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TRANSLATION PLANES OF DIMENSION TWO 
WITH ODD CHARACTERISTIC 

T. G. OSTROM 

1. Introduction. A translation plane of dimension d over its kernel 
K = GF(q) can be represented by a vector space of dimension 2d over K. 
The lines through the zero vector form a '"spread" ; i.e., a class of mutually 
independent vector spaces of dimension d which cover the vector space. 

The case where d = 2 has aroused the most interest. The more exotic 
translation planes tend to be of dimension two; a spread in this case can 
be interpreted as a class of mutually skew lines in projective three-space. 

The stabilizer of the zero vector in the group of collineations is a group 
of semi-linear transformations and is called the translation complement. 
The subgroup consisting of linear transformations is the linear transla­
tion complement. 

A central problem in connection with finite translation planes is to 
identify the linear groups which can act as subgroups of a linear transla­
tion complement, to determine how these groups act on the planes, and 
to identify the planes upon which they act. 

In this paper we determine what the groups must be like for d = 2 and 
q odd. We also get some information about the way in which the groups 
act. 

When this is put together with previous results mentioned below, the 
effect is that for d = 2 with the characteristic equal to two or greater 
than 5 we now know that the groups must come from a relatively small 
list; we know something about how the groups must act; but we cannot 
give a complete listing of the planes admitting these groups. In some cases 
we cannot even say whether there are any finite translation planes 
admitting a specified group. 

Johnson and the author have investigated the case where the charac­
teristic and dimension of the plane are both equal to two [5,6]. 

The author has investigated the case of odd characteristic and dimen­
sion two when the order of the group is relatively prime to the charac­
teristic [8]. 

The present paper is a study of the problem for odd characteristic and 
dimension two when the characteristic divides the order of the group. 

In all of this, not much attention is paid to the case where the linear 
translation complement is both solvable and reducible. There are very 
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TRANSLATION PLANES 1115 

many examples of planes which satisfy these conditions and the number 
of possibilities seems very great indeed. Yet these conditions do tell us 
something about the nature of the plane and the group. If one is looking 
for a plane with certain special properties the solvability and reducibility 
conditions (the invariant subspaces have dimension one or two) often 
enable us to nail down the possibilities rather completely. 

For instance, the group must at least be homomorphic to a subgroup 
of GL(2, q) and the subgroups of GL(2, q) are well known. The kernel 
of the homomorphism is the subgroup fixing the subspace pointwise and 
the possibilities here are also known. 

Our main results for d = 2 and characteristic greater than 5 are 
collected in Theorem (2.9). Actually, the translation plane of order 9 
and one of Walker's planes of order 25 both would be counter-examples 
to (2.9) if we dropped the condition p > 5. In part this says that when 
the linear translation complement is irreducible then SL (2,ps) (for some 
s) enters in unless we are in one of the cases discussed in [8]. Here p is 
the characteristic. This part is essentially Lemma (2.6) which is an easy 
consequence of a result of Suprunenko and Zalesskii. See (1.6). By 
modifying arguments of [9] we determine the action of SL(2, ps). Also 
see [11]. In the irreducible case there is a Hering subplane of order p2s. 
Thus, with the possible exception of p = 3 or 5 there are no real surprises 
left for d = 2 at least insofar as the abstract groups are concerned and 
there is not much room for surprises insofar as unusual action is con­
cerned. 

We do really seem to be lacking information about translation planes 
with proper subplanes that are nearfield planes, Hering planes, etc. In 
the other direction we know very little about cases in which the transla­
tion complement is not much larger than the kernel (the scalar trans­
formations). 

Realizing the limitations, we suspect that we are about as close to a 
complete classification of translation planes of dimension two as we are 
likely to get. 

We conclude this section with some preliminary definitions and state­
ments of results we shall use. 

(1.1) Definition. Let G be a group of linear transformations acting 
irreducibly on a vector space V. G is said to be imprimitive if V = \\ 
© . . . © Vk where the image of each Vt under each element of G is some 
Vk. The subspaces Vi, . . . , Vk are called subspaces of imprimitivity. 
Otherwise G is said to be primitive. 

