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SUMMARY 

The basic assumptions of the mixing-length formalism are described, and the 

theory is developed with a view to representing convection in stars. Directions 

in which the results might be improved and extended are indicated. 

1. INTRODUCTION 

Aside from some recent pioneering work by Latour, Spiegel, Toomre and Zahn 

(1976 a,b), the mixing-length formalism in one or other of its guises remains 

the sole method for computing the stratification of convection zones in stellar 

models. Little attention is usually paid to assessing the accuracy of the models, 

partly because there is a general feeling that mixing-length theory is so un­

certain that the task would be fruitless, and partly, perhaps, because of an 

optimism that the theory will soon be superseded by something better. There 

appears to be no better convection theory emerging that might be applicable to 

stars in the foreseeable future, however; the mixing-length is likely to stay 

with us for some time. It is perhaps time, therefore, to take stock of the 

situation, and to ask whether the methods currently employed can be made more 

reliable. 

The first stage of any enquiry of this kind must be a definition of the 

physical model upon which the theory is based. What started as little more than 

an order-of-magnitude estimate of turbulent transport processes has subsequently 
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been taken rather literally in some contexts. It is therefore important to 

appreciate what the assumptions are, and where the uncertainties lie. Only after 

that can there be some hope of improving the representation of the physics. And 

as a byproduct, one might see how best the theory might be extended to describe 

more general situations than those for which it is customarily employed in stellar 

physics. 

But perhaps most important of all is to appreciate the degree of contact 

with reality. Astronomical verification of the mixing-length prescription is at a 

very primitive level, and permits only a poor assessment of the validity of the 

functional forms of the formulae describing the convective transport processes. 

2. THE IDEAS BEHIND MIXING-LENGTH THEORIES 

The mixing-length idea was introduced independently by Taylor (1915), Schmidt 

(19 17) and Prandtl (1925) to provide a means of understanding the transport of vor-

ticity, heat and momentum in turbulent fluid. By analogy with gas kinetic theory the 

fluid is considered to be composed of turbulent 'eddies', 'parcels' or 'elements' 

which advect properties such as heat, in the case of thermal convection, and 

vorticity or momentum, in the case of shear turbulence. An element arises as a 

result of instability, with about the same properties as its immediate environment. 

It travels with a characteristic speed us- through a mean-free-path or mixing 

length { , and finally breaks up because it becomes unstable itself, and merges 

with its new surroundings. This breakup into smaller scales of motion is 

considered to be instantaneous. It is the mixing-length description of the 

beginning of the turbulent cascade; velocity components of the consequent small 

scale motion and the associated temperature fluctuations are assumed to be un-

correlated so there is no contribution from them to the overall transport of heat 

and transverse momentum. From such a description it is a straightforward matter 

to estimate the mean heat flux or shear stress in terms of t , u>- and the 

structure of the mean environment. To complete the theory a procedure for 

obtaining t and vO" must be found. 

In the case of shear flow Prandtl (1925) assumed the turbulence to be more 

or less isotropic and so equated the velocity *»" perpendicular to the mean motion 

to the velocity fluctuation in the mean flow direction induced by the shear. 

Prandtl assumed the turbulent elements to be momentum conserving and obtained an 

expression for the shear stress in the form of a product of the mean velocity 

gradient and a turbulent transport or exchange coefficient ovft (Austausch 

coefficient) where f is density. Thus in his form of the theory,turbulent shear 

stresses (Reynolds stresses) behave like viscous stresses with the Austausch 

coefficient being a sort of turbulent viscosity, a concept that had been discussed 

previously by Boussinesq (1877). The Reynolds stresses take on a somewhat 
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different form if it is assumed that turbulent elements conserve vorticity (Taylor 

1915, 1932) and sometimes this yields better agreement with experiment (e.g. 

Prandtl, 1952). In either case it is only the mixing length I that remains un­

determined. 

In the case of free convection there is no externally imposed velocity scale 

as in shear flow, and it is necessary to consider the dynamics of the turbulent 

elements in greater detail. This can be done only after the mixing-length model 

is more precisely defined. During its existence a turbulent element is accelerated 

by the imbalance between buoyancy forces, pressure gradients and nonlinear 

advection processes. In addition it can gain or lose mass by entrainment or 

erosion. As a result of ignoring different combinations of these processes, 

approximating the remaining ones in slightly different ways and making slightly 

different assumptions about the geometry of the flow, different physical models 

have emerged. They all predict similar heat transports when the mean atmospheric 

structure is time independent, which is hardly surprising because the formulae 

can be obtained from barely more than dimensional reasoning. As a consequence, 

the differences between the physical assumptions are not usually emphasized in 

the astrophysical literature, perhaps because it is difficult to differentiate 

astronomically between rather gross variations in the functional form of the 

turbulent heat flux. 

It was pointed out by Prandtl (1926) in a discussion of turbulent shear flow 

thatjin the absence of a driving force,turbulent drag would cause an element of 

characteristic size t to lose its kinetic energy after travelling a distance of 

about I . This is simply because turbulent drag at high Reynolds number is 

proportional to the square of the velocity, and hence also to the kinetic energy. 

Thus if the mixing length represents both the element size and the mean-free-path 

it is immaterial whether one postulates unimpeded motion followed by instantaneous 

annihilation, as would be natural by direct analogy with gas kinetic theory, or 

continuous momentum exchange between the element and its surroundings. This led 

to the first and perhaps the simplest description of the dynamics of thermal 

convection : namely an exact balance between buoyancy force and turbulent drag 

(Prandtl, 1932). Convective elements are assumed to achieve this balance 

instantaneously, which implies that their inertia is unimportant. They move 

through a distance I comparable with their own diameter, conserving their heat, 

and then instantaneously mix their excess heat with the new surroundings. These 

ideas were applied to stellar convection by Biermann (1932, 1937, 1943) and 

Siedentopf (1933 a,b, 1935). 

The model can be made more consistent by assuming interchange of heat between 

the element and its surroundings to be continuous too, as was emphasized by Opik 

(1950). Then heat and momentum exchange are treated similarly. Since there is 

always an exact balance between buoyancy force and turbulent drag, and between the 
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rate of increase of a temperature fluctuation and the diminution of that 

fluctuation by heat exchange, it doesn't matter where the element came from, and 

the mixing-length description of annihilation of elements can be dispensed with 

entirely. This is not the case, however, when the star is pulsating (Unno 1967, 

Gough 1977). 

The alternative approach of considering elements to be accelerated 

adiabatically from rest by buoyancy alone was adopted in the later papers by 

Biermann (e.g. 1948 a,b). Pressure forces and turbulent drag can be incorporated 

approximately into the dynamics without changing the functional forms of the 

equations used, though they introduce different factors of order unity. In more 

recent work that includes radiative heat exchange (e.g. Vitense 1953, BBhm-Vitense 

1958) it is common to ignore turbulent exchange during the life of an element and 

invoke instantaneous breakup to account for all the nonlinearities that occur in 

the equations governing the turbulent fluctuations. 

3. EQUATIONS OF MOTION 

To simplify the presentation attention will be restricted to a plane parallel 

fluid layer. It will be assumed that horizontal averages, which will be denoted by 

overbars, are independent of time and that there is no mean mass transport through 

the convection zone. The horizontally averaged momentum and total energy equations 

can then be written 

dz 
(j + j"^ 1 + <T^j + g = O, (3.1) 

£[F~ + rkuT +*?*•*" + fe -a] - o , a2) 

where z is the vertical co-ordinate of a Cartesian system (X, u , Z ), P' f' 

are gas plus radiation pressure, density and specific enthalpy; <£ = ( Lt, \rt ur ) 

is the fluid velocity, c~̂  is the z,i component of the viscous stress g" and Frl 

is the vertical component of the radiative energy flux fr which will be assumed, 

again for simplicity, to be given by the diffusion approximation 

£ = - KVT, (3-3> 

where T is temperature and K = H-acT/3jf/' , a. being the radiation density 

constant, c the speed of light and Y the Rosseland mean opacity. Perturbations 

in the gravitational acceleration a = ( O, o,-<\ ) have been ignored. Equation 
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(3.3) can be replaced by a more general though local representation of radiative 

transfer, such as the Eddington approximation (Unno & Spiegel 1966), without 

adding unduly to the complexity of the analysis; adding a nuclear source term to 

equation (3.2) or casting the problem in spherical geometry introduce? no new 

conceptual difficulties. 

Equations (3.1) - (3.3) must be supplemented with a continuity equation and 

an equation of state. The system is then completed with formulae for the 

convective fluxes. It is these that the mixing-length theory must provide. 

