
Can. J. Math. Vol. 50 (1), 1998 pp. 152–166.

INEQUALITIES FOR RATIONAL FUNCTIONS
WITH PRESCRIBED POLES

G. MIN

ABSTRACT. This paper considers the rational system Pn(a1Ò a2Ò    Ò an) :=n
P(x)Qn

k=1(x�ak)
ÒP 2 Pn

o
with nonreal elements in fakg

n
k=1 ² C n [�1Ò 1] paired by

complex conjugation. It gives a sharp (to constant) Markov-type inequality for real
rational functions in Pn(a1Ò a2Ò    Ò an). The corresponding Markov-type inequality
for high derivatives is established, as well as Nikolskii-type inequalities. Some sharp
Markov- and Bernstein-type inequalities with curved majorants for rational functions
in Pn(a1Ò a2Ò    Ò an) are obtained, which generalize some results for the classical poly-
nomials. A sharp Schur-type inequality is also proved and plays a key role in the proofs
of our main results.

1. Introduction. Let Pn be the set of all real algebraic polynomials of degree at
most n, and let Tn be the set of all real trigonometric polynomials of degree at most n.
The following two inequalities are fundamental to the proofs of many inverse theorems
in polynomial approximation theory and of course have their own intrinsic interest, see,
for example, Borwein and Erdélyi [3, Chapter 5], Cheney [6], Lorentz [9], Milovanović,
Mitrinović and Rassias [10, Chapter 6], Natanson [11], Rivlin [15].

MARKOV INEQUALITY. The inequality

kP0
nk[�1Ò1] � n2kPnk[�1Ò1]

holds for Pn 2 Pn.

BERNSTEIN INEQUALITY. The inequality

jP0
n(x)j � np

1 � x2
kPnk[�1Ò1]Ò x 2 (�1Ò 1)

holds for Pn 2 Pn.
In the above theorems and throughout this paper, kkA denotes the supremum norm

on A ² R. There are many results on the Bernstein’s and Markov’s inequalities and
their generalization. For the interested readers, see, for example, Borwein and Erdélyi
[3], Milovanović, Mitrinović and Rassias [10, Chapter 6] and Rahman and Schmeisser
[14] and references therein. Here we just mention that, in 1970, at a conference on
“Constructive Function Theory” held in Varna, Bulgaria, P. Turán raised the following
problem:
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PROBLEM. Determine max�1�x�1 jP0
n(x)j for all polynomials Pn(x) of degree at most

n satisfying the restriction that

sup
�1ÚxÚ1

jPn(x)jp
1 � x2

= 1(1.1)

Rahman [13, Theorem 1] completely solved the above problem by

THEOREM A. Let Pn 2 Pn satisfy jPn(x)j �
p

1 � x2 for x 2 [�1Ò 1]. Then

kP0
nk � 2(n � 1)Ò(1.2)

and it is sharp by Pn(x) = (1 � x2)Un�2(x), where Un�2(x) is the classical Chebyshev
polynomial of the second kind.

For the case of the restriction

jPn(x)j � (1 � x2)�1Û2Ò(1.3)

Lachance [7] obtained the following Bernstein- and Markov-type inequalities

THEOREM B. Let Pn 2 Pn and Pn satisfy (1.3). Then

jP0
n(x)j � 2(n + 1)(1 � x2)�1Ò �1 Ú x Ú 1Ò(1.4)

and

kPnk[�1Ò1] � n(n + 1)2Ò(1.5)

and these inequalities are sharp to constant respectively.

Rahman and his associates have extensively investigated these kinds of inequalities
for classical polynomials. For more details, see, for example, [10, Section 6.1.4] and
references therein.

On the other hand, the Bernstein-Markov type inequality does not exist for the arbitrary
rational function, for example, considering r(x) = � é2

x2+é2 , then krk[�1Ò1] � 1 but r0(é) = 1
2é

(cf. Lorentz [9]).
However, we can develop Bernstein-Markov type inequalities for rational functions

with restricted denominators (cf. Borwein [2]). Recently, Borwein and Erdélyi and Zhang
[5] considered the inequalities of rational functions with prescribed poles. We first
introduce some notations in order to state their main results.

