The proofs of Theorems 2.6-2.7 are given in
Section 5. In the last section, some remarks are given.

2. Main results.

THEOREM 2.1 (MARKOV-TYPE INEQUALITY). Let the nonreal elementsin {ac}p_; C
C \ [—1, 1] be paired by complex conjugation. Then

(21) 1P l-1 < 2lIBnllf-1ylIPll-1.1
holdsfor every P € Pn(ay. a;. . . . . a,). Furthermore, if {a,}i-; C R\ [—1. 1] real poles,
e P
—1,1]
(22) IBulf 1y < S < 2Bl .
0#P<Py(ay,az....,an) H ||[—1A1]
and - 014
— Ck Ck
2.3 Bnl|[—1,1 = max , >n
23) [Bnl-y = max{ Y 50 T | >

REMARK. By the definition of B,(x), one can easily show that

(2.4) soiolod gy < n 1IN

e 1+ e 1o

Henceit follows from (2.2)

N1+ |y

P ll=11 SZ(
| |[ ] kgll_|ck|

2
) IPll{-1.1-

https://doi.org/10.4153/CJM-1998-008-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-008-3

156 G.MIN

It would beinteresting to close thegap in (2.2).
We may get a corresponding Markov-typeinequality for high derivatives by applying
Theorem 2.1 and induction on m, that is,

THEOREM 2.2 (MARKOV-TY PE INEQUALITY FOR HIGH DERIVATIVES). Letthenonreal
elementsin {ac}z_; C C\ [—1, 1] be paired by complex conjugation. Then

(2.5) IP™lf—1.y < mt (m+ DH{|Bo[7 [Pl -1

holdsfor every P € Pp(as, ay, ... . a,)andm=12,....

COROLLARY 2.3. Let the nonreal elementsin {ac};_, C C \ [—1.1] be paired by
complex conjugation. Then

’ 2 mi

(2.6) IPl-11 < [IBallf-1q (7@%1 PG) — min, P(x))

forp € Pn(ag, @, ..., ay). Particularly, for 0 < P(x) < 1for —1 < x < 1, we have
27 1P li-11 < IBallf-1q-

and they are sharp to constant for {ax}p_; C R\ [-1.1].

Thefollowing Nikolskii-typeinequality for rational systemPn(ay, ay. . . . , a,) follows
from Theorem 2.1 quite simply.

THEOREM 2.4 (NIKOLSKII-TYPE INEQUALITY). Letthe nonreal elementsin {ay};_, C
C \ [—1, 1] be paired by complex conjugation. Then
(2:8) IPllo < 2{2]Bolli-1.0 3P |Pllq

/

holds for every P € Pp(as. a. .. ., an), where ||P||, := (ﬁl [P(X)|P dx)1 Pand0 < q<

p < oo. |

In a certain weighted L,-norm, we can get an exact Nikolskii-type inequality which
has a smaller Nikolskii constant under some conditions. Precisely, we have

THEOREM 2.5. Let {ac}p-,; C R\ [—1. 1] bedistinct. Then

1 20 1+ \Y?
29 Plliig <[=+-— P
29) Pllsn < (22 1) IPlas

for P € Py(as. @, . . ., a). Moreover, if {a } ., keep constant sign, thenit isexact, where
_ 1 1 5 1/2
Pllev:= ( [, s PO o)

For the simplicity of the statements of inequalities of rational functions with some
curved majorants, we first introduce an assumption:
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ASSUMPTION (A). Let {a}r; C R\ [—1. 1]. If there exists some constant « such
that
(2.10) la] > o > 1.

i.e., the poles must stay outside an interval which contains[—1, 1] in its interior, we say
that {ay}p-; C R\ [—1. 1] satisfy Assumption (A).
It is easy to seethat Assumption (A) is equivalent to

el <7, k=1,....n,

where 0 < v = o — va? — 1 < 1. If this condition is satisfied, we say that {cy}i-;
satisfy Assumption (C). For convenience, we often use Assumption (C) later, instead of

Assumption (A).
THEOREM 2.6. Let the nonreal elements in {a}r.; C C \ [—1.1] be paired by
complex conjugation. Then, for P € Pj(ag, &, . . . . an), we have
(2.11) IPll-1y < 2||Bnll(-1.1
and 12
(2.12) P < (3L =%+ (|IBall-1y — 1)?)
for —1 < x < 1. Furthermore, if {a}z_; C R\ [—1, 1] satisfy Assumption (A), then
1—7\5 1+7
2.13 2 n—2)< su Plli—ig <2 n,
(213) (775) 0-2= o IPlg <25

for {ay}p-; CR\[-1,1],n=2.3..., where
Pi(as.a.....a) = (P e Pr(ar. a..... a) [P <V1-x.xe[-11]}.