In studying the dynamics of convection it is usual to separate all quantities 

into mean (horizontally averaged) and Eulerian fluctuating parts, as in 

Y = ^(x) + J>'(x, U/ z.,t) , (3.4) 

where t is time, and to subtract the mean equations from the full equations of 

motion from which they were derived to obtain equations for the fluctuations. It 

is at this point that serious assumptions are first introduced. Though it is 

rarely stated explicitly, in almost all attempts to model stellar convection the 

Boussinesq (1903) approximation is used? this can be justified only when the 

scale I of the motion is much less than the pressure and density scale heights 

of the layer (Spiegel & Veronis I960, Malkus 1964). In this approximation the 

viscous terms and the kinetic energy flux •£ Pa-S- uf in equations (3.1) & (3.2) 

are neglected which renders (3.2) indistinguishable from the mean thermal energy 

equation. The equations for the fluctuations, in this approximation, are 

diV u. = O, (3.6) 

(BJY = 2H1 -t- u . v r - u .v r -p* - -prT di*Fr , (3.7) 
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£ = "ST , (3-8) 

where,with the exception of pt all mean quantities are considered to be constant 

over the scale t of the motion. In these equations cT is the specific heat at 

constant pressure, and 

(3.9) 

Moreover, the convective momentum and heat fluxes in equations (3.1) and (3.2) 

simplify to 

_ (3.10) 

ft * f"* * f "^ > 

fc m *R.ur B. fcTuT' . (3.1D 

Quantities such as Y and S are considered to be functions of the thermodynamical 

state variables P and T whose fluctuations are related by (3.8). The pressure 

fluctuation appears only in the momentum equation, and has no thermodynamical 

significance. Indeed it can be eliminated by taking the double curl of equation 

(3.5), the vertical component of which, after use of (3.6), becomes 

^tv
2u, + v x - \JIW u - if-vsr - o, (3,12) 

where 

y - ( I ^ L L . U J - u.Vc 
(3.13) 

Jk » » /3b , 0 i at * / > * and V,1 = 7 * - K-
The viscous stress has been omitted from the momentum equation (3.5), and 

hence from (3.12). This is justifiable in stars because the Reynolds number 

characteristic of the largest convective eddies, which are the only motions 
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treated explicitly in stellar mixing-length theories, is large. The continuity 

equation (3.6) indicates that dynamically the fluid behaves as though it were 

incompressible; thus the occurrence of acoustic waves is prohibited. Density 

fluctuations that do arise serve only to provide buoyancy. Equation (3.7) is the 

fluctuating thermal energy equation, and not the equation for fluctuations in 

total energy. 

It should be emphasized that the Boussinesq approximation is not an essential 

component of the assumptions of mixing-length theory. Other less restrictive 

though more complicated approximations to the equations of motion could be used, 

such as the anelastic approximation (Ogura and Phillips 1962, Gough 1969) which 

holds for low Mach number convection in deep layers of gas. Like the Boussinesq 

approximation it filters out the possibility of acoustic waves, whilst retaining 

some of the features of compressibility. No attempt to develop a mixing-length 

theory with consistent use of such an approximation seems to have been made. 

4. LOCAL MIXING-LENGTH FORMALISMS FOR A STATIONARY ENVELOPE 

In the Boussinesq approximation,mean thermodynamical state variables are 

considered to be constant over the assumed scale f of the motion. Another 

approximation, common to the formulation of most mixing-length theories used in 

stellar structure computations, is to treat the superadiabatic lapse rate /S in 

the thermal energy equation as though it were constant. Though in practice it is 

found that this approximation is poor, because at the top of the hydrogen 

ionization zone in particular 6 varies on a scale much shorter than •? , it is 

usually retained because it brings great simplicity to the mixing-length formulae. 

It permits the heat flux and Reynolds stress to be expressed at any level in the 

envelope solely in terms of the mean conditions at that level. For this reason 

the resulting theories are called local. 

Formulation under the assumption of balance between buoyancy and turbulent drag 

Most mixing-length descriptions are formulated in terms of rising and falling 

fluid parcels having typical radius j t and which at any instant can be 

characterized by a single vertical velocity ur and temperature fluctuation T' . 

In the early discussions by Prandtl, Biermann and Siedentopf the parcels were 

presumed to travel at their terminal velocity, buoyant driving being balanced 

exactly by turbulent drag. Thus in the vertical component of the momentum 

equation (3.5) the time derivative was essentially ignored and the nonlinear 

advection terms were replaced by a drag force of the form us^/CH) • If the 

pressure fluctuation is ignored the coupling between vertical and horizontal 

motion is removed, and a relation between the vertical speed and the temperature 

fluctuation results: 
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w * = ( 35t/2Tj|T'f. (4.1) 

From here on overbars are omitted from mean quantities where no ambiguity results. 

Initially it was common to consider the fluid motion to be adiabatic. Equation 

(3.?), with the right hand side set to zero and u..V~l"' ignored, can then be 

integrated along the trajectory of the parcel. Taking a to be constant over the 

distance the parcel moves,one obtains 

T'-^J, (4-2) 

where ? is the vertical displacement of the parcel above its point of origin. 

The constant of integration is zero since T' is assumed to be zero at J =0. A 

typical parcel at any instant might have travelled say half the distance { , so a 

typical temperature fluctuation & and velocity u^ can be obtained from (4.1) and 

(4.2) by setting J " i t . Noting furthermore that parcels with 1">0 rise 

and parcels with T"< O fall, the heat flux Tc can be estimated by replacing u»T' 

with ur& . Then 

F. - t^cs'/Trey^. (4-3) 

The Reynolds stress may be estimated in a similar way to be 

ft * tf (3S/T) Ff . (4.4) 

The numerical factors in front of these formulae vary from paper to paper, 

because the precise definition of { and in particular the relation between parcel 

size and mean-free-path is not universal, and because factors of order unity can 

be introduced to account for effects of pressure fluctuation or imperfect 

correlation between uj and T' . 

Kinetic theory of accelerating fluid elements 

The alternative approach is to imagine the fluid parcel to accelerate from 

rest. It is usual then to ignore the nonlinear terms in the momentum equation. 

The influence of pressure fluctuations can be estimated by working from equation 

(3.12), and introducing typical horizontal and vertical wavenumbers by setting 

V, = _ k, and S* = — (<t . This is perhaps not quite as crude an 

approximation as one might first imagine, because these relationships are 

satisfied by the convective eddies of linear stability theory whose visual 
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appearance is not wholly dissimilar to the eddies of intensely turbulent 

convection. The linearized form of (3.12) then becomes 

\ « - ( g S / § T ) T ' = 0 , (4"5 ) 

where 

$ = I + k i / k * . (4.6) 

The only difference between equation (4.5) and what one would have obtained from 

the linearized vertical component of (3.5) with the pressure fluctuations ignored 

is the factor $ . The pressure fluctuations divert vertical motion into 

horizontal flow, thereby decreasing the efficiency with which the motion might 

otherwise have released potential energy. The effect in this approximation is 

simply to increase the apparent inertia of the vertically moving fluid, without 

changing the functional form of the equation of motion. In some derivations 

equation (4.5) is obtained directly from (3.5), the factor $ being introduced by 

analogy with the virtual inertia of a body moving in a potential flow. 

When integrating equation (4.5) it is usual to regard the temperature 

fluctuation as a function of the parcel displacement f , and approximate it by 

the leading term in its Taylor expansion. Of course for adiabatic motion 

equation (4.2) indicates that the leading term is the only term present. The 

operator St in equation (4.5) can be replaced by UJ "h/^t without further 

assumption, since in linear theory there is no distinction between Eulerian and 

Lagrangian time derivatives of perturbation quantities. The equation can then be 

integrated to yield 

u,a * (^/*TJT'5 (4.7) 

For adiabatic motion, (4.7) together with (4.2) complete the description of the 

dynamics. If typical velocity and temperature fluctuations defined by setting 

S •• i t are used as before to estimate Fc and Pt , the same equations (4.3) 

and (4.4) are obtained, aside from factors involving $ . Note that pressure 

fluctuations could have been incorporated into the original formulation of the 

theory by dividing the right hand side of (4.1) by $ . 

Heat exchange between fluid parcels and the environment 

Heat exchange between fluid parcels and their surroundings is most simply 

accounted for by treating equation (3.7) in an analagous way to the momentum 

equation. Retaining only the leading term in the Taylor expansion of <*f (.$) in 

the linearized version of (3.7) and integrating along the trajectory yields 
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r ^ - (K/ZS^T'AIS , (4.8) 

where k = ki + Wr . When f - ± t this is precisely the same relation that 

one would obtain by neglecting the time derivative in (3.7) and replacing 

V4-.VT' - IA . V T ' by the estimate uuT'/Cirt) for the turbulent 

heat exchange. In deriving this equation the fluctuating part of (3.3) was used; 

fluctuations in K do not arise because, consistently with assuming 6 constant, 

the gradient of T is small compared with | VT'/ . Whereas for adiabatic motion 

the wavenumbers entered only in their ratio, in the nonadiabatic theory their 

magnitudes are also required for estimating JL\S/ jrr , Taking the mixing 

length to be a measure of the vertical extent of the eddy suggests 

ky = ir/t •
 (4'9) 

Proceeding as in the adiabatic case, but with (4.8) replacing (4.2), one is led to 

FC - ^ $ " V s " r o - > f s r - 1 J 3 K ^ , ft.io) 

j t - * r f s-'ro-Ysr-injys/r) ty, <*•"> 

where 

is the product of the Prandtl number and a Rayleigh number based on i , and 

2 - 2Tr-i«FJA($-i) 

(4.12) 

is a geometrical factor of order unity. 

When nlS » I the convective motion is almost adiabatic and 

F. * i$-' A S'*-K f ,
 (4'14) 
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?t - iC^AT)/*), (4.15) 

which are the same as (4.3) and (4.4) aside from the factors involving $ • In 

the solar convection zone this condition is satisfied everywhere except in 

extremely thin layers at the top and bottom, the latter and sometimes even the 

former being too thin to be resolved in normal stellar structure computations. 