We denote

Pm(a1Ò a2Ò    Ò an) :=
(

P(x)Qn
k=1(x � ak)

ÒP 2 Pm

)
(1.6)

and

Tm(a1Ò a2Ò    Ò an) :=
(

P(t)Qn
k=1(cos t � ak)

ÒP 2 Tm

)
Ò(1.7)
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where fakgn
k=1 ² C n [�1Ò 1] is a fixed set of poles such that

Qn
k=1(x � ak) 2 Pn. In other

words, the nonreal poles form complex conjugate pairs. We define the numbers fckgn
k=1

by

ak :=
ck + c�1

k

2
Ò jckj Ú 1Ò

that is,
ck = ak �

q
a2

k � 1Ò jckj Ú 1(1.8)

Note that (ak +
q

a2
k � 1)(ak �

q
a2

k � 1) = 1, throughout this paper,
q

a2
k � 1 will be

always defined by (1.8) except special statement.
We denote

Bn(x) := <
 nX

k=1

q
a2

k � 1

ak � x

!
(Ù 0)Ò B̃n(t) := Bn(cos t)Ò(1.9)

which are called the Bernstein factors and they play important roles in [5], where
q

a2
k � 1

(k = 1Ò    Ò n) is defined by (1.8). Throughout this paper, Bn(x) and B̃n(x) are always
defined by (1.9).

Borwein, Erdélyi and Zhang (cf. [5, Theorem 3.1]) obtained a remarkable extension
of the well-known Bernstein-Szegő inequality for system Tn(a1Ò a2Ò    Ò an), that is,

THEOREM C (BERNSTEIN-SZEGŐ-TYPE INEQUALITY). Let the nonreal elements in
fakgn

k=1 ² C n [�1Ò 1] be paired by complex conjugation. Then

P0(t)2 + B̃2
n(t)P2(t) � B̃2

n(t) max
ú2R

jP(ú)j2Ò t 2 R(1.10)

for every P in Tn(a1Ò a2Ò    Ò an), and this inequality is best possible.

They [5] also got a Markov-type inequality for rational system Pn(a1Ò a2Ò    Ò an)
with real poles and a Bernstein-type inequality respectively (cf. [5, Corollary 3.4] and
[5, Theorem 3.5]):

THEOREM D. (i) (Bernstein-type Inequality) Let the nonreal elements in fakgn
k=1 ²

C n [�1Ò 1] be paired by complex conjugation. Then

jP0(x)j � 1p
1 � x2

jBn(x)jkPk[�1Ò1]Ò x 2 (�1Ò 1)(1.11)

holds for every P 2 Pn(a1Ò a2Ò    Ò an), and it is best possible.
(ii) (Markov-type Inequality) Let fakgn

k=1 ² R n [�1Ò 1] real poles. Then

kP0k[�1Ò1] � n
n � 1

 nX
k=1

1 + jckj
1 � jckj

!2

kPk[�1Ò1](1.12)

� 2
 nX

k=1

1 + jckj
1 � jckj

!2

kPk[�1Ò1]
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hold for every P 2 Pn(a1Ò a2Ò    Ò an), n = 1Ò 2Ò    .

For more information about inequalities of rational functions with prescribed poles
on the unit disk or on the whole real axis, see, for example, Borwein and Erdélyi [3,
Section 7.1], [4], Li, Mohapatra and Rodriguez [8], Petrushev and Popov [12]. This is
an area of current research activity.

It’s natural to ask if we can extend (1.12) to the case of complex poles (with complex
conjugation) outside of [�1Ò 1]: fakgn

k=1 ² C n [�1Ò 1]?
In the present paper, we first consider this question. We obtain a sharp (to con-

stant) Markov-type inequality and our Markov-type inequality is more compact (cf.
Theorem 2.1). Then, we deduce two Nikolskii-type inequalities for rational system
Pn(a1Ò a2Ò    Ò an) with fakgn

k=1 ² C n [�1Ò 1] (cf. Theorem 2.4 and Theorem 2.5). We
also get a corresponding Markov-type inequality for high derivatives for rational sys-
tem Pn(a1Ò a2Ò    Ò an) with fakgn

k=1 ² C n [�1Ò 1] (cf. Theorem 2.2). Moreover, we
get some sharp (to constant) Markov-type and Bernstein-type inequalities for the ra-
tional functions with some curved majorants in rational system Pn(a1Ò a2Ò    Ò an) with
fakgn

k=1 ² Cn [�1Ò 1] (cf. Theorem 2.6 and Theorem 2.7), which extend Theorem A and
Theorem B in some sense. A sharp Schur-type inequality is also proved and plays a key
role in the proofs of our main results.

This paper is organized as follows. In Section 2 we formulate the main results.
Section 3 gives two lemmas which will be used to prove our main results. Section 4
contains proofs of Theorems 2.1–2.5. The proofs of Theorems 2.6–2.7 are given in
Section 5. In the last section, some remarks are given.