THEOREM 2.7. Let the nonreal elements in {a}r.; C C \ [—1.1] be paired by

complex conjugation. Then, for P € P* (a1, & . . . , @), we have
(2.14) A—3)P'K)| < 2Bafl-ry. x€[-11]
and
(2.15) 1P/ ll-12y < 2/IBnl?1.45-
Furthermore, if {ax}p-; C R\ [—1,1] satisfy Assumption (A), then (2.14) is sharp to
constant and
Ll=v\3 5 (@+7)°+2y / 1+7)° 5

_ = - < 1 < .

(2.16) 3((1+7> 17 “)_SgIOIIPH[ 1,11_2(1_7) n

where the supremumis taken for P € P*, (1. . . . . . &), {ak}f; € R\ [-1.1], and
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REMARK. When ay — oo (that means~y = 0), it would be interesting to compare
our Theorems 2.6-2.7 with Theorems A-B.

3. Lemmas. First we modify Rahman's argument (cf. [13]) to prove a Schur-type
inequality.

LEMMA 3.1 (SCHUR-TYPE INEQUALITY). Let the nonreal elements in {a}p.; C
C \ [—1, 1] be paired by complex conjugation. Then

(3.1 IPli-1a < [1Balli-1a V1 =3P _,

holdsfor every P € Pn_1(as. @, ..., an).

PROOF. We may assumethat v/ 1 — x?|P(x)| < 1, wewill prove||P|| < ||Bnl|-11-
It is easy to seethat our hypothesisimplies that sint P(cost) € Ty(as. @. . ... a,) and

|sint P(cost)| < 1. Applying Bernstein-Szeg6 inequality (1.10) for sint P(cost), we
then have

. 2 .
B2(t) sin? tP?(cost) + ( costP(cost) + si nt{ %P(cost) }) < B(to).

Let to be a maximum point of |P(cost)|, that is, |P(costo)| = ||P(cost)||. We then have
that 3{P(cost)}|=, = O. Therefore,

(3.2) B2(to) sin? tyP?(costy) + cos” tyP?(costy) < B2(to).
or ~ .
(3.3 (Ba(to) — 1) sin? toP*(costo) + P*(costo) < B3(to).

We distinguish two cases: (i) Bn(to) > 1and (i) Bn(to) < 1. Inthefirst case, (3.3) implies
that |P(costo)| < Bn(to) < ||Bnl|i-11-
In the second case, (3.2) implies that

1
P2(costp) + (% - 1) cos’ toP?(costy) < 1,
n

hence, |P(costp)| < 1. Also, it is easy to show that ||By||;—11 > 1. Thus, we still have
|P(costo)| < ||Bnl|{—11- Therefore, combining cases (i) and (ii), we complete the proof
Lemma3.1. [

REMARK. For real poles case {a}i-; € R\ [-1. 1], [3, E.8, p. 337] aso showed
(3.2) by using an entirely different way.
We now make an observation about the Bernstein factor B,(X).

LEMMA 3.2. Let {a}p.; C R\ [—1. 1] and By(x) be defined by (1.9). Then By(X) is
a convex function on [—1, 1] and its maximumon [—1, 1] is always attained at £1:

(34) [Bnlli-2g = max{Bn(—1). Ba(1)}
N l—c M 1+cg
= >
max{kzl 1+ck’k=11—ck} =
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PrOOF. Since

/a2 — 1 /a2 — 1
By = 30 Ly Y
a>0 &k —X a0 —&tX
where \/aﬁ — 1 denotes the principal square root of a2 — 1. Then we can quickly show
that B]/(x) > 0 on [—1, 1], thisimplies that B,(x) is a convex function on [—1, 1]. Note
that Bn(x) > 0, so the first equality follows. Note that

12 0 1

n’ = d—) <> d> =

(Vam) snixa
for any d¢ > 0. Hence, we may also prove the last inequality in (3.4). ]
REMARK. In general, Lemma 3.2 does not hold for {ac};;, € C \ [-1.1]. For

example, taking a; =i, a, = —i, then it is easy to show that
_ 22
Ba(X) = 241

which is not a convex function and || Bz||;—1,17 = B2(0).
Next lemma gives a sufficient condition which guarantees B,(X) to be asymptotic to