When o*-S« I , 

which are relevant in substantial regions of some red giant envelopes. 

Other formulations 

In essence, the derivation presented above in terms of accelerated and 

subsequently annihilated fluid parcels is the same as that of Vitense (1953; 

B8hm-Vitense 1958) whose prescription has been the most widely used for computing 

stellar models. Her 1958 formulae for the heat flux imply (4.10) with § » 2 and 

1 = S£/? . Vitense also studied the case when fluid parcels are optically 

thin, and adjusted numerical constants so that the optically thick and optically 

thin formulae gave the same result at unit optical thickness. A smoother and 

probably more accurate transition between the two limits can be obtained by using 

the Eddington approximation to radiative transfer (Unno & Spiegel 1966, Unno 1967, 

Gough 1977). 

The derivation in terms of continuous turbulent exchange of heat and 

momentum has been adopted by Unno (1967) and is similar to an earlier approach of 

Opik (1950) in terms of convective cells. Opik's formula for f̂  is 

mathematically somewhat more complicated than (4.10), but it takes similar values 

if § and n are chosen suitably (Gough & Weiss, 1976). The differences between 

the values of Fc predicted by Vitense and Unno arise mainly from the different 

assumptions about flow geometry and the slightly different constants of order 

unity appearing in the approximations to the equations of motion, rather than from 

apparent variances in the physical models. 

5. REMARKS ON THE ASSUMED STRUCTURE OF THE CONVECTIVE FLOW 

In order to complete the prescription for F̂  and ft the parameter 5 , 
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which depends on the geometry of the flow, and the mixing length I must be 

determined. The latter is one of the most difficult parts of the theory. Here 

the criteria that might be most important in affecting a choice of $ are 

discussed; the mixing length is postponed to a later section. 

What one might consider the most natural choice of § depends very much on 

the mixing-length model that has been adopted. Thinking in terms of approximately 

spherical parcels of fluid rising and sinking through the background medium 

suggests adopting the formula for the virtual inertia of a sphere. The particle 

is thus considered in isolation, and $ = 3/2. Different values would be 

obtained if the parcel were thought to be aspherical. 

An alternative approach is to assume the return flow around a moving parcel 

is confined to the immediate environment by the interaction with neighbouring 

eddies, so that a relatively compact convective eddy or cell is formed. To 

determine $ the shape of the eddy must be specified. For want of a more reliable 

procedure, the marginal or unstable modes of linear theory might be used to 

describe the flow in convective cells. This has the computational advantages of 

being simple to calculate for local mixing-length theory, and of providing a basis 

on which to generalize to nonlocal theories or theories that one might hope to 

apply to convection in more complicated situations. Of course it is not clear 

what boundary conditions are the best to adopt, but that is unlikely to be 

crucial; it is expedient to choose those that yield the simplest solutions. Thus 

for the relatively simple theory discussed in the previous section one might set 

(cf. Chandrasekhar 1961) 

(5.1) 

54- = (k,"*a,w>»f, k 4 K W > , f , Wf), 

T - ®f > (5.2) 

in an obvious notation, where W and © are sinusoidal in z and depend possibly 

on t, and the planform f depends only on x and y and satisfies 

v,lf - -^f. F - '• (5,3) 

Equation (4.5) was derived from (3.12) with a flow such as this in mind. 

If the mixing-length model is one in which a statistically steady eddy is 

maintained, the continual turbulent interchange of momentum and heat may be 

regarded as being due to an eddy viscosity and conductivity. The convective 

cell is thus like the marginal mode of linear stability theory, for which $ » 3. 

If, on the other hand, the model is one in which the eddy grows and subsequently 

breaks up, Spiegel's (1963) suggestion of choosing the most unstable mode is more 
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appropriate. The rationale for this is that it is the most rapidly growing mode 

that would dominate the flow. Its shape is approximated by (Gough, 1977) 

klA: - i { i + r 3 + 2 ( ^ - * s * ? r A ] , A } , (5.4) 

given that its vertical extent "ry'kj - I is fixed. Thus § varies monotonically 

from 2 to 1 as S varies from 0 to co 

Other possibilities come to mind, such as choosing the mode that maximizes 

Ft > though that results in a shape not very different from the one implied by 

(5.4), with $ varying between 5/2 and 1. One might consider averaging over an 

ensemble of different eddies, but then one is faced with the problem of choosing 

the distribution function. 

The flow geometry also enters directly into the mean equation for the hydro­

static support of a stellar envelope. In a plane parallel layer only vertical 

transport of vertical momentum matters, but in a star vertical support is provided 

partly by horizontal stress. If the star is spherically symmetrical, the Reynolds 

stress tensor is axisymmetrical about the vertical and has only two distinct 

eigenvalues. Thus in spherical polar co-ordinates the components depend on only 

two quantities, which may be taken to be -i>t and $ . The equation for hydro­

static support, which is nontrivial only in the radial direction, may be written 

£ ( ? + ?*) -t-(3-f)TV/(r/0 + 5 = 0, (5>5) 

where r is the radial co-ordinate. If the turbulence is isotropic, $ « 3 and 

the Reynolds stress behaves like a pressure of magnitude f>t . 

6. FURTHER REMARKS ON THE DYNAMICS OF CONVECTIVE EDDIES 

When the growth and subsequent annihilation of convective elements or eddies 

is taken into account, mean transports are usually estimated by using 

characteristic values of the velocity and temperature fluctuations. These values 

are normally taken to be the actual fluctuations at I = i I , when the element 

has moved half its mean-free-path; Vitense took a space average over an element's 

trajectory, which in local theory is equivalent. The approximation implies 

certain assumptions about the creation of eddies, which become apparent as soon 

as an explicit attempt to average over all turbulent elements is made. The 

discussion that follows is based on the ideas behind Spiegel's (1963) formulation 

of the theory, though the details are somewhat different from that approach. 

A specific mixing-length model 

Consider, for example, the evaluation of the heat flux F̂  - K r w t , It 

is convenient to have a specific model in mind, and to this end a flow field of 
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the kind (5.1) - (5.3) will be assumed. Thus the flow is represented by a 

conglomerate of cells or eddies that form, grow and subsequently break up. Though 

it is envisaged that there is a degree of randomness in the positions at which 

the eddies form, each is presumed to stay in the samp place during its existence. 

An eddy centred at height 2 0 that originated at time t0 is thus described by 

ur - W ( b ; t„,z.,) f(x, H) cos [>(z-2.)/t], (6.1) 

T' - © ( t i fc.,X.) f(*.«|) cos[>(l-2.)/*] , ( 6 - 2 ) 

until the moment of annihilation, the functions W and © being determined by the 

linearized forms of equations (3.7) and (3.12). If -|rv. (z „, t. ; t) is the 

probability that the eddy has not yet been destroyed, the average of any function 

over all eddies at height z, is obtained by weighting that function with -W 

and integrating over all possible times of creation. Thus if eddies have mass rn. 

and are created at a rate n. per unit volume per unit time, the heat flux at 

z • z.„ is 

Here all the eddies have been assumed to be centred at z, where they contribute 

maximally to Fc • In principal an average over eddies centred in the range 

(z„-£t , z. + it ) ought really to be taken. In local theories this does no 

more than multiply the right hand side of (6.3) by a constant factor of order 

unity. 

The growth of convective eddies 

The velocity and temperature fluctuation amplitudes depend on the initial 

conditions of the eddy. One of the assumptions of the mixing-length approach is 

that turbulent fluid elements originate with the same properties on average as 

their immediate environment, though in any individual eddy there must be some 

deviation from the mean state for otherwise that eddy would have no identity. It 

must be assumed that the eddy grew from a non-zero perturbation, but provided the 

initial amplitude is much smaller then the average value, the precise details of 

the initial conditions are unimportant. In this discussion the conditions that 

lead to pure exponential time dependence of W and © will be chosen, merely to 

simplify the mathematics. Then 
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W = W. £ 

^(t- tJ (6.*) 
© = ©„ e , 

where W 0 and ©„ are the initial values of W and & , and are related by 

©. - O±$T/gS)W0 •
 (6,5) 

The growth r a t e s <y± a r e given by 

Jj.i+H* - * = n " S - ^ I X n - f S ) ^ - ! ] , 
(6.6) 

where JJ"" s a£fl/4?T and. K a k K/lp<y. Note that if W , and 0. are of 

the same sign the eddy grows, but if they are of reverse sign it decays. 

It is presumed that in the initial perturbations, which arise out of the 

smaller scale turbulence resulting from the breakup of both the major heat 

carrying eddies and possibly also from larger eddies that make lesser contributions 

to the heat flux, the velocity and temperature fluctuations are uncorrelated. Thus 

only half the eddies have W, and ©„ of the same sign and subsequently grow. The 

other half make an insignificant contribution to the heat flux and are ignored. 