(1.2) (See [1], Theorem 2.10B.) Let G be an irreducible subgroup of 
GL(n, F) and let £ be a finite extension of F. Then G is completely 
reducible as a subgroup of GL(n, E) and all of its irreducible components 
have the same dimension. 
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(1.3) (See [1] Theorem 4.4.) Let V be a vector space of dimension n 
over an algebraically closed field F. Let G be a primitive subgroup of 
GL(V) such tha t Fi t G 9e Z(G). (Plere Fi t G is the Fi t t ing subgroup; 
Z(G) is the center of G.) Then (a) |F i t G'.Z(G)\ = d2 for some divisor d 
of n. (b) the Sylow subgroups of Fi t G/Z(G) are e lementary abelian. 

(1.4) ([1], Theorem 4.5.) In (1.3) above n > 1 and G is solvable the 
hypothesis Fi t G 9e Z(G) is automatical ly satisfied. Otherwise n = 1 
and G is abelian. 

(1.5) (See [8], Lemmas (2.13) and (2.14).) Let G be a subgroup of the 
linear translat ion complement for a translat ion plane of dimension two 
over GF(q), q odd. Let G be the induced group on the line a t infinity. 
Suppose tha t G is e lementary abelian of order 16. Then a t least one and 
at most five of the involutions in G have pre-images t ha t are affine 
homologies. 

(1.6) (See [10].) Let G be a finite irreducible linear group of degree 4 
over an algebraically closed field p of characterist ic p > 5. Suppose tha t 
G coincides with its commutan t and cannot be obtained as a result of 
reduction mod p of a complex linear group of degree 4 isomorphic to 
G. Then G is one of the following groups: 

5L(4 , F), SU(±, F), Sp(4, F), PSL(2, F) \F\ * p} 

SL(2, F)\F\ 9* 7, SL(2, F) ® SL(2, 5), 

5L(2 , 5) ® SL(2, Fi) 

where F and F\ are finite subfields of P. 

(1.7) (See [8], Lemma (2.3)). If -K is a t ranslat ion plane of dimension 
two over its kernel, if G is a subgroup of the linear t ranslat ion comple­
ment , and if V\ is a minimal subspace invar iant under G, the dimension 
of Vi is not equal to 3 and hence is 1, 2, or 4. 

2. 

(2.1) Definition. In the following IT always denotes a t ranslat ion plane 
of dimension two over F = GF(q) so t ha t the points of w are elements of 
a four dimensional vector space over F. Unless the cont rary is specifically 
indicated, G is an irreducible subgroup of the linear t ranslat ion com­
plement. We shall use p to denote the characterist ic of F. 

T h e case where p = 2 has been investigated in [5, 6] so we shall assume 
tha t p is odd. 

T h e case wrhere p does not divide the order of G was investigated in [8]. 

(2.2) Assumptions. T h e characterist ic p is greater than 5 and divides 
\G\. G is generated by its ^-elements. 
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(2.3) LEMMA. G is non-solvable. 

Proof. A Sylow p-group fixes some non-trivial subspace pointwise; its 
normalizer leaves this subspace invariant. Hence G must have more than 
one Sylow p-group, since G is irreducible. 

If G is not absolutely irreducible, then G is isomorphic to a subgroup 
of GL(2, qa) for some a, bu t a subgroup of GL(2, qa) generated by ^-ele­
ments not all in the same Sylow subgroup is non-solvable so the lemma is 
proved for this case. See (1.2). 

A similar situation holds if G is absolutely irreducible bu t becomes 
imprimitive over some finite extension of F. T h a t is, when the vector 
space V on which T is defined is regarded as a vector space over some 
GF(qa)} we have V = \\ 0 V2 or V = \\ © V2 0 7 3 © F4 , and G has 
a subgroup of index dividing 2 or \S^\ which fixes Vi and V2 or Vi, V2f F3 , 
Vi respectively. In either case, the ^-groups must fix all of the Vi (we 
assumed p > 5) so G must be reducible if it is generated by its ^-groups. 

In the remaining case, we may interpret the vector space on which IT is 
defined as a vector space over the algebraic closure of F. If G is solvable, 
Z(G) consists of scalars and by (1.3) and (1.4) 

[Fit G:Z(G)] = d* 

where d divides 4 but d ^ 1. T h a t is, d2 = 4 or 16. Also, Fi t G/Z(G) is 
elementary Abelian. 