LEmMA 3.3. Let {a}p.; C C\[—1,1] satisfy Assumption (A). Then

1-v 1+v
. < < —Fn, —11],
(3.5 1+q/n_Bn(x)_ 1_q/n x €[-11]
PrOOF. Itisdirectly from (2.4). ]

4. Proofsof Theorems?2.1-2.5.

PROOF OF THEOREM 2.1. Since the repeated polesin Pp(as, ay, . . ., a,) are allowed,
and if wedenotean; == ay, ..., apn = ap, then we can consider

P € Pa_1(as. @, ..., a0).
Thus, by Lemma 3.1 we have
(4.1) IPll-12y < [IBanll-2.03 [P GOV mH[_M}-
But, in this case, one can check that
Ban(X) = 2Bn(X).

Hence, combining (4.1) and (1.11) we conclude that

IPl-1y < 2|IBallf_ 1.4 PG -1y
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Next we will show the left-side inequality in (2.2). We use T, and U, to denote the
Chebyshev polynomials of the first and second kinds associated with Pp(ay. . .. . an),
respectively. Note that (cf. [5])
1—T3(x)
2 —
Un®) =%
then we can quickly get that

UA(1) = [Ta(£1)] = [Ba(1)Un(£1)].

thisimplies
2 2
(4.2) To(D) = (Ba(1)".  [Th(=D)] = (Ba(-1))".
Hence, by taking P := T,, € Py(a1, @z, . . ., an) and using Lemma 3.2, we can easily show
the left-side inequality in (2.2). (2.3) follows Lemma 3.2. ]

REMARK. If {a}; C R\ [—1. 1], then (2.2) can also be expressed as

(43 max|T(D). [Ty} < sup 1P llean

S < 2max{|T) (=) [T (DI}
o [IPll-11

where T, is the Chebyshev polynomial of the first kind associated with Py (ay, . . ., an),
and the supremum is taken for P € Py (a1, ap, . . ., an).

PROOF OF THEOREM 2.2. We proveit by induction on m. The case of m= 1isfrom
Theorem 2.1. Supposethat (2.5) istrue for m=k, that is

(4.4) IP®| 1.1y < KK+ D) [Bol|PX 4 g 1Pl -2
forevery P € Py(ay, a. . .., ay).
Let 8ins1 = A1,...,@j+yn = an, i = 1,..., K+ 2, then we can consider
P D € Piugn-1(as, @, - . . . ak+2)n)

asin the proof of Theorem 2.1. Similarly, we have
Bezn(X) = (K +2)Bn(X),

where By 2)n(X) is the corresponding Bernstein factor with respect to Puz)n(as. 2. - . . .

age+2)n)- Now using (4.4) and applying the Schur-typeinequality (3.1) and the Bernstein-
type inequality (1.11) for P&*D we have

IPCY )1y < [Beanlli-a| VI—P D00,

< (k+2)[1Bulli-1.1/1Bgerayalli—1.27 [PY | 1.9
< (k+ 1) (k+2)! (|1Blli-1)* V[Pl -1

hence (2.5) holds for m = k + 1 and we compl ete its proof. ]
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PROOF OF COROLLARY 2.3. Since
R(X) 1= 2P(X) — (jfg)é L P(X) — _1@2 ) P(x)) € Pn(ag, a, .. .. an),
then by Theorem 2.1 we have

1
1P li-1ay = 5IIR -0y < 1Brllf-1y (_max PG)— min P(X))-

—1<x<1

It is easy to show that (2.6) and (2.7) are sharp to constant by taking P(x) = Tn(x) and
P(x) = 2 respectively. .

PROOF OF THEOREM 2.4. First we prove it for p = oo. For given P € P(a, ay, . . .,
an), we may supposethat |P(y)| = ||P||[-11, wherey € [—1,1]. Also we denote )\, :=
2||Bnl| [Z_Ll] . Then by Theorem 2.1 and the Mean Value Theorem we can quickly get that

1 1
PG| > 5PY) = S[IPll-1y
foreveryx e 1:={t: [t—y| < 5.t € [-1,1]}. Thus

1
q
IPI3 > [ 1P dt_zunn[ BT

it follows that
(4.5) IPll-1.1 < 2{2Aa}9[P]lq.
On the other hand, for 0 < g < p < o9, by (4.5) we deduce that