Eddy creation rate and initial conditions 

The expression for the heat flux depends explicitly on the eddy creation 

rate n and the amplitudes W 0 > ©. • These are governed by the background 

turbulence. In a statistically steady state, however, n can be evaluated from 

the statement that the entire fluid volume (or some constant fraction of it) is 

occupied by eddies. Thus 

, t 

It is much more difficult to specify the initial amplitudes, and at this point it 

will be observed only that if the flow is to be controlled for most of the time by 

the linearized dynamics leading to (6.4), and not by the eddy breakup process, 

then Wo and ©0 should be small compared with the average amplitudes. Thus 

ex-p (»"T) » I > where <r • <r+ and t is the mean lifetime of an eddy. If T is 
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estimated by integrating V/ in (6.4) and set t ing the result ing displacement J 

equal to t , this condition becomes 

<rt/w. » I . (6-8) 

Eddy annihilation hypothesis 

Finally i t is necessary to obtain W > which depends on the disintegration of 

eddies. The most natural interpretat ion of the mixing-length annihilation 

hypothesis is that a fluid element is considered to break up as i t i s displaced 

through i% with probability &1/i " ( w / 0 J t . In other words the element has a 

mean-free-path { , and the probability of i t s annihilation is proportional to the 

shear in the eddy and is not exp l ic i t ly dependent on the deta i ls of i t s past 

his tory. I t follows that 

to 

= e*?j-X"e° ' ( t ' t 0}{l + O(x)| 
(6.9) 

The turbulent fluxes 

I t is now straightforward to evaluate Fc . If terms 0(\) of the leading 

terms are ignored, equation (6.7) for the eddy creation rate yields 

•nr\ = <Tf/(\.n X - y) t 

where y is Euler 's constant. Equation (6.3) then becomes 

pc,$TC<r3 

i.(l»V-y)gS 

(6.10) 

(6.11) 

= ri/a(l«x-y)J r V S ' T O ^ s r - l ] Kf , (6.i2) 

the factor 2 in the denominator arising because only half the eddies have positive 

growth rates. This expression has the same form as (4.10), and can be made equal 

to it by setting 
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X = e 2' 5* ^ 13. (6.13) 

The stress -pt can be computed similarly, and yields 

•t"V* 

?* " 2(ln\-y) 
(6.14) 

which reduces to (4.11) when (6.13) is again used for X . 

Remarks 

It is now evident that the rough estimates (4.10) and (4.11) imply a value 

for X , which approximates the degree of amplification of the velocity and 

temperature fluctuations during the lifetime of a convective eddy. Of course the 

precise value (6.13) must not be taken seriously, especially since it was 
a 

obtained by exponentiating/poorly estimated quantity, though one may be tempted to 

take comfort in the fact that it is at least reasonably consistent with (6.8). It 

would be preferable if some independent method of determining the initial 

conditions could be found. It is worth noting, however, that (6.12) and the 

corresponding expression for -pt depend only logarithmically on X , so the method 

of estimating the initial conditions need not be very accurate. The constraint 

(6.5), which was applied only to minimize algebraic complexity, is not an 

essential part of the formulation; other relations between W„ and ©„ lead to 

expressions for Fc similar to (6.12). These also have multiplicative factors 

that contain the logarithm of the amplification X in the denominator. 

The theory can also be formulated in terms of rising and falling fluid 

parcels, with the only difference that the integrals in (6.3), (6.7) and (6.9) are 

now considered to be evaluated along the parcel trajectories. In the local 

approximation the two approaches are identical. 

The discussion in this section has not led to any modification in the 

mixing-length formulae. Its purpose has been to highlight the role of the eddy 

creation process in determining f; and -B,. . 

7. THE CHOICE OF MIXING LENGTH 

Expressions (4.10) and (4.11) for Fc and pt are both increasing functions 

of I . Since the philosophy of the mixing-length approach is to concentrate on 

only one scale of motion at any level in the fluid, namely the scale that 

contributes most to the fluxes, the largest value of t compatible with the 

dynamics must be chosen. 
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When modelling laboratory flows the choice of I seems straightforward. The 

largest eddy that one can imagine is determined by the geometry of the vessel 

containing the fluid. Thus at any point it is usual to take 

« - - * , ( 7 a ) 

where x is the distance to the nearest boundary of the container and <( is a 

constant scaling factor of order unity which is determined by comparison of theory 

with experiment. 

Of course the dynamics of the flow could be such as to prevent this largest 

conceivable eddy from growing, so that t is determined mainly by other factors. 

Thus von Karman (1930) suggested that for turbulent shear flow the mixing length 

should be taken to be a multiple of a scale length of the mean shear. It seems 

that for most laboratory applications this yields results that agree with 

experiment less well than (7.1). 

A stellar convection zone is not bounded by a rigid container, and must 

therefore determine its own length scales. But just how { should be specified is 

not clear. It is most common to follow von Karman1s philosophy and choose 

(7.2) 
t - * H , 

where H is a scale height of the mean stratification, though some stellar models 

have been computed using the lesser of (7.1) and (7.2) (Hofmeister & Weigert 1964; 

Bohm & Stuckl 1967). Opik (1938) took H to be a scale height of density. This 

choice has been favoured also by Biermann (1943), and by Schwarzschild (1961) who 

argued that it is the distortion of expanding or contracting fluid elements as 

they experience substantial changes in mean density that limits the size of an 

eddy. This reasoning is not Boussinesq, and introduces some representation of 

the effect of compressibility into the prescription. Vitense (1953) set H to a 

pressure scale height. This has been widely used since, presumably for reasons 

of computational convenience. 

It is unfortunate that the attempt to incorporate compressibility into the 

local theory results in a choice of f that does not reduce continuously in any 

natural way to the kind of value that is favoured for laboratory applications. 

Stellar convection zones are often many scale heights deep, which is currently 

unattainable in the laboratory, but it would have been encouraging had some 

experimental verification of the theory been feasible, even if it were in a 

parameter range inappropriate to astrophysics. Only astronomical checks are 

available at present, but these appear to provide little support for the details 

of the theory. 
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8. CALIBRATION OF THE HEAT FLUX FORMULA 

Stellar models are usually computed using equation (4.10) for the convective 

heat flux, with (7.2) defining the mixing length. The Reynolds stress T>t is 

rarely included. The constant <* is calibrated by comparison with observation 

and then taken to be a universal constant, though some authors do not bother with 

this nicety on the grounds that the mixing-length formulae are too unreliable for 

the calibration to be meaningful. The determination of <* can be affected either 

by constructing a solar model with the correct luminosity and effective temperature 

or by comparing the slope of a theoretical lower main sequence with observation. 

The two methods give results in reasonable agreement with one another when H is a 

pressure scale height, though they are subject to considerable uncertainty. In 

particular, uncertainties in the solar composition are reflected in the 

calibration, as are uncertainties in the opacities, equation of state and nuclear 

reaction rates. The results depend also on assumptions concerning the mixing of 

material that has been processed in the core. In addition to these, additional 

uncertainty is introduced by inaccuracies in the numerical techniques, whose 

existence is indicated by discrepances between the results of different 

investigators. 

It should be noticed that the conclusion u * I does not satisfy the 

condition d << | upon which the Boussinesq approximation depends. The theory 

is therefore not internally consistent. However d is not much greater than 

unity, and the effects of compressibility may be insufficient to modify the heat 

flux severely. More serious is the local approximation that regards B as being 

approximately constant over the length scale ' . It is one of the aims of non­

local mixing-length theories to rectify this flaw. 

The calibration of <x rationalizes the astronomical data, but it does not 

provide a test of the mixing-length theory. The reason is partly that convective 

envelopes of solar type stars are approximately adiabatically stratified every­

where except in thin transition regions above the hydrogen ionization zone. The 

sole function of the convection theory in determining the gross structure of the 

star, therefore, is merely to prescribe which adiabat characterizes the bulk of 

the convection zone. This depends on the jump in temperature across the 

transition region, but that hardly depends on the detailed functional form of the 

expression for Fc . Indeed if (4.10) is replaced by (4.16), even though ov S » I 

throughout almost the entire convection zone, the solar calibration requires 

ei. = 1.35 x 10 when i and n take the values implied by B8hm-Vitense' s (1958) 

formulae (Gough & Weiss 1976). The resulting solar model is barely distinguishable 

from that computed in the usual way. In red giants there are regions where 

r£-S < I , but the envelope models are insensitive to details of how the two 

asymptotic limits (4.14) and (4.16) meet. 
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The calibration of o< does not even determine both asymptotic limits, since 

there is considerable uncertainty in the geometry of the convective motion. The 

discussion in % 5 suggests that £ does not vary greatly, but the possible range 

for n is very wide. This influences only the limit (4.16), which hardly matters 

for solar type stars. One might anticipate, however, that a calibration of >j 

would be possible by comparing theoretical red giants with observation. 

An investigation of the sensitivity of red giant evolution to changes in the 

constants in the mixing-length theory has been reported by Henyey, Vardya and 

Bodenheimer (1965), and interpreted in terms of the asymptotic limits (4.14) and 

(4.16) by Gough and Weiss (1976). Plausible variations in n do induce 

noticeable changes in the evolutionary tracks on the H-R diagram, but it appears 

that other uncertainties in both the theory and observation at present prohibit 

calibration of vi by this method. 

A potentially more sensitive test for -n might have been a measure of the 

maximum depth of penetration of the convection zone. In some red giants the 

convection zone extends deep enough to mix the products of the nuclear reactions 

to the surface. The extent to which the convection zone has penetrated in such a 
17 18 

star could be determined in principle from observations of 0 /0 ratios in red 

giant atmospheres (Dearborn & Eggleton 1976). Computations by D.S.P. Dearborn 

and myself, however, have revealed that such a test would probably not provide the 

required information, for at its maximum depth the convection zone of a red giant 

envelope is adiabatically stratified almost throughout, and the heat flux is 

determined by (4.14). But this does not necessarily imply that there is nothing 

to be learnt. Conditions may be sufficiently different in red giants that a 

recalibration of (4.14) would yield a different result. This might shed some 

light on the variation of $ , whether density or pressure scale heights are 

appropriate, or whether (7.2) is even a useful assumption. 