Returning to the interpretat ion of G as a collineation group of w, 
G/Z{G) = G is the permutat ion group induced by G on /œ. 

Fur thermore the elements of order p in G induce automorphisms on 
Fi t G(Z /G) . If [Fit G:Z(G)] = 4 and p > 5 then the £ elements in G 
must centralize Fi t G/Z(G) so G centralizes Fi t G/Z(G). 

We claim tha t Fi t G/Z(G) is Fi t G. This comes from the fact tha t if A0 

is nilpotent there is a normal series A0'DAiZ)---^DAr= l i n which 
yl i-i/A i is the center of A 0 for each i. If .4 0 is a subgroup of G, / ï i-i/Â z- = 
4̂ z_i/^4 i so the pre-image of Fi t G is niplotent and in fact must be Fi t G. 

If G is solvable this implies tha t G is abelian and hence has a unique 
Sylow ^-group. See (1.4). By (2.2) G (and G) are generated by ^-elements 
so in this case G is a p-group. But G is irreducible by Definition (2.1) and 
^-groups are reducible. 

If [Fit G:Z(G)] = 16 we apply (1.5). The effect is tha t a t least one 
and a t most five of the involutions in [Fit G:Z(G)] have pre-images tha t 
are involutory homologies. With p > 5 we again get a unique Sylow 
£-group. 

Thus we get a contradiction if we assume tha t G is solvable. 

(2.4) LEMMA. Let Go be a minimal normal non-solvable subgroup of G. 
Then p divides \G0\. 
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Proof. Go must admi t non-trivial automorphisms of order p since each 
^-element induces an automorphism by conjugation and the ^-elements 
cannot all centralize Go and Go cannot be in the center of G. This also holds 
for non-solvable characteristic subgroups and non-solvable factor groups 
of G0. 

Suppose tha t G0 is reducible. By (1.7), the minimal Go-spaces have 
dimension 1 or 2. Each 1-space belongs to a unique component so we 
may assume tha t Go has an invar iant 2-space. T h e only non-solvable 
subgroup of PSL(2,q) which contains no ^-elements is PSL(2, 5). If 
Go is non-solvable and contains no ^-elements then G0 is homomorphic 
to PSL(2, 5) and the homomorphism will carry G into a group containing 
p elements which must induce non-trivial automorphisms on P S L ( 2 , 5) . 
Wi th p > 5 there are no such automorphisms. Hence p mus t divide |G0| 
if Go is reducible. 

Suppose tha t Go is irreducible. If Go is not absolutely reducible it is 
reducible over some extension. By (1.2) it must be a subgroup of 
GL(2, qa) or GL(1 , qa) for some a. T h e lat ter group is solvable. If p does 
not divide |Go| we can repeat the argument of the previous paragraph. 

Now suppose tha t Go is absolutely irreducible and t ha t p does not 
divide |Go|. Then Go is isomorphic to a 4 dimensional complex group and 
must be one of the groups listed in [8], Theorem (2.17). T h e condition 
tha t every non-solvable characterist ic subgroup or factor group admits 
non-trivial automorphisms of order p el iminates all of these cases. 

(2.6) LEMMA. G has a minimal normal non-solvable subgroup isomorphic 
to SL(2, ps) for some s. 

Proof. Note t ha t Go must be its own commuta to r subgroup. Suppose 
tha t G is primitive. Then Clifford's Theorem implies t ha t the minimal 
Go spaces are all isomorphic as G0 modules. In this si tuation an element of 
Go fixing a minimal Go-space pointwise must fix all of them pointwise and 
be the identi ty. T h u s if G is primitive Go must be faithful on its minimal 
invariant subspaces. 

Suppose t ha t G is not primitive. T h e number of subspaces of imprimi-
t ivi ty is 2 or 4, so the elements of order p mus t fix these subspaces. Hence 
G must be reducible, contrary to assumption. T h u s if G0 is reducible it 
must be faithful on its minimal invar iant subspaces in any case. Since G 
is irreducible these minimal subspaces have dimension 1 or 2, T is a 
direct sum of invariant Go-spaces (which are G-images of each o ther ) . 
Hence G0 C GL(2, q). If Go is non-solvable and contains ^-elements the 
minimal condition implies Go = SL(2, ps) for some 5. If Go is irreducible, 
it mus t be one of the groups listed in (1.6): SL(4, F ) , 5 £ / ( 4 , F),Sp(4:, F), 
PSL(2, F), SL(2, F), SL(2, F) ® 5L(2 ,5) , SL(2, F) ® SL(2, Fi) where 
F and F\ are subfields of GF(q). 