2. Main results.

THEOREM 2.1 (MARKOV-TYPE INEQUALITY). Let the nonreal elements in fakgn
k=1 ²

C n [�1Ò 1] be paired by complex conjugation. Then

kP0k[�1Ò1] � 2kBnk2
[�1Ò1]kPk[�1Ò1](2.1)

holds for every P 2 Pn(a1Ò a2Ò    Ò an). Furthermore, if fakgn
k=1 ² Rn [�1Ò 1] real poles,

then

kBnk2
[�1Ò1] � sup

06=P2Pn(a1Òa2ÒÒan)

kP0k[�1Ò1]

kPk[�1Ò1]
� 2kBnk2

[�1Ò1]Ò(2.2)

and

kBnk[�1Ò1] = max
² nX

k=1

1 � ck

1 + ck
Ò

nX
k=1

1 + ck

1� ck

¦
½ n(2.3)

REMARK. By the definition of Bn(x), one can easily show that

nX
k=1

1 � jckj
1 + jckj � Bn(x) �

nX
k=1

1 + jckj
1 � jckj (2.4)

Hence it follows from (2.2)

kP0k[�1Ò1] � 2
 nX

k=1

1 + jckj
1 � jckj

!2

kPk[�1Ò1]
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It would be interesting to close the gap in (2.2).
We may get a corresponding Markov-type inequality for high derivatives by applying

Theorem 2.1 and induction on m, that is,

THEOREM 2.2 (MARKOV-TYPE INEQUALITY FOR HIGH DERIVATIVES). Let the nonreal
elements in fakgn

k=1 ² C n [�1Ò 1] be paired by complex conjugation. Then

kP(m)k[�1Ò1] � m! (m + 1)! kBnk2m
[�1Ò1]kPk[�1Ò1](2.5)

holds for every P 2 Pn(a1Ò a2Ò    Ò an) and m = 1Ò 2Ò   .
COROLLARY 2.3. Let the nonreal elements in fakgn

k=1 ² C n [�1Ò 1] be paired by
complex conjugation. Then

kP0k[�1Ò1] � kBnk2
[�1Ò1]

�
max

�1�x�1
P(x) � min

�1�x�1
P(x)

�
(2.6)

for p 2 Pn(a1Ò a2Ò    Ò an). Particularly, for 0 � P(x) � 1 for �1 � x � 1, we have

kP0k[�1Ò1] � kBnk2
[�1Ò1]Ò(2.7)

and they are sharp to constant for fakgn
k=1 ² R n [�1Ò 1].

The following Nikolskii-type inequality for rational system Pn(a1Ò a2Ò    Ò an) follows
from Theorem 2.1 quite simply.

THEOREM 2.4 (NIKOLSKII-TYPE INEQUALITY). Let the nonreal elements in fakgn
k=1 ²

C n [�1Ò 1] be paired by complex conjugation. Then

kPkp � 2f2kBnk[�1Ò1]g2(1Ûq�1Ûp)kPkq(2.8)

holds for every P 2 Pn(a1Ò a2Ò    Ò an), where kPkp :=
�R 1

�1 jP(x)jp dx
�1Ûp

and 0 Ú q Ú
p � 1.

In a certain weighted L2-norm, we can get an exact Nikolskii-type inequality which
has a smaller Nikolskii constant under some conditions. Precisely, we have

THEOREM 2.5. Let fakgn
k=1 ² R n [�1Ò 1] be distinct. Then

kPk[�1Ò1] �
 

1
ô +

2
ô

nX
k=1

1 + jckj
1 � jckj

!1Û2

kPk2Òv(2.9)

for P 2 Pn(a1Ò a2Ò    Ò an). Moreover, if fakgn
k=1 keep constant sign, then it is exact, where

kPk2Òv :=
 Z 1

�1

1p
1 � x2

jP(x)j2 dx
!1Û2



For the simplicity of the statements of inequalities of rational functions with some
curved majorants, we first introduce an assumption:
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ASSUMPTION (A). Let fakgn
k=1 ² R n [�1Ò 1]. If there exists some constant ã such

that
jakj ½ ã Ù 1Ò(2.10)

i.e., the poles must stay outside an interval which contains [�1Ò 1] in its interior, we say
that fakgn

k=1 ² R n [�1Ò 1] satisfy Assumption (A).
It is easy to see that Assumption (A) is equivalent to

jckj � çÒ k = 1Ò    Ò nÒ

where 0 � ç = ã � pã2 � 1 Ú 1. If this condition is satisfied, we say that fckgn
k=1

satisfy Assumption (C). For convenience, we often use Assumption (C) later, instead of
Assumption (A).