9. THE REYNOLDS STRESS 

It is common practice to ignore the turbulent stress -pt = PUTX in the mean 

momentum equation (3.1). One reason, perhaps, is that to justify the Boussinesq 

equations upon which mixing-length theory is based the convective velocities must 

always be substantially less than the sound speed. This implies f>t « p 

However, it is the derivative of -t>t that appears in (3.1), and if |dpt/dr| is 

evaluated in a stellar model that has been computed without that term, it can be 

the case that it exceeds /<*]>/d-rj by a considerable degree in the transition 

region at the top of the convection zone, even though T>t might be small compared 

with -p . Another reason for ignoring T>t is because to do so removes 

singularities from the equations of stellar structure and thus makes them much 

easier to solve. 
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The equations, in the plane layer approximation, are 

(9.1) 
__( T + ? t ) = - g/> 

and 

- K T J -+-F', = F = constant. (9.2) 

The heat flux and Reynolds stress are given by (4.10) and (4.11) in terms of e • 

Equations (9.1), (9.2) and the equation (3.9) defining 6 can be rewritten as a 

system of first order equations for T>t, i> and T thus: 

•Ax - {f)l($-*£)-?-%) s « , 

ft = -(v-rH), 

il = — f F -F) 

(9.4) 

(9.5) 

Here 8 and Fc are regarded as functions of T>t . The usual s t e l l a r structure 

computations are governed by the spherical analogues of (9.1) and (9.2) with -j>t 

ignored, which i s of one order lower than the system considered here. Solutions 

of (9.3) - (9.5) are to be sought satisfying "Pt = O at the edges of the 

convection zones, where F /K - gS/cr also vanishes. 

To analyse the nature of the s ingular i t ies i t is sufficient to consider the 

structure of equation (9.3) near a boundary of a convection zone. Since S -*• 0 

as the boundary is approached, the asymptotic forms of (4.10) and (4.11) 

(9.6) 

K ~ A t ' f \ 

sty (9.7) 

may be used, where A and B are nonvanishing functions. If the origin of z is 

taken to be at the base of the convection zone, and all the coefficients in (9.3) 

are expanded in a Taylor series about the origin, only the leading terms being 
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retained, the resulting equation is found to have the structure 

£Lk * M z - NT t
, / x- Q ? t

, A , (9-8) 

where M, N and Q are positive constants. In deriving this it was assumed that the 

mixing length does not vanish at the boundary of the convection zone. The 

singularity introduced by the -R1^- term is best analyzed by setting -u,1 B -pt and 

writing (9.8), with the small last term neglected, as a linear system in terms of 

a new independent variable J" : 

i t = - N-o. t M z , 
*LJ ' (9-9) 

The coefficients matrix of the right hand side has eigenvalues 

x ± _ - i N * J t N ^ m , (9'10) 

which are real and of opposite sign, indicating a saddle point at the origin. 

A similar analysis may be performed at an upper boundary. The resulting 

equation for -R has the same structure as (9.8), except that now the coefficients 

M and N are negative. Provided N1" %• 8 |M| , both eigenvalues X,are real and 

of the same sign, indicating that the origin is a nodal point, though if N1- < 8IM| 

the solution is a spiral that cannot satisfy the condition that -u vanishes at the 

boundary of the zone. This latter situation might arise if too large a mixing 

length is chosen. 

It is because the upper singularity is either a node or does not permit a 

physically acceptable solution that inward numerical integrations from the 

atmosphere of a star cannot be successful. Stellingwerf (1976) has pointed out 

that an outward integration might work, and has presented a solution to a simple 

model problem. Realistic stellar envelopes can be computed in this way only if 

the convection zone is thin; otherwise a more stable numerical procedure must be 

adopted. 

Attempts to include -pt in realistic stellar envelopes have been made by 

Henyey, Vardya and Bodenheimer (1965) and by Travis and Matsushima (1971). In 

both cases the structure equations were simplified in a manner tantamount to 

ignoring the left hand side of equation (9.3), thereby reducing the order of the 

differential system and removing the singularities. Henyey et al. anticipated 

that this approximation was not serious. Unpublished computations by Baker, 

Gough and Stellingwerf of RR Lyrae envelopes with shallow convection zones using 
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the full system of equations revealed that at least in those stars the effect of 

"pt is not profound. Its inclusion smooths out the region near the top of the 

convection zone, so that dLy^/ir remains smaller in magnitude than d^/tir , 

and has little influence on the remainder of the convection zone. 

10. REFINEMENTS AND GENERALIZATIONS 

The discussion in §6 demonstrated how Fc and pt depend on the growth rate 

tr of convective eddies. This dependence was emphasized by Spiegel (1963), who 

also showed how the expressions are modified when viscosity is considered. 

The averaging procedure used to derive (6.11) and (6.14) does not depend on 

the precise nature of the turbulent flow. The description of the breaking up of 

eddies is not refined enough to distinguish between the different circumstances 

to which the theory might be applied. Detailed descriptions of the dynamics is 

confined to eddy growth, and is contained in the expression for <r . It is to 

this that refinements and generalizations are most easily made. 

Transport by small-scale turbulence 

As an illustration, an attempt will be made to incorporate into the dynamics 

the exchange of heat and momentum by smaller scale turbulence that was ignored in 

§ 6. It will be assumed that turbulence on a scale smaller than the heat 

carrying eddies is isotropic, so the transport might be roughly represented in 

terms of a scalar eddy diffusivity 

v>e - (^T?)"*/ k' , (lo.i) 

where u' is a characteristic velocity and k' a characteristic wavenumber of the 

background turbulence. This diffusity will be taken to be the same for both 

momentum and heat. Its value is related to the velocity and length scales of 

the major eddies, whose disruption seeds the small scale motion, and may be 

rewritten 

where £ is of order unity and depends on the spectrum of the turbulence. It is 

likely that £ is only weakly dependent on the amplitude of the convection and 

can probably be safely assumed constant. This expression can now be incorporated 

into the expression for the growth rate of a disturbance in a viscous conducting 
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fluid (e.g. Spiegel 1963): 

<r = l ( * + vOkM[i+ ^ 1 * " V * - ^ ) ( * - s ) ~ T / ' ' - - l L (10-3) 

where YL and v> are the effective thermal diffusivity and kinematic viscosity: 

* = v>e +K/fcy , v - ^ . ( 1 0 - 4 ) 

Equations (10.2) - (10.4) define a growth rate <r which can be substituted into 

(6.11) and (6.14) to obtain equations for pc and -pt . The prescription is 

algebraically more complicated than the previous formulation which led to (4.10) 

and (4.11), though its effect can be approximated by simply multiplying the value 

of <r obtained previously by the factor {1+ ±ir£$ ($-\)"V''} . 

It is perhaps not surprising that the modifications to the results hardly change 

the functional dependence of F̂  and yt on S, because the two extreme approaches 

discussed in § 4 led to the same formulae. The new results may be no better than 

(4.10) and (4.11), because the attempted improvement to the representation of the 

physics may be insignificant compared with the errors that remain. It should be 

noted, however, that the modifications cannot simply be absorbed into the 

definition of I . 

The small scale turbulence not only influences the dynamics of the larger 

eddies but also contributes directly to the fluxes. The heat flux can be 

accounted for by replacing K by fct^ in the equation for the radiative flux. 

The relevant Reynolds stress component must be augmented by j;£*&'•<£' which can 

be written as £ Jt , where e. is yet another undetermined parameter of order 

unity that depends on the spectrum of the turbulence. 

Other refinements can be included, such as a representation of entrainment 

and erosion of eddies, or the generation of waves. The former has been considered 

by Ulrich (1970a), who used the meteorologists' model of convection based on 

rising thermals. D.W. Moore and Spiegel (unpublished) considered the influence of 

acoustic generation by convective eddies, and found that this noticeably reduces the 

turbulent velocities when the Mach number is of order unity. Generation of gravity 

waves with wavelengths comparable with t , which occurs at the boundaries of 

convection zones, probably requires a nonlocal theory for an adequate description. 

Further refinements are discussed by Spiegel (1971). 

Convection in slowly rotating stars 

Aside from suggesting improvements to the standard theory, this approach can 

be used to formulate mixing-length theories for more general circumstances. 

Rotation or a magnetic field, for example, can easily be incorporated into the 
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stability analysis that determines <T . If the convection zone is rotating, the 

maximally contributing eddies are rolls aligned with the horizontal component of 

the rotation rate A. (e.g. Chandrasekhar 1961). Their growth rate is determined 

by 

(V + 2.«) \<rx- (Jz -+• V4"C*-0J1*'} + i^p' = O, (10.5) 

where JX is the vertical component of -Q. . Only if -A. is small might one reasonably 

hope to obtain meaningful results by just using this growth rate in the normal 

mixing-length formulae, since the effect of the rotation on eddy disruption has 

been ignored. In that event the solution to (10.5) can be approximated by 

cr « \S- ^$-'C$->)0+ *)(»-*)~V2-TA-*> (10,6) 

and Yi i-s given in terms of it by (6.11). Note that SX, measures the local 

rotation in the vicinity of the eddy, and should therefore be interpreted not as 

the angular velocity but as half the vorticity of the mean flow. 