If G is irreducible, the subgroup of G0 generated by its ^-elements is a 
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normal non-solvable subgroup of G so Go is generated by its ^-elements. 
Hence 

Go ^ SL(2, F) ® 5 L ( 2 , 5 ) . 

The groups 5X(4, F), 5£/(4, F) , Sp(4i, F) all contain transvections; i.e., 
elements which fix a 3-space pointwise. But the fixed points of a collinea-
tion must be collinear or the points of a subplane so this cannot happen. 

FSL(2, F) contains an elementary Abelian subgroup of order 4 in 
which the involutions are all conjugate and not in the center. An involu-
tory homology in the translation complement which has an affine axis 
has exactly two fixed components, both of which are invariant under its 
centralizer. Hence the involutions cannot be affine homologies, since no 
two of them can have the same axis. An involution fixing a Baer subplane 
pointwise has another Baer subplane which is invariant and intersects 
non-trivially precisely those components intersected non-trivially by the 
first one. (The involution is completely reducible on each fixed com­
ponent so has another fixed 1-space on each of these components. These 
invariant 1-spaces are in the "o ther" invariant Baer subplane.) Again 
these two subplanes are invariant under the centralizer of the Baer 
involutions. It turns out tha t FSL(2, F) cannot be in the translation 
complement. 

The matrix representation of SL (2, F) ® SL(2> F\) consists of matrices 

aai ab\ ba\ bb\ 
ac\ ad i bci bd\ 
ca\ cb\ da i dbi 
cc\ cd\ dc\ dd\ 

where 

ab — cd = a \b i — C\di = 1, 

a, 6, ct d, G F; au bu cu dx £ Fx. 

Take a = c = d = ax = d\ = 1; b = b\ = d = 0 to get the matrix 

/ 1 0 00 \ 
/ 01 00 \ 

I 10 10 / 
\ 0 1 0 1 / 

T h e reader may verify tha t this matrix has a pointwise fixed subspace 
of dimension 2. This pointwise fixed subspace is either a component of the 
spread or is a Baer subplane. Foulser has shown tha t for p > 3 the trans­
lation complement cannot contain both affine da t ions (shears) and Baer p 
elements [2]. By [4], the group generated by the affine da t ions is 
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SL(2, ps). Clearly this group is a minimal normal non-solvable subgroup 
of G. Foulser has shown, again for p > 3, that the Baer ^-elements also 
generate SL(2, ps). 

We conclude that G has a minimal non-solvable normal subgroup 
isomorphic to SL(2, F), where F = GF(ps) is a subrield of GF(q). We 
will refer to this group as Go. 

(2.7) THEOREM. Let TT be a translation plane of dimension two over 
F = GF(q), where q is a power of the prime p > 5. Let G0 be a reducible 
subgroup of the translation complement such that Go is isomorphic to 
SL(2, ps) where GF{ps) is a subfield of F. Then the p-elements in G0 consist 
of affine dations or Baer p-elements. 

Proof. Our present interest is in the case where p is odd. The theorem 
was proved for p = 2 in [5]. The arguments are similar to the ones for 
the case p = 2 and, like those, are modifications of arguments used by 
Schaeffer for the case F = GF(ps). We assume p is odd. 