THEOREM 2.6. Let the nonreal elements in fakgn
k=1 ² C n [�1Ò 1] be paired by

complex conjugation. Then, for P 2 P Ł
n (a1Ò a2Ò    Ò an), we have

kP0k[�1Ò1] � 2kBnk[�1Ò1](2.11)

and
jP0(x)j �

�
x2(1 � x2)�1 + (kBnk[�1Ò1] � 1)2

�1Û2
(2.12)

for �1 Ú x Ú 1. Furthermore, if fakgn
k=1 ² R n [�1Ò 1] satisfy Assumption (A), then

2
�1 � ç

1 + ç
�5

(n � 2) � sup
P2P Ł

n (a1Òa2ÒÒan)
kP0k[�1Ò1] � 2

1 + ç
1 � çnÒ(2.13)

for fakgn
k=1 ² R n [�1Ò 1], n = 2Ò 3    , where

P Ł
n (a1Ò a2Ò    Ò an) :=

n
P 2 Pn(a1Ò a2Ò    Ò an) : jP(x)j �

p
1 � x2Ò x 2 [�1Ò 1]

o


THEOREM 2.7. Let the nonreal elements in fakgn
k=1 ² C n [�1Ò 1] be paired by

complex conjugation. Then, for P 2 P ŁŁ
n�1(a1Ò a2Ò    Ò an), we have

(1 � x2)jP0(x)j � 2kBnk[�1Ò1]Ò x 2 [�1Ò 1](2.14)

and
kP0k[�1Ò1] � 2kBnk3

[�1Ò1](2.15)

Furthermore, if fakgn
k=1 ² R n [�1Ò 1] satisfy Assumption (A), then (2.14) is sharp to

constant and

1
3

 �1 � ç
1 + ç

�3
n3 � (1 + ç)2 + 2ç

1 � ç2
n
!
� sup

P
kP0k[�1Ò1] � 2

� 1 + ç
1 � ç

!3

n3Ò(2.16)

where the supremum is taken for P 2 P ŁŁ
n�1(a1Ò a2Ò    Ò an), fakgn

k=1 ² R n [�1Ò 1], and

P ŁŁ
n�1(a1Ò a2Ò    Ò an) :=

n
P 2 Pn�1(a1Ò a2Ò    Ò an) :

p
1 � x2jP(x)j � 1Ò x 2 [�1Ò 1]

o

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REMARK. When ak ! š1 (that means ç = 0), it would be interesting to compare
our Theorems 2.6–2.7 with Theorems A–B.

3. Lemmas. First we modify Rahman’s argument (cf. [13]) to prove a Schur-type
inequality.

LEMMA 3.1 (SCHUR-TYPE INEQUALITY). Let the nonreal elements in fakgn
k=1 ²

C n [�1Ò 1] be paired by complex conjugation. Then

kPk[�1Ò1] � kBnk[�1Ò1]




p1 � x2P(x)





[�1Ò1]
(3.1)

holds for every P 2 Pn�1(a1Ò a2Ò    Ò an).

PROOF. We may assume that
p

1 � x2jP(x)j � 1, we will prove kPk � kBnk[�1Ò1].
It is easy to see that our hypothesis implies that sin t P(cos t) 2 Tn(a1Ò a2Ò    Ò an) and

j sin t P(cos t)j � 1. Applying Bernstein-Szegő inequality (1.10) for sin t P(cos t), we
then have

B̃2
n(t) sin2 tP2(cos t) +

�
cos tP(cos t) + sin t

² d
dt

P(cos t)
¦�2 � B̃2

n(t0)

Let t0 be a maximum point of jP(cos t)j, that is, jP(cos t0)j = kP(cos t)k. We then have
that d

dtfP(cos t)gjt=t0 = 0. Therefore,

B̃2
n(t0) sin2 t0P2(cos t0) + cos2 t0P2(cos t0) � B̃2

n(t0)Ò(3.2)

or �
B̃2

n(t0) � 1
�

sin2 t0P2(cos t0) + P2(cos t0) � B̃2
n(t0)(3.3)

We distinguish two cases: (i) B̃n(t0) ½ 1 and (ii) B̃n(t0) Ú 1. In the first case, (3.3) implies
that jP(cos t0)j � B̃n(t0) � kBnk[�1Ò1].

In the second case, (3.2) implies that

P2(cos t0) +
 

1

B̃2
n(t0)

� 1
!

cos2 t0P2(cos t0) Ú 1Ò

hence, jP(cos t0)j Ú 1. Also, it is easy to show that kBnk[�1Ò1] ½ 1. Thus, we still have
jP(cos t0)j � kBnk[�1Ò1]. Therefore, combining cases (i) and (ii), we complete the proof
Lemma 3.1.