It is more difficult to calculate the Reynolds stress. The rotation 

introduces a degree of order to the turbulence that destroys the axisymmetry of 

the stress tensor and rotates its principal axes. Provided fl « y the 

effect is small and for the purposes of computing the hydrostatic structure of 

the star can no doubt be safely ignored. Equation (6.14) can be used for -pt 

with <r determined by (10.6). But this approximation is not good enough for the 

horizontal components of the mean momentum equation, since the relatively small 

off-diagonal terms in the stress tensor generated by the rotation are important 

for determining the angular momentum transport by the turbulence. It is 

straightforward to construct a Reynolds stress tensor from the eigenfunctions of 

linear stability theory, but in the absence of experimental tests it would be 

most unwise to rely on it. 

Influence of a magnetic field 

A magnetic field B can be treated similarly, provided its turbulent 

distortion may be considered random and does not lead to organized concentrations 

such as sunspots. Once again the turbulent motion is most efficient as rolls, 

aligned with the horizontal field, and the growth rate is determined by the 

equation obtained from (10.5) or (10.6) by replacing L,.$ "' ($ -0 f£ by 

TT1-'B,"/'t1' , where 3 is the vertical component of 3 . The caveats 

concerning the Reynolds stress mentioned in connection with rotation apply here 

too. 
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Nuclear reactions and composition gradients 

The interaction between nuclear reactions and convection is of particular 

interest when reaction timescales are comparable with <r"' . This can be the 

case in late stages of stellar evolution. The fluctuations in energy generation 

rate induced by the convection influence the eddy dynamics through modifications 

in both the temperature and chemical composition of fluid elements. The 

convection influences the nuclear reactions not only via f; and vk , but also 

by transporting the products of the reactions. 

The mixing-length theory can be generalized as before. Variations x[ in 

the abundances xt of elements i must now be taken into account when calculating 

both the buoyancy and,of course, the energy generation rate £(f,T, x-Ci Per unit 

mass that must be introduced into equation (3.7). The amplitudes W and © are 

now determined by 

* I T - 3 ( S T - ® - r , x , ) , <10-7> 

^f -pW = -(2*-£T)e t- £,X, , 
(10.8) 

where X- is the amplitude of x.\ , defined in a way analogous to W and ® in 

(6.1) and (6.2), and 

p ~ \T£)TIT » a- s *r ( W T . T ' £T s S ( > T J T ) , . . 

The summation convention is being used. The abundances are determined by 

T>3c: -o r T \ (10'9) 

where R; measures the rate of production of i. . The linearized fluctuation 

equation derived from (10.9) can be combined with (10.7) and (10.8) to yield the 

following equation for <r : 

* < r - + $ * U * - £ T ) - S..(9r'j-;st
J' + £ ^ j x ) } < r 
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where 

and 5t. is defined by 

where Sv is the Kronecker delta. 

Overbars on mean quantities have been omitted as usual. Once again F; and -pt 

are given in terms of o- by (6.11) and (6.14).In addition one can easily derive 

for the flux of x.L , which is in the x direction, 

chemical 
The first term represents the transport that arises solely because/elements are 

created or destroyed at different rates in upward and downward moving fluid. The 

second term represents turbulent mixing, though that too is influenced by the 

reactions and is not a simple scalar diffusion. 

In the special case when there are no reactions S* = <r *<j > 

o-* + l x r l - ( ^ 3f"j>; jfV "
 aK3*"/ial' = ° (10-13> 

and 

F. = - (p-f) ?t j ^ ' (10.14) 

which leads to a simple diffusion equation governing the mean abundance x..^ . 

Convection in pulsating envelopes 

Application of the mixing-length formalism to stellar pulsation is somewhat 

more complicated than the examples considered above, because now the time 

dependence of the coefficients in the fluctuation equations must be taken into 

account. Additional assumptions must also be made. Only a few brief remarks are 

made here, since detailed discussion of this problem is to be found in Unno's 
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contribution to this volume. 

The case of radial pulsations is the simplest to discuss, provided attention 

is restricted to fundamental and low overtone modes that vary on a length scale 

greater than I . If Lagrangian co-ordinates defined in terms of the mean flow 

are used to describe the pulsations, but locally defined Eulerian co-ordinates 

for the convection, the equations governing the convective fluctuations are 

rather similar to those used for a static atmosphere, though additional terms 

must be added to account for the mean dilation and a must be modified because 

the co-ordinate frame is no longer inertial. A mixing-length theory can therefore 

be developed by following one of the procedures outlined in §§ 4-6. 

Unno (1967) formulated a theory by generalizing the model that assumes 

continuous turbulent exchange of momentum and heat between a convective element 

and its surroundings. Though the general growth of convective fluctuations 

during the lifetime of an eddy is ignored in this approach, acceleration of a 

convective element and modulations in its temperature induced by the pulsations 

are taken into account. An eddy is presumed to maintain its identity, deforming 

instantaneously with the mean environment. The theory now requires one to 

recognize that the lifetime of an eddy is finite, for a turbulent eddy retains 

some memory of the conditions at the time of its formation. Thus much of the 

apparent simplicity enjoyed by this model when applied to a stationary stellar 

envelope is lost. Alternatively, the discussion of §6 can be adapted for a 

pulsating star by introducing the appropriate time dependence into the equations 

of motion (Gough 1977). 

These approaches each require an explicit statement about how the initial 

state of a convective element depends on conditions at the time of creation. 

Since the mixing length, which determines both the destruction rate and the 

initial dimensions of elements, is assumed to depend only on the mean (horizontally 

averaged) state and not on convective fluctuations, it is perhaps most natural, 

and certainly simplest, to assume that it has the same functional form as for a 

stationary envelope (and thus does not depend explicitly on time derivatives) and 

to make a similar assumption about all other aspects of creation. It must be 

realized that this is yet another unverified assumption of the theory. It may not 

be a good approximation, for although it is the mean stratification of the 

convection zone that controls which eddies grow most rapidly, the level of 

turbulence at the instant of creation presumably does have some influence on the 

perturbations out of which those eddies grew. 

A similar objection may be levelled at the assumption that the mixing length, 

when it determines eddy annihilation,depends only on the mean environment. 

If breakup is determined by shear within the eddy, perhaps the current eddy 

dimensions provide a more appropriate length scale. These depend on the history 

of the eddy and not just on instantaneous conditions. Likewise turbulent drag 
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and heat exchange depends on the current eddy size, and also on the intensity of 

the small scale turbulence which may not vary in phase with the larger eddies. 

The different versions of mixing-length theory yield different formulae for 

F̂  and -pt when applied to radially pulsating stars. This emphasizes the 

uncertainties in the assumptions. The differences offer some hope of choosing 

between them by observation. 

The range of possible assumptions widens further when nonradial pulsations 

are considered. One prescription has been offered by Gabriel, Scuflaire, Noels 

& Boury (1974) who generalized Unno's approach in a natural way. Amongst the 

approximations is the neglect of anisotropy in the turbulent flow, which 

circumvents the complicated problem of determining how the changing shear 

associated with the pulsations modifies the convective velocity field. Anisotropy 

appears to have a more complicated influence on the pulsational perturbations of 

the heat flux and Reynolds stress in this case than it does for radial pulsations, 

so the assumption may be critical. It would be useful to know how sensitive 

pulsations of stellar models are to changes in this and other assumptions in 

order to assess where effort to improve the theory might most profitably be 

directed. 

One of the motivations for developing a convection theory in a time-

dependent envelope is to study the pulsations of the cooler Cepheid and RR Lyrae 

variables. Unpublished computations by N.H. Baker and myself of the linear 

stability of such stars to radial pulsations, using a generalization of the 

formulation in § 6, indicate that the modulation of f̂  generally has a 

stabilizing influence on the pulsations, and is responsible for determining the 

red edge of the instability strip.The phase of the modulation of i>b is such as 

to Arive the pulsations in some regions of the convection zone and damp them in 

others. The driving is greater in the cooler stars, and may be a significant 

factor in the excitation of the long period variables. 

Comments 

These examples illustrate how the basic ideas of mixing-length theory might 

be applied to a variety of situations. The generalizations all concentrate on 

describing the dynamics of the major eddies prior to breakup, and ignore the 

more difficult issues concerning creation and annihilation. To do more would 

require a more sophisticated study of the mechanisms of turbulence. 

In particular, there is no prescription for determining the mixing length. 

One could choose the same value as one believes is applicable to ordinary 

convection. In that case the theory predicts, for example, that a vertical 

component of rotation or magnetic field reduces the heat flux. It appears how­

ever that there can be circumstances where rotation increases the heat 
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flux through a convecting fluid (Rossby 1969, Sommerville & Lipps 1973, Baker & 

Spiegel 1975), which shows that the mixing-length prescription hasn't even 

predicted the correct sign of the change. Perhaps the influence of a small 

composition gradient is more reliably described, because the perturbation is via a 

scalar rather than a vector field, and influences the dynamics only by modifying 

buoyancy. However this could be the case only when that modification is small, 

for we know from experimental studies of thermohaline convection that once 

composition gradients are sufficient to change the stability characteristics of 

the mean stratification the gross structure of the flow suffers a qualitative 

change (Turner 1973). Thus the theory is not immediately adaptable to semi-

convection. 