We shall leave out some of the details for the part of the proof which is 
independent of the characteristic. We can choose a basis so that G() is 

represented by a set of matrices of the form I r I, where 0 is a two by 

two zero matrix; A, B, C are 2 by 2 matrices over FQ = GF(ps) and the 
sets of matrices {̂ 4} and {B\ form groups isomorphic to G0. Indeed, we 
can do this so that if 

-fci) A 

then 

L \ca da) 

where a is some automorphism of Fo­

in particular, we can choose a basis so that the element I I of 

SL(2, ps) corresponds to 

'1 0 0 0^ 
1 1 0 0 
U 2 1 0 

M b, 1 1, 

and I A corresponds to 

fa 0 0 0 
0 a-1 0 0 
0 0 a" 0 

k0 0 0 a-
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Up to here, everything is the same as for the case p = 2. Using 

Cïr -Cï ) 
for i — 0, 1, . . , p — 1 we can write 

n 
' 1 0 0 0 

i 1 0 0 
Mi) /*(*) 1 0 

/.(*') Mi) i 1 
By induction 

fi(i) = ib, + i(i- l)62/2 

/2(i) = ift2 

fS) = ib4 + i(i- l)b2/2 

but 

li~l 0 \ / l OWi 0 \ / l 0\ 
\0 i / \ l 0 / \ 0 i~l) \i2 1/ 

If we take the corresponding conjugate in our four dimensional rep­
resentation our isomorphism tells us that 

Mi2) = h hi?) = i~2b* Mi2) = &4. 

Hence i2b2 = i~2b2. If b2 j* 0, i" = 1 mod p for i = 1, 2, ... ,p - 1. 
This does not hold for £ > 5, so 62 = 0. Also &i = &ii, b± = b&iori = 1, 
2, . . . , p — 1 implies bi = bA — 0. 

Hence 

CO 
'1 0 0 0N 

1 0 1 0 
0 0 1 0 

.03 0 1 1 

The reader may verify that the pointwise fixed subspace is 2-dimen-
sional and hence is an affine elation or a Baer ^-element. But the group 
generated by elations (or Baer p-elements) is a normal subgroup and its 
^-elements consist only of Baer ^-elements or only of elations. Hence the 
^-elements are of one of these two kinds. 

(2.8) THEOREM. Let w be a translation plane of dimension two over 
GF(q) where g is a power of a prime p > 5. (TT is represented on a vector 
space of dimension 4 over GF(q)). Suppose that the linear translation com­
plement of T has a subgroup Go isomorphic to SL(2, ps). Then one of the 
following holds. 

(a) The p elements in Go are affine elations. G has an invariant 
Desarguesian subplane of order ps. 
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(b) The p-elements in Go are Baer p-elements. T is derived from a plane 
in which Go acts in accordance with case (a) . 

(c) Go has an invariant sub plane 7r0 of order p2s. 7r0 is a Hering plane. 
The action of Go on the vector space is irreducible. 

Proof. Go is generated by a properly chosen pair of p elements. If they 
are affine elations, conclusion (a) is pa r t of Theorem 4 in a paper by the 
author [7]. 

Conclusion (b) is pa r t of Theorem (4.1) in [2]. 
From the previous theorem, G0 mus t be irreducible if the ^-elements 

are not affine elations nor Baer ^-elements. 
Following [9], there are jus t two type of four-dimensional irreducible 

representations of SL(2, ps) over GF(ps). By [12] Corollary 3F the 
irreducible representations of SL(2 , ps) over extensions of GF(ps) may 
be realized over GF(ps). T h u s our representat ion of Go over GF(q) can 
be taken to be a set of matrices whose coefficients are all in GF(ps) and 
give an irreducible representat ion wrhen the vector space is taken to be 
a 4-tu pie over GF(ps). 

T h e first type of representat ion is with respect to a module I V ® x 1V, 

where K = GF(ps) while a and (3 are automorphisms of K and F2 

indicates the two dimension representat ion. Wi thou t loss of generality, 

we can restrict our a t tent ion to the case where (3=1. T h e matr ix rep­

resentation corresponding to the element I , I of the twTo dimensional 

representation is then the Kronecker product of 

t n - 1 ° dai 

T h e second type of representat ion is on the space of homogeneous 
polynomials of degree 3. Again there is a field automorphism which may 
be applied to each element in each matr ix ; this automorphism may again 
be taken to be equal to 1. 

In the two representations, the four by four matr ix corresponding to 
a b\ 

, | comes out to be 
c d 

/ a«+i aab baa b«+i \ 

( *c aad bac b»d \ 
I caa cab daa d°b J 
\c«+1 cad dac d«+1/ 

in the first case and 

/ a 3 3a2b Sab2 /;3 

/ a2c 2abc + a2d b2c-\-2abd b2d 
1 ac1 2acd~\-bc2 ad2 + 2bcd bd2 

\ c 3 Sc2d Zed2 d" 
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in the second case. See [9], pp. 47-48. 
In the first case, the ^-elements obtained by letting a = d = l,b = Q 

have fixed point subspaces which are two-dimensional, so we must use 
the second representation since we are now assuming tha t the ^-elements 
are not elations nor Baer ^-elements. 