REMARK. For real poles case fakgn
k=1 ² R n [�1Ò 1], [3, E.8, p. 337] also showed

(3.1) by using an entirely different way.
We now make an observation about the Bernstein factor Bn(x).

LEMMA 3.2. Let fakgn
k=1 ² R n [�1Ò 1] and Bn(x) be defined by (1.9). Then Bn(x) is

a convex function on [�1Ò 1] and its maximum on [�1Ò 1] is always attained at š1:

kBnk[�1Ò1] = maxfBn(�1)ÒBn(1)g(3.4)

= max
² nX

k=1

1 � ck

1 + ck
Ò

nX
k=1

1 + ck

1 � ck

¦
½ n

https://doi.org/10.4153/CJM-1998-008-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-008-3


INEQUALITIES FOR RATIONAL FUNCTIONS 159

PROOF. Since

Bn(x) =
X

akÙ0

q
a2

k � 1

ak � x
+
X

akÚ0

q
a2

k � 1

�ak + x
Ò

where
q

a2
k � 1 denotes the principal square root of a2

k � 1. Then we can quickly show
that B00

n (x) Ù 0 on [�1Ò 1], this implies that Bn(x) is a convex function on [�1Ò 1]. Note
that Bn(x) Ù 0, so the first equality follows. Note that

n2 =
� nX

k=1

q
dk

1p
dk

�2 �
nX

k=1
dk

nX
k=1

1
dk

for any dk Ù 0. Hence, we may also prove the last inequality in (3.4).

REMARK. In general, Lemma 3.2 does not hold for fakgn
k=1 ² C n [�1Ò 1]. For

example, taking a1 = iÒ a2 = �i, then it is easy to show that

B2(x) =
2
p

2
x2 + 1

Ò

which is not a convex function and kB2k[�1Ò1] = B2(0).
Next lemma gives a sufficient condition which guarantees Bn(x) to be asymptotic to

n.

LEMMA 3.3. Let fakgn
k=1 ² Cn[�1Ò 1] satisfy Assumption (A). Then

1 � ç
1 + ç n � Bn(x) � 1 + ç

1 � çnÒ x 2 [�1Ò 1]Ò(3.5)

PROOF. It is directly from (2.4).

4. Proofs of Theorems 2.1–2.5.

PROOF OF THEOREM 2.1. Since the repeated poles in Pn(a1Ò a2Ò    Ò an) are allowed,
and if we denote an+1 := a1Ò    Ò a2n := an, then we can consider

P0 2 P2n�1(a1Ò a2Ò    Ò a2n)

Thus, by Lemma 3.1 we have

kP0k[�1Ò1] � kB2nk[�1Ò1]




P0(x)
p

1 � x2





[�1Ò1]
(4.1)

But, in this case, one can check that

B2n(x) = 2Bn(x)

Hence, combining (4.1) and (1.11) we conclude that

kP0k[�1Ò1] � 2kBnk2
[�1Ò1]kP(x)k[�1Ò1]
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Next we will show the left-side inequality in (2.2). We use Tn and Un to denote the
Chebyshev polynomials of the first and second kinds associated with Pn(a1Ò    Ò an),
respectively. Note that (cf. [5])

U2
n(x) =

1 � T2
n(x)

1 � x2
Ò

then we can quickly get that

U2
n(š1) = jT0

n(š1)j = jBn(š1)Un(š1)jÒ
this implies

T0
n(1) =

�
Bn(1)

�2Ò jT0
n(�1)j =

�
Bn(�1)

�2Ò(4.2)

Hence, by taking P := Tn 2 Pn(a1Ò a2Ò    Ò an) and using Lemma 3.2, we can easily show
the left-side inequality in (2.2). (2.3) follows Lemma 3.2.

REMARK. If fakgn
k=1 ² R n [�1Ò 1], then (2.2) can also be expressed as

maxfjT0
n(�1)jÒ jT0

n(1)jg � sup
06=P

kP0k[�1Ò1]

kPk[�1Ò1]
� 2 maxfjT0

n(�1)jÒ jT0
n(1)jgÒ(4.3)

where Tn is the Chebyshev polynomial of the first kind associated with Pn(a1Ò    Ò an),
and the supremum is taken for P 2 Pn(a1Ò a2Ò    Ò an).