1P = [ IPOP*dt < P8, Pl
< {2xa)" 99 PY5IPIIg
yields (2.8). n

PROOF OF THEOREM 2.5. Let {R; }7_, be the orthonormal system with respect to the
rational system (2.2) inthe norm || - ||2.v, then we know that (cf. [5, Theorem 4.7])

1 _ 2
Ré_ﬁ~ R:_ 7r(17_(:%)(-'—n"'Cn-rnfl)~

We may denote P := ", aR} and assumethat ||P||2y = 1, whichimplies =0, o2 = 1.
Moreover, notethat (cf. [3]) || Tnl|(—11 = 1 and by the Cauchy’sinequality, we then have

5 n n E n 2 2
P s e R = 2(\ w(l—cﬁ)(“'ck'))
1,201
T Tigl-al
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it implies (2.9). Taking

1 " (2 1+sgn(ck)ck)”2R;g},

1
_R6+ —
2 1 1/2{ - 1 — sgn(ck)c
(F+ 250 fane) VT e\ 1= sgn(adex

It is easy to show that (2.9) is best possible under the hypotheses. ]
5. Proofsof Theorems2.6-2.7.

PROOF OF THEOREM 2.6. Our hypothesisimplies that

ppy = A X0Pu2l) _ V=) 0

TTg=g (X — &) ey (X — &)
and [Q(X)| < 1.
Since
5.1) PO = |-x(1 =) "Y2Q() + V1 — Q' (¥)|

< XL —¥)Y21QM)| + |V1— Q' (x|
and Q(cost) € Th(az.a..... an), by the Bernstein-Szegd-type inequality (1.10) for

Ta(as, a, ..., an) we have ;
S {Qeost}| < Br(o.
that is,
(52) V1-Q (M| < By(¥)-
Notethat (1 — x2)~Y/2Q(x) € P,_1(as. . . . . . an), moreover,
@ —M2L-x)H2QM) =1Q) <1 ~1<x<1.
Thus, Lemma3.1yields
(5.3) (1) 2Q()| < [IBull-1.1

for —1 < x < 1. Combining (5.1), (5.3) and (1.11), we obtain (2.11).

Next we prove (2.13). Obviously, the right-side inequality in (2.13) follows from
(2.10) and Lemma 3.3.

We let

(1 —x*)Un—2(X)
(X —an-1)(x — an)
where Uy (x) isthe Chebyshev polynomial of the second kind associated with Py (ay, . . . .

an). Since (cf. [5]) V1 —X2|Up_2(X)| < 1for —1 < x < 1,thus, P € Py(ag, @, . ... an)
and |P(¥)| < +/1— x2. Notethat (cf. [5, Theorem 2.1])

P(x) := (sgn(an-1) — an-1) (sON(an) — an)

T/ = —Ba(®Un(®). Up®) =B®Ta®). teR
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where By(t) := By(cost). Hence,
(5.4 Th(X) = Ba(X})Un(X).

and

(5.5) U = XUn(9 — Ba()Tn()

1-—x2

Further, in this case, we can quickly get from (2.4) that

(lan-1] — D(jan| — 1)
(lan-a| + D)(lan| +1)

1—|cn1|)2(1—|cn|)2

2B—2(1

n 2( )(1+|Cn71| 1+|Cn|
1—v

2 2<1+w>5(n_2)'

|P/(1)| Z |Un72(1) + Bn72(1)|

(5.6)

Similarly, we have
— 5
57) P 22(351) (-2

Hence, we have shown the left-side inequality in (2.13).
Also, since Q(cost) € Pp(as, ay, .. . . an), hence using Rahman’s argument (cf. [13]),
Bernstein-Szegd inequality (1.10) and (5.1) we have

PO < XL —x)2QW)| +[V1—xQ ()

< X =) 21QM)| + (IBulli-11y — 1)(1 - [QXI?)

< max (@) 2y + ([Ballp1y — Dy}

1/2

1/2

< (A=) +(IBoll-1y — 1)
thisimplies (2.12). .

PROOF OF THEOREM 2.7. From our hypothesis, we know that sintP(cost) € T, (as.
a,.... an) and | sintP(cost)| < 1. Then, applying the Bernstein-Szegd inequality (1.10)
to sintP(cost), we have

| costP(cost) — sin? tP’(cost)| < Ba(t).
and combining Lemma 3.1 we get
(1 —)|P' ()| = |sin®tP’(cost)| < Bn(t) +IPll-1.y < 2[|Bu.