In effect, we are taking the points of -K to be quartuples (xi, x2, x3, x4) , 
where the coordinates are chosen from GF(q). If we restrict ourselves to 
the set of points where the coordinates are in GF(ps) and if ps+1 = 0 mod 3 
we can use the group to define a Hering plane as in Hering's original con­
struction [3]. If this is the set of points of a subplane, the subplane 
admits the group to make it be a Hering plane. 

Let 7To be the set of points (xi, x2, x3, x4) where all of the coordinates 
are in GF(ps). Let us look a t the action of G0 on w and a t the intersection 
of certain components of ir with ir0. 

We now change notation slightly, writing (X, Y) = (xi, x2, J\, y2) for 
a typical point of w. 

If wTe take a = d = 1, c = 0 we get a Sylow p-group consisting of 
matrices: 

1 3b 3b2 b'\ 
0 1 2b b2 \ 
0 0 1 b r 
0 0 0 1 / 

The 1-space ((0, 0, 0, 1)) is invariant under this Sylow p-group and 
must belong to a component of the spread. If ((0, 0, 0, 1), (ii\U2iuii\)) is 
an invariant two-space then there are constants k and c so t ha t 

(ui, Sbui + u2, 3b2Ui + 2bu2 + U3, b3Ui + b2u2 + bu3 + u\) 

= &(0, 0, 0, 1) + c(ui, u2, uzy tu) 
so tha t 

U\ = CU\ 

3bu\ + U2 = CM2 

3b2Ui + 2èz^2 + ih = ciiz 

b3Ui + b2u2 + ^ 3 + UA = k + c^4. 

H Ui ?± 0, c = 1 and 36^i = 0 therefore U\ = 0. 
If w2 5^ 0, and u\ = 0 then c = 1 and 2^z/2 = 0 therefore u2 = 0. T h u s 

X = 0 is the only invariant 2-space which contains the 1-space 
( ( 0 , 0 , 0 , 1)) . Hence X = 0 is a component of the spread. Similarly 
Y = 0 is a component and, corresponding to the ps — 1 remaining Sylow 
p-groups, there are ps — 1 components of the form Y — XM where the 
matrices M are two by two matrices over GF(ps). 

T h e reader may verify tha t the element of order 3 obtained by taking 
a — c — — 1 , 6 = 1, rf = 0 has a two-dimensional pointwise fixed sub-
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space of the form F = XM for I I = M. Let the above matr ix of 

order 3 be denoted by W. If one first calculates W2 + W + / , it is qui te 

direct to compute tha t the null space of W2 + W + / is F = X 

If x2 + x + 1 is an irreducible polynomial over GF(q) there can be no 

TF-space other than Y = X i I which is disjoint from F = 

T h a t is, W acts as a homology. Fur thermore we must have (in this case) 
t ha t g + 1 = 0 mod 3. I t follows t ha t (W) has hps{ps — 1) conjugates 
in G0. 

T h u s if x2 + x + 1 is irreducible, 7r has a total of (ps + 1) + 2 X 
^ps(ps — 1) components of the form F = X M with the coefficients in 
GF(ps). This does not count the components X = 0 or F = 0. T h u s we 
have a total of p2s + 1 components each intersecting 7r0 in a 2-space over 
GF(ps). Hence 7r0 is a subplane invar iant under Go. (Note t ha t Go is still 
irreducible as a group of linear transformations over GF{q).) 

T h e case remains where x2 + x + 1 is reducible. Then GF(q) must 
contain an element IF of order 3 and some vector (xx, x2, yi, y 2) in 7r has 
the proper ty t ha t 

(xi, x2, 3>i, 3'2)JF = (xico, x2o>, yiœ, y2o>) 

and there also is an eigenvector for co2. T h e eigenspaces for œ and or 
respectively are 1-dimensional; the components to which they belong 
must be invariant . But W fixes a component pointwise and is not an 
elation; so it must be a homology. Hence there can be jus t one invariant 
component besides the axis of IF. T h u s this component mus t be the one 
generated by the eigenspaces corresponding to the eigenvalues w and or. 
Clearly the component in question must again be the null space of 
W2 + W + I. T h e proof of the lemma is completed by repeating the 
a rgument used in the case where IF2 + W + I was irreducible. 