PROOF OF THEOREM 2.2. We prove it by induction on m. The case of m = 1 is from
Theorem 2.1. Suppose that (2.5) is true for m = k, that is

kP(k)k[�1Ò1] � k! (k + 1)! kBnk2k
[�1Ò1]kPk[�1Ò1](4.4)

for every P 2 Pn(a1Ò a2Ò    Ò an).
Let ain+1 = a1Ò    Ò a(i+1)n = an, i = 1Ò    Ò k + 2, then we can consider

P(k+1) 2 P(k+2)n�1(a1Ò a2Ò    Ò a(k+2)n)

as in the proof of Theorem 2.1. Similarly, we have

B(k+2)n(x) = (k + 2)Bn(x)Ò
where B(k+2)n(x) is the corresponding Bernstein factor with respect to P(k+2)n(a1Ò a2Ò    Ò
a(k+2)n). Now using (4.4) and applying the Schur-type inequality (3.1) and the Bernstein-
type inequality (1.11) for P(k+1), we have

kP(k+1)k[�1Ò1] � kB(k+2)nk[�1Ò1]




p1 � x2P(k+1)(x)





[�1Ò1]

� (k + 2)kBnk[�1Ò1]kB(k+1)nk[�1Ò1]kP(k)k[�1Ò1]

� (k + 1)! (k + 2)! (kBnk[�1Ò1])2(k+1)kPk[�1Ò1]Ò
hence (2.5) holds for m = k + 1 and we complete its proof.
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PROOF OF COROLLARY 2.3. Since

R(x) := 2P(x) �
�

max
�1�x�1

P(x)� min
�1�x�1

P(x)
� 2 Pn(a1Ò a2Ò    Ò an)Ò

then by Theorem 2.1 we have

kP0k[�1Ò1] =
1
2
kR0k[�1Ò1] � kBnk2

[�1Ò1]

�
max

�1�x�1
P(x) � min

�1�x�1
P(x)

�
It is easy to show that (2.6) and (2.7) are sharp to constant by taking P(x) = Tn(x) and
P(x) = 1+Tn(x)

2 respectively.

PROOF OF THEOREM 2.4. First we prove it for p = 1. For given P 2 Pn(a1Ò a2Ò    Ò
an), we may suppose that jP(y)j = kPk[�1Ò1], where y 2 [�1Ò 1]. Also we denote ïn :=
2kBnk2

[�1Ò1]. Then by Theorem 2.1 and the Mean Value Theorem we can quickly get that

jP(x)j Ù 1
2

P(y) =
1
2
kPk[�1Ò1]

for every x 2 I := ft : jt � yj � 1
2ïn
Ò t 2 [�1Ò 1]g. Thus

kPkq
q ½

Z
I
jP(t)jq dt ½ 1

2q kPkq
[�1Ò1]

1
2ïn

Ò

it follows that
kPk[�1Ò1] � 2f2ïng1ÛqkPkq(4.5)

On the other hand, for 0 Ú q Ú p Ú 1, by (4.5) we deduce that

kPkp
p =

Z 1

�1
jP(t)jp�q+q dt � kPkp�q

[�1Ò1]kPkq
q

� f2ïngp�qÛqkPkp�q
q kPkq

q

yields (2.8).

PROOF OF THEOREM 2.5. Let fRŁ
kgn

k=0 be the orthonormal system with respect to the
rational system (2.2) in the norm k Ð k2Òv, then we know that (cf. [5, Theorem 4.7])

RŁ
0 =

1pôÒ RŁ
n =

vuut 2
ô(1 � c2

n)
(Tn + cnTn�1)

We may denote P :=
Pn

k=0 ãkRŁ
k and assume that kPk2Òv = 1, which implies

Pn
k=0 ã2

k = 1.
Moreover, note that (cf. [3]) kTnk[�1Ò1] = 1 and by the Cauchy’s inequality, we then have

P2 �
nX

k=0
ã2

k

nX
k=0

(RŁ
k)2 � 1

ô +
nX

k=1

 vuut 2
ô(1 � c2

k)
(1 + jckj)

!2

=
1
ô +

2
ô

nX
k=1

1 + jckj
1 � jckj Ò
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it implies (2.9). Taking

P =
1�

1
ô + 2

ô
Pn

k=1
1+sgn(ck)ck
1�sgn(ck)ck

�1Û2

(
1pôRŁ

0 +
nX

k=1

 
2
ô

1 + sgn(ck)ck

1 � sgn(ck)ck

!1Û2

RŁ
k

)
Ò

It is easy to show that (2.9) is best possible under the hypotheses.