11. NONLOCAL THEORIES 

One of the obvious inaccuracies in the theory developed above comes from 

assuming velocity and temperature fluctuations to depend on only local properties 

of the environment. This would be justified if i were much less than all 

relevant scale heights, but the stellar calibration suggests that this is not the 

case. In particular B can vary on a scale much shorter than ' . Nonlocal 

treatments take some account of the finite extent of convective eddies, and lead 

to prescriptions for Fc and -pt that involve averages over distances of order t. 

Thus sharp gradients in a no longer lead to rapid variations in the convective 

transports. Moreover, the treatments aim at representing overshoot into adjacent 

stable regions. 

There are two nonlocal properties of eddies that can be represented in a 

straightforward way. One is that an eddy centred at z.0 samples a over the 

range (z., - H , z„ •+• i t ) ; the other is that f[C*) and pt(z.) are 

determined not only by eddies with z0« z. , but by all the eddies centred between 

z0-iC and z.. "•"it. These can be taken into account within the framework of 

the Boussinesq approximation, which entails ignoring the variation of all other 

variables over the scale of an eddy. 

Averaging over eddies 

The only place 6 enters into the formulae (6.11) and (6.14) for f\ and pt 

is in the growth rate o" . As was noticed by Spiegel (1963), the linearized 

equations of motion used to determine the eddy growth are the Euler equations of 

a variational equation for a~ , whose solution is (6.6) with p replaced by 
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<f (D>
 s 

1 Q(Z') \>S*(.Z',Z)±Z' 

where u/(i,z.) is the vertical component of the velocity of an eddy centred at 

2.„ and the range of the integrals is the vertical extent of the eddy. With the 

introduction of (6.1) this becomes 

r 
</*> " i \ p(z') co51fTrfz'-z)/£]dz'. (u.i) 

Taking account of contributions to Fc and Pt from eddies centred at 

different heights leads to similar averages: the assumptions (6.1) and (6.2) imply 

that both urT' and wx have a x dependence quadratic in cos [IT Cz 

Thus if Fco (z) and Pto (z) are defined as the r ight hand sides of (6.11) 

and (6.14) with A replaced by <i3> , the nonlocal formulae for the heat flux and 

Reynolds s tress may be written 

z+±l 

J z - ± * 

Vt " j \ ft.(
z0 cos* [ir(z-£.)/£] olz. 

(11.3) 

Use of these expressions converts the ordinary differential equations of stellar 

structure that obtain from local mixing-length theory into integro-differential 

equations. 

The fluid element approach 

The extent of the region over which f̂,, and j i c are averaged in (11.2) and 

(11.3) depends on the mixing length in its role of being a measure of the eddy 

size. The description of mixing-length theory in terms of rising and falling 
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fluid elements, however, averages over a mean-free-path, and so depends on t as a 

measure of the annihilation rate. The analysis will now be repeated for this more 

commonly used picture, to illustrate how uncertain the fine details of the theory 

are. The arguments are similar to those used by Spiegel (1963). 

It is a straightforward matter to repeat the analysis of § 6 with the fluid 

particle picture in mind. The mathematical structure is almost the same, with the 

principal difference that the integrals in the equations leading to (6.9) and (6.11) 

are now to be considered as line integrals along fluid element trajectories. It 

is simplest to use the vertical displacement f of a parcel from its initial 

position to define an independent variable s according to 

ds = df/t . (11.4) 

The bottom and top of the convection zone are assumed to be at s-O and s - S, . 

Then the contribution to f^ from rising elements is approximately 

F„(M -asfcj)|Vr*:?^C-»Je" "f" * • • • <U-5> 

and that from sinking elements is 

In obtaining these equations the temperature fluctuation of an element was taken 

to be 

T = —~s (s-s.), 

which was estimated by integrating W in (6.4) and using this and (6.5) to 

eliminate t - t0 and 0, in the expression for © . Once again a" is assumed 

to be defined in terms of an average <B> such as (11.1) to take account of both 

the finite size of fluid elements and the fact that they traverse a finite 

distance through their environment. Note that the creation rate n. has been 

taken to be the same as in the local theory. It has been assumed that the 
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motion is not necessarily vertical, as does Spiegel, the cosine of the angle made 

by the velocity with the vertical being denoted by u . Thus Fc± oLp is the 

flux due to elements moving in directions between u and p + A-y when u ̂  O . 

The total flux is obtained by integrating over u and yields 

Fe(s) - (' F„ U ) | 3. - * | Ea(|S.-s|)<Aso , (11.7) 

where E^ is an exponential integral. The expression for vt is similar. These 

averages are rather different from (11.2) and (11.3), the main weight coming from 

| S - S.| — 0.6 rather than being concentrated near zero. The value of A 

defining the initial conditions is once again undetermined. If it is fixed by 

insisting that (11.7) approaches (4.10) in the limit t -* 0, one finds 

> * e^3'11 * 7. (ii.8) 

The averaging procedure in both this formulation and the eddy approach is 

rather crude, and depends in particular on an assumed structure for the velocity 

and temperature fluctuations based on local theory. Other versions of the theory 

that pay more explicit attention to the motion of elements have been formulated, 

notably by Faulkner, Griffiths and Hoyle (1965), Ulrich (1970a), Shaviv & 

Salpeter (1973) and Maeder (1975). Nordlund (1976) has recently studied a model 

based on rising and sinking columns. The differences in outcome between the 

various procedures appears to derive mainly from variances in the rather arbitrary 

choices of scaling factors. 

Spiegel's theory 

A major drawback to the methods described so far is that they require one to 

solve the equations of motion for the eddies. This becomes especially awkward 

when the theory is generalized for application to more complicated circumstances, 

such as pulsating stars. It may be possible to alleviate the difficulties by 

working within the framework suggested by Spiegel (1963) who started from an 

element conservation equation in phase space. Spiegel considered a plane parallel 

atmosphere and set 

2-r-t- •+• —TT "* ~T^ ' (11.9) y T T
 T ~ r t 
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where \p is the element distribution function and v is the magnitude of the 

velocity. The term d(u-i ̂ ) J~i> u-L , which depends on the dynamics of elements 

and which would normally appear on the left hand side of a conservation equation, 

has been absorbed into the source function Q. . This equation can be formally 

solved for 4i in terms of Q. , as is sometimes done in radiative transfer theory, 

and the heat flux and Reynolds stress computed by averaging appropriate moments 

of if' over u . In particular, the heat flux is 

Fe = ( pufc-'^dp = f |&'|Q(s.) EJls.-sQds. , (ii.io) 

where & is the specific enthalpy fluctuation in an element. Rather than 

discuss the element dynamics explicitly, Spiegel simply assumed that |K'| Q (s.) 

is independent of S and then chose it to make (11.10) reduce to (4.10) in the 

limit 1-+0. The result is 

K Cs) = j >„(&.)£(I s.-s|)ds. , (li.ii) 

with \ given by (6.13). This result differs from (11.7) because of the 

assumption about the functional form of |fc/|Q.. 

Approximations 

Since integral equations are not readily incorporated into most stellar 

structure programmes it is tempting to approximate the equations for Fc and ft 

with differential equations. Spiegel's approach now exhibits the advantage that 

one can immediately draw on the techniques of radiative transfer theory. In 

particular, Eddington's first approximation provides simple equations relating 

Fc and -r>t to <a> that are no doubt accurate enough. To obtain the equation 

for fc , for example, moment equations are first constructed by multiplying 

(11.9) by &.'£ and by u^'t and integrating with respect to u , remembering 

that ft.' £ o when u ̂  O . This gives 

<£ - 7 = O, (lia2) 

as 
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jj - Fc - - F c o , (ii.i3) 

where 

T s [V^dp , K s S' p^'t<ip 

Eddington ' s approximation i s to take \l> = ^ + i f u > o , U< = •>!>_ i f u < o , 

where \J'+ and -U*. a re independent of u . This impl ies K = 3T 3~ > and hence 

ft-* g c _ pc - - ptt , (11.!4) 

where a. «J"3* (cf. Travis & Matsushima 1973). The equation for -pt is similar. 

But there remains the problem of finding an approximate equation determining <&> 

Guidance may be found by attempting to rederive an equation of the type (11.14) 

directly from the integral relation (11.11). 

The approximation (11.14) is equivalent to replacing the kernel iC(S.-s) = 

E V O 5.-Si) in (11.11) by the simpler function 

X.(S.-S) = itexT (- bU-S|) 
(11.15) 

with b = a. Equation (11.1) might therefore be approximated in a similar manner. 

But how does one best choose b? Equation (11.11) may be rewritten 

FcC*) = \ K,(s.-s)J(s.)d«. + ["{K(s.-s)-K.Cs.-s)}*Cs.)is. 

where 

w F,. (s) , o * s s s, 
3(s) = " (11.17) 

O , s < o , s > s, . 
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The limits of integration have formally been written as + oo , and are meant to 

denote positions well into the bounding stable regions where Tc is small. Obvious 

adjustments must be made when two convection zones are close together, or if the 

domain of integration includes the central regions of the star. 