Next we show that (2.14) issharp to constant under the hypothesis. Let P(x) := Un(X), the
Chebyshev polynomial of the second kind associated with Py (ay, . . . . an), since (cf. [9])
T2(x) + (1L — x2)U?(x) = 1, then taking x = Xy, of the zeros Uy (x), we then have

(1 = %IV = [Ba() Tn(%)| = Bn(X0)-
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Hence (2.15) is sharp to constant by Lemma 3.3.
Combining the Markov-type inequality (2.1) and the Schur-type inequality (3.1), we
can easily show that

1Pl < 21IBullf-1 g IPl-1.0 < 2]IBallf g,

hence, (2.14) follows.
On the other hand, by (5.5) we conclude that

Un(31) + U/(£1) — B/(+1) — B(+1)Un(£1)

Up(£1) = — 2

thisimplies
UMD = 51830 + BH(D) — Bo(D)] > 3 (BD) — [BA(D)] — B(D).
Similarly, we have
V(-1 > 2 (BA-1) ~ [B(~D)| ~ By(~1).

But, for || <7 < 1, wehave

n /a2 — 1
5.8 Bl <3 KT~ < dan,
where d(«) is some positive constant depending only on . Hence combining Lemma3.3
and (5.8) we show that
1(/1—7\3 5 (@+7)?+2y
U3 = max{ U@ U1 = 3 (F55) 7 = s
butU, € P* (a1, @z, . . ., a,), sotheleft-sideinequality in (2.24) follows. Theright-side
inequality in (2.16) follows from (2.14) and Lemma 3.3. ]
6. Remarks.

REMARK 1. From the above theorems, the estimate of ||P’||[—1y (Markov-type in-
equality) and the pointwise estimate of |P’(x)| (Bernstein-type inequality) are dependent
on the given poles {ac}f, for P € Py(ar, az. .. . . an). However, Borwein, Erdélyi and
Zhang [5] observed the following result:

(6.1) IP'O)] < n||Plli-1y

for P € Py(ag, @y, . . ., an) and real poles {ax}r-; C R\ [—1. 1]. Herewe also prove

THEOREM 6.1. Let {ac}p-, C R\ [—1. 1]. Then
n

1—

for P € Py(ag, @z, . . ., a,) and x € (—1,1).

(6.2) P <

2 1Pl -1
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PrROOF. Let Q(y) := P(l"—:xly) for given x € (—1, 1), then it is easy to see that Q €

Pa(b1(¥). b2(X). - .. . bn(¥)) and | Qllp—11y = |IPllf—113, Wherebi(x) = (a—x)/ (1 —xa) €
R\ [—1. 1]. Moreover, by (6.1) we have

A —33)P'X| =10 < nlQll—vy = n[IPll=1.1-

which is nothing but (6.2). L]

Theorem 6.1 improves upon aresult of Borwein, Erdélyi and Zhang[5, Corollary 3.7]
which had n/(1 — |x|) instead of n/(1 — x?) on the right-hand side of (6.2).

Hence, it is easy to obtain the following Markov-type inequality by the exactly same
way as the proof of [5, Theorem 3.5]:

COROLLARY 6.2. Let {ac}p-; C R\ [—1. 1] bereal polesand {c}p-, be defined by
(1.8). Then

2y/n n o1+l )?
6.3 P ey < ( ) Pl
(6.3) ” ”[ 11 \/ﬁ+ n—1 g. 1 |Ck| ” ”[ 11]

(8 1+ )?
< Pl|;-
< il m) P

hold for every P € Py (a1, @y, .. ., a),n=12,....

REMARK 2. Using the argument of the proof in Theorem 2.2, it is not difficult
to show the following Bernstein-type inequality for high derivatives with respect to
Tn(ag, a, . ... an):

THEOREM 6.3. Let {ac}p-; C C\ [—1, 1] with its nonreal elements being complex
conjugation, and Bi(t) be defined by (1.9). Then

(6.4) 1P} < m! |1 Bal|™[P

for P € Th(ag. a, . . ., an), Where ||P|| = max,<g |P(7)|.

REMARK 3. After wewrote this paper, we have shown that Assumption (A) is equiv-
alent to say that {R’} are uniformly bounded for al n, where {R}} be the orthonormal
system with respect to the rational system (2.2) in the norm || - || 2. We here omit its
proof.
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