5. Proofs of Theorems 2.6–2.7.

PROOF OF THEOREM 2.6. Our hypothesis implies that

P(x) =
(1 � x2)Pn�2(x)Qn

k=1(x � ak)
=
p

1 � x2

p
1 � x2Pn�2(x)Qn

k=1(x � ak)
:=
p

1 � x2Q(x)Ò

and jQ(x)j � 1.
Since

jP0(x)j =
þþþ�x(1 � x2)�1Û2Q(x) +

p
1 � x2Q0(x)

þþþ(5.1)

� jxj(1 � x2)�1Û2jQ(x)j +
þþþp1 � x2Q0(x)

þþþ
and Q(cos t) 2 Tn(a1Ò a2Ò    Ò an), by the Bernstein-Szegő-type inequality (1.10) for
Tn(a1Ò a2Ò    Ò an) we have þþþþ d

dt
fQ(cos t)g

þþþþ � B̃n(t)Ò
that is, þþþp1 � x2Q0(x)

þþþ � Bn(x)(5.2)

Note that (1 � x2)�1Û2Q(x) 2 Pn�1(a1Ò a2Ò    Ò an), moreover,

j(1 � x2)1Û2(1 � x2)�1Û2Q(x)j = jQ(x)j � 1Ò �1 � x � 1
Thus, Lemma 3.1 yields

j(1 � x2)�1Û2Q(x)j � kBnk[�1Ò1](5.3)

for �1 Ú x Ú 1. Combining (5.1), (5.3) and (1.11), we obtain (2.11).
Next we prove (2.13). Obviously, the right-side inequality in (2.13) follows from

(2.10) and Lemma 3.3.
We let

P(x) :=
(1 � x2)Un�2(x)

(x � an�1)(x � an)

�
sgn(an�1) � an�1

��
sgn(an) � an

�

where Un(x) is the Chebyshev polynomial of the second kind associated with Pn(a1Ò    Ò
an). Since (cf. [5])

p
1 � x2jUn�2(x)j � 1 for �1 � x � 1, thus, P 2 Pn(a1Ò a2Ò    Ò an)

and jP(x)j �
p

1 � x2. Note that (cf. [5, Theorem 2.1])

T̃0
n(t) = �B̃n(t)Ũn(t)Ò Ũ0

n(t) = B̃n(t)T̃n(t)Ò t 2 R
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where B̃n(t) := Bn(cos t). Hence,

T0
n(x) = Bn(x)Un(x)Ò(5.4)

and

U0
n(x) =

xUn(x) � Bn(x)Tn(x)
1 � x2

(5.5)

Further, in this case, we can quickly get from (2.4) that

jP0(1)j ½ jUn�2(1) + Bn�2(1)j (jan�1j � 1)(janj � 1)
(jan�1j + 1)(janj + 1)

= 2Bn�2(1)
 

1 � jcn�1j
1 + jcn�1j

!2 1 � jcnj
1 + jcnj

!2

(5.6)

½ 2
�1 � ç

1 + ç
�5

(n � 2)

Similarly, we have

jP0(�1)j ½ 2
�1 � ç

1 + ç
�5

(n � 2)(5.7)

Hence, we have shown the left-side inequality in (2.13).
Also, since Q(cos t) 2 Pn(a1Ò a2Ò    Ò an), hence using Rahman’s argument (cf. [13]),

Bernstein-Szegő inequality (1.10) and (5.1) we have

jP0(x)j � jxj(1 � x2)�1Û2jQ(x)j +
þþþp1 � x2Q0(x)

þþþ
� jxj(1 � x2)�1Û2jQ(x)j + (kBnk[�1Ò1] � 1)

�
1 � jQ(x)j2�1Û2

� max
�1�y�1

fjxj(1 � x2)�1Û2y + (kBnk[�1Ò1] � 1)(1 � y2)1Û2g

�
�
x2(1 � x2)�1 + (kBnk[�1Ò1] � 1)2

�1Û2Ò
this implies (2.12).

PROOF OF THEOREM 2.7. From our hypothesis, we know that sin tP(cos t) 2 Tn(a1Ò
a2Ò    Ò an) and j sin tP(cos t)j � 1. Then, applying the Bernstein-Szegő inequality (1.10)
to sin tP(cos t), we have

j cos tP(cos t) � sin2 tP0(cos t)j � B̃n(t)Ò
and combining Lemma 3.1 we get

(1 � x2)jP0(x)j = j sin2 tP0(cos t)j � B̃n(t) + kPk[�1Ò1] � 2kBnk
Next we show that (2.14) is sharp to constant under the hypothesis. Let P(x) := Un(x), the
Chebyshev polynomial of the second kind associated with Pn(a1Ò    Ò an), since (cf. [5])
T2

n(x) + (1 � x2)U2
n(x) = 1, then taking x = xk, of the zeros Un(x), we then have

(1 � x2
k)jU0

n(xk)j = jBn(xk)Tn(xk)j = Bn(xk)
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Hence (2.15) is sharp to constant by Lemma 3.3.
Combining the Markov-type inequality (2.1) and the Schur-type inequality (3.1), we

can easily show that

kP0k[�1Ò1] � 2kBnk2
[�1Ò1]kPk[�1Ò1] � 2kBnk3

[�1Ò1]Ò
hence, (2.14) follows.