If we drop Assumptions (2.2), then Lemma (2.6), Theorem (2.7) and 
Theorem (2.8) imply the following: 

(2.9) T H E O R E M . Let TY be a translation plane of dimension two over 
GF(g), where g is a power of a prime p > 5. (a) Suppose that the linear 
translation complement of T is irreducible. Then either \G\ and p are rela­
tively prime and we have one of the cases of Theorem (2.17) in [8] or G has 
a normal subgroup isomorphic to SL(2, ps) for some s. In this case, T has a 
Hering subplane of order p2s. 

(b) If G is reducible and non-solvable then either \G\ and p are relatively 
prime or G has a normal subgroup Go isomorphic to 5L (2 , ps) for some s. 
The p-elements in G0 are dations or Baer p-elements. 

0 1 
- 1 1 

:ïi)-
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Remark. A necessary condition for the existence of a Hering plane of 
order q2 is t ha t g = — 1 mod 3 so we must have ps = 1 mod 3 for the 
lat ter par t of (a) to happen. 

Remark. In a sense which we will not bother to make precise, ' 'mos t " 
of the known planes of dimension two have a normal subgroup of index 
1 or 2 which is (a) solvable, (b) reducible, (c) not faithful, on a t least one 
of its invariant subspaces. Excluding the Hall planes this includes the 
generalized Andre planes, the generalized Hall planes and probably all 
of the semi-field planes and some less well known cases where there are 
affine da t ions or homologies. 

When G is reducible, we may assume by (1.7) tha t there is an invar iant 
two-space since an invariant 1-space is included in a unique component. 
The induced group (i.e., the factor group mod the subgroup fixing the 
2-space pointwTise) is then a subgroup of GL(2, q). The subgroups of 
GL(2, q) are well known. (The author likes to think of them as collinea-
tion groups of a Desarguesian affine plane.) The non-solvable ones which 
contain no ^-elements have SL(2, 5) as a minimal non-solvable normal 
subgroup. Some of the irregular nearfield planes and other planes related 
to them admit groups of homologies containing SL(2, 5) . 

Added in proof. I t should be pointed out tha t Walker 's thesis contains 
a proof of (2.8) for the case ps = q. 

REFERENCES 

1. J. D. Dixon, The structure of linear groups (Van Nostrand Reinhold, New York, 1971). 
2. D. A. Foulser, Baer p-elements in translation planes, J. Alg. 31 (1974), 354-366. 
3. C. Hering, A new class of quasifields, Math Z. 118 (1970), 56-57. 
4. On shears of translation planes, Abh. Math. Sem. Hamb. 37 (1972), 258-268. 
5. N. L. Johnson and T. G. Ostrom, Translation planes of characteristic two in which all 

involutions are Baer, J. Alg. 54 (1978), 291-315. 
6. Translation planes of dimension two and characteristic two, submitted. 
7. T. G. Ostrom, Linear transformations and collineations of translation planes, J. Alg. 

14 (1970), 405-416. 
8. Collineation groups whose order is prime to the characteristic, Math. Z. 156 

(1977), 59-71. 
9. H.-J. Schaeffer, Translationsebenen auf denen die Gruppe SL(2, pn) operiert, Diplo-

marbeit Universitàt Tubingen (1975). 
10. I. D. Suprunenko and A. E. Zalesskii, Classification of finite irreducible linear groups 

of degree 4 on fields of characteristic p > 5, Inst. Mat. Akad. Nauk BSSR Preprint 
No. B (1976). 

11. M. Walker, On translation planes and their collineation groups, Thesis, Westfield 
College, University of London (1973). 

12. W. J. Wong, Representations of Chevalley groups in characteristic p, Nagoya Math. J. 
45 (1971), 37-78. 

Washington State University, 
Pullman, Washington 

https://doi.org/10.4153/CJM-1980-085-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-085-1