On the other hand, by (5.5) we conclude that

U0
n(š1) = �Un(š1) + U0

n(š1) � B0
n(š1) � B2

n(š1)Un(š1)
2

Ò

this implies

jU0
n(1)j =

1
3
jB3

n(1) + B0
n(1) � Bn(1)j Ù 1

3

�
B3

n(1) � jB0
n(1)j � Bn(1)

�
Similarly, we have

jU0
n(�1)j Ù 1

3

�
B3

n(�1) � jB0
n(�1)j � Bn(�1)

�
But, for jckj � ç Ú 1, we have

jB0
n(x)j �

nX
k=1

q
a2

k � 1

(jakj � 1)2
� d(ã)nÒ(5.8)

where d(ã) is some positive constant depending only onã. Hence combining Lemma 3.3
and (5.8) we show that

kU0
n(x)k[�1Ò1] ½ maxfjU0

n(1)jÒ jU0
n(�1)jg ½ 1

3

 �1 � ç
1 + ç

�3
n3 � (1 + ç)2 + 2ç

1 � ç2
n
!
Ò

but Un 2 P ŁŁ
n�1(a1Ò a2Ò    Ò an), so the left-side inequality in (2.24) follows. The right-side

inequality in (2.16) follows from (2.14) and Lemma 3.3.

6. Remarks.

REMARK 1. From the above theorems, the estimate of kP0k[�1Ò1] (Markov-type in-
equality) and the pointwise estimate of jP0(x)j (Bernstein-type inequality) are dependent
on the given poles fakgn

k=1 for P 2 Pn(a1Ò a2Ò    Ò an). However, Borwein, Erdélyi and
Zhang [5] observed the following result:

jP0(0)j � nkPk[�1Ò1](6.1)

for P 2 Pn(a1Ò a2Ò    Ò an) and real poles fakgn
k=1 ² R n [�1Ò 1]. Here we also prove

THEOREM 6.1. Let fakgn
k=1 ² R n [�1Ò 1]. Then

jP0(x)j � n
1 � x2

kPk[�1Ò1](6.2)

for P 2 Pn(a1Ò a2Ò    Ò an) and x 2 (�1Ò 1).
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PROOF. Let Q(y) := P( x+y
1+xy ) for given x 2 (�1Ò 1), then it is easy to see that Q 2

Pn

�
b1(x)Ò b2(x)Ò    Ò bn(x)

�
and kQk[�1Ò1] = kPk[�1Ò1], where bk(x) = (ak�x)Û(1�xak) 2

R n [�1Ò 1]. Moreover, by (6.1) we have

(1 � x2)jP0(x)j = jQ0(0)j � nkQk[�1Ò1] = nkPk[�1Ò1]Ò

which is nothing but (6.2).

Theorem 6.1 improves upon a result of Borwein, Erdélyi and Zhang [5, Corollary 3.7]
which had nÛ(1 � jxj) instead of nÛ(1 � x2) on the right-hand side of (6.2).

Hence, it is easy to obtain the following Markov-type inequality by the exactly same
way as the proof of [5, Theorem 3.5]:

COROLLARY 6.2. Let fakgn
k=1 ² R n [�1Ò 1] be real poles and fckgn

k=1 be defined by
(1.8). Then

kP0k[�1Ò1] � 2
p

np
n +

p
n � 1

 nX
k=1

1 + jckj
1 � jckj

!2

kPk[�1Ò1](6.3)

�
s

n
n � 1

 nX
k=1

1 + jckj
1 � jckj

!2

kPk[�1Ò1]

hold for every P 2 Pn(a1Ò a2Ò    Ò an), n = 1Ò 2Ò   .
REMARK 2. Using the argument of the proof in Theorem 2.2, it is not difficult

to show the following Bernstein-type inequality for high derivatives with respect to
Tn(a1Ò a2Ò    Ò an):

THEOREM 6.3. Let fakgn
k=1 ² C n [�1Ò 1] with its nonreal elements being complex

conjugation, and B̃n(t) be defined by (1.9). Then

kP(m)k � m! kB̃nkmkPk(6.4)

for P 2 Tn(a1Ò a2Ò    Ò an), where kPk = maxú2R jP(ú)j.
REMARK 3. After we wrote this paper, we have shown that Assumption (A) is equiv-

alent to say that fRŁ
ng are uniformly bounded for all n, where fRŁ

ng be the orthonormal
system with respect to the rational system (2.2) in the norm k Ð k2Òv. We here omit its
proof.
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