It is clear that b is best chosen in such a way as to minimize the magnitude 

of Fc' . This problem is of a kind that has been encountered in radiative 

transfer theory (Monaghan 1970) and statistical mechanics (e.g. Barker & 

Henderson 1976) and its solution depends on the features of (11.11) one wishes to 

represent most accurately. Here, an approximation will be sought that roughly 

represents the solution when the scale of variation tr of fci> is not a great 

deal less than { ; to find a representation approximately valid for all scales 

•CF would entail an analysis of the equations that determine F„ . Thus 3* (s,) 

is replaced by its Taylor series about s, and the leading terms of the expansion 

of Fe' so generated are made to vanish. The first two terms are automatically 

zero, and the third vanishes provided fc = J"i . This result differs somewhat 

from the value obtained from the Eddington approximation, which is a representation 

that appears to be good at both extremes of tr , at least for radiative transfer. 

If equation (11.1) is treated similarly one obtains 

^^§-9> -'/" (ua8) 

where b, which i s calculated as before but now with >C(S) = ZCOS^TTS , i s 

given by 

t = { ) ( s 'COSTS ' ) * As ' j =* "I' (11.19) 

If equations (11.2) and (11.3) are used to determine f; and j>t , this value 

must also replace a in (11.14) and the analagous equation for T>t . 

The differential equations determining the mean structure of the star, with 

this approximation to nonlocal mixing-length theory, is of order five higher than 

when local theory is used. Computing time is therefore increased. However the 

singular points at the edges of the convection zone discussed in § 9, and the 

numerical difficulties associated with them, are no longer present. Equation 

(11.14), its analogue for pt and equation (11.18) should be solved subject to 

the boundary conditions Fc -*• 0, T>t -» 0 and <B> -* A as s -*• ± «> . 
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Comments 

The factor of about 5 by which the values of b obtained from the two kernels 

differ emphasizes the different roles played by the mixing length. Fluid crossing 

the midplane of a convective eddy of diameter •? is likely to have risen vertically 

by perhaps about half the radius, which is only about jf the mean-free-path of a 

fluid element. The mean-free-path and the element or eddy diameter have been 

arbitrarily set equal, but perhaps a factor of order unity should have been 

introduced between them. Consequently the coefficients in (11.14) and (11.18) are 

parameters that, like the mixing length itself, are not determined by the theory 

but await calibration by comparing theoretical models with observation. 

The most obvious testing ground is the top of the solar convection zone, 

where overshooting into the stable regions can be studied. However it is in the 

regions of overshoot that new uncertainties seem to enter. The integral equation 

(11.16) for Fc , for example, explicitly assumes that the stable regions provide 

no source of convective elements: "3* «• O outside the convection zone. The 

decceleration of elements in the stably stratified regions is represented by the 

averaging of « , but this does not adequately account for the possible 

oscillation of elements and the generation of waves. Negative values of 3" would 

be required, and Spiegel (1963) has suggested replacing <r in the formula (6.11) 

for Fco by its real part, presumably to account for the damping of those waves. 

However, that does not account for possible propagation of energy by the waves, 

and subsequent dissipation far from the site of generation. A more careful 

analysis of the coupling between the convection and the waves must be undertaken 

before one can have confidence in the procedure. 

Calibration of nonlocal theories is at present in an unsatisfactory state. 

Attempts are made to construct model solar atmospheres and to compare overshoot 

velocities or limb darkening with observation, adjusting parameters where 

necessary (e.g. Ulrich 1970b; Travis & Matsushima 1973; Nordlund 1974), with some 

diversity in the conclusions. Indeed Spruit (1974) has fitted the limb darkening 

function using a local mixing-length theory. Moreover, though the models are 

constructed with an averaged f̂  , 8 is not always averaged and T>t is ignored 

entirely. Ulrich (1976) has recently investigated the sensitivity of solar type 

model atmospheres to variations in the parameter b in the kernel (11.15), with 

<£> =/9, and to the addition of a multiple of a delta function to that kernel. 

The refinements and generalizations discussed in § 10 can easily be 

incorporated into these nonlocal procedures. Nonlocal effects of small scale 

shear turbulence have been discussed by Kraichnan (1962), using rather different 

arguments which suggest that at very high values of S there is a qualitative 

change in the functional dependence of fc on S . Scalo and Ulrich (1973) have 

incorporated nuclear reactions into a nonlocal theory. 
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12. COMPRESSIBLE CONVECTION 

Compressibility plays two kinds of role. First it influences the structure 

of the convective flow discussed above, and secondly it introduces new phenomena 

that are not represented by the Boussinesq approximation. 

Various studies of the structure of the linear eigenfunctions of convective 

motion in a compressible atmosphere have been made, though no attempt has been 

made to incorporate the results into a mixing-length theory. This is not 

surprising. One reason is that the mathematical difficulties are rather greater 

than for Boussinesq theories, but a more fundamental reason is that it is not at 

all clear how the mixing-length hypothesis should be interpreted in these 

circumstances. It should be recalled, however, that the assumption £ <*: H is 

based on arguments concerned with the structure of eddies in a compressible 

stratified medium, and that in some sense, therefore, compressibility is 

acknowledged. New phenomena that must be considered include the pressure 

fluctuations in the equation of state, which not only modify the structure of the 

eigenfunctions but also must be included in the formula for the heat flux. Viscous 

dissipation must be included in the mean energy equation. Unno assesses the 

importance of such mechanisms in his contribution to this volume. 

1 3 . CONCLUDING REMARKS 

The mixing-length formulae derived in § 4 are based on very rough order-of-

magnitude estimates. The physical arguments supporting them are based on 

imprecisely defined models. Moreover the observational evidence for the validity 

of the formula for the heat flux is very weak; the Reynolds stress is ignored in 

almost all stellar structure computations. 

Even if it could be ascertained that the Boussinesq formulation outlined in 

this article is sound, there would still be the difficulty of extrapolating the 

theory to stellar conditions where compressibility is important. The major point 

at which compressible arguments are invoked is in the choice of the mixing length 

•f . It is commonly believed that effective heat carrying eddies cannot extend 

over much more than a scale height H of density or pressure, and accordingly t 

is taken to be of order H . The solar calibration of the heat flux is not 

inconsistent with this assumption, though it is inconsistent with the conditions 

under which the Boussinesq approximation is justified. However, numerical 

computations of compressible convection that either solve the equations of fluid 

motion directly in two dimensions (Graham 1975) or three (Graham,these proceedings), 

or represent the solutions in the single-mode approximation (Toomre, Zahn, Latour 

& Spiegel 1976b; Van der Borght 1975) predict large eddies extending over the 

entire convection zone that show little tendency to break up into smaller scales. 

But perhaps the computations do not mimic solar conditions well enough, since they 

lack the thin transition zone at the top of the convective region in which the 
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temperature gradient is very strongly superadiabatic. The convection just beneath 

the photosphere is observed to have a characteristic length scale comparable with 

H and it is not unlikely that the vertical scale is similar. Whether in the 

region below, the dominant scale of motion is always of order H, or whether it is 

quite different, is hardly relevant for most purposes, because any plausible 

formula for Fc implies that beneath the first scale height the temperature 

gradient is very close to being adiabatic. Moreover the detailed structure of the 

transition zone doesn't influence the interior significantly, so any formula for 

Fc with an adjustable factor multiplying it can serve to construct models of the 

sun and solar type stars that have the correct luminosity and radius. Of course 

the motion in the transition zone is important for determining the photospheric 

velocity field, but here mixing-length theory is currently inadequate for making 

reliable predictions. 

One must not conclude from these remarks that a good convection theory is 

unnecessary to stellar evolution theory for modelling solar type stars. On the 

contrary, though it is only the integrated properties of the transition zone that 

are required to determine the adiabat deep down, a theory is required for extra­

polating from models of the sun to other solar type stars. And, of course, as 

soon as one wishes to discuss the structure of a stellar atmosphere, a knowledge 

of the subphotospheric velocity field is essential. 

The structure of convective envelopes of red giants is more sensitive to t , 

but calibration is difficult because there are other uncertainties in both theory 

and observation. The degree of overshooting and consequent material mixing at 

the edges of convective cores is also of interest, but difficult to assess 

observationally. 

It is common practice to argue that because the mixing-length hypothesis, in 

whatever guise it is to be used, is so uncertain, it is hardly worth the trouble 

to calculate its consequences accurately. Indeed it is sometimes the case that 

so coarse a mesh is used for the numerical solution of the stellar structure 

equations that the solutions are not resolved in the convection zone, and that 

the differential equations are therefore not adequately represented by the finite 

difference equations. It is also common, once a formula for Fc has been decided 

upon, not to calibrate the mixing length, nor even to report precisely the formula 

that was used for Fc . Though it may be true that in our present state of 

knowledge there is little reason to prefer, say, a red giant model computed with 

a mixing-length formula that has been carefully calibrated on the main sequence 

to a model computed with a similar formula that has not, there would be greater 

hope of improving our understanding of stellar convection and its influence on 

stellar structure if investigations were more meticulously carried out and 

reported. The prospects of an imminent supersession of mixing-length theory by a 

theory that is demonstrably more reliable for describing stellar convection zones 
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is bleak. Therefore it seems worthwhile to invest some effort into trying to 

improve the theory we already have. Modern sophisticated mixing-length theories 

have achieved some measure of success in describing turbulent flows in the 

laboratory (e.g. Launder & Spalding, 1972), so there is some hope that the effort 

would not be in vain. 

E.A. Spiegel and I have recently been attempting to consolidate the theory by 

synthesizing the ideas that have been severally used in the past. The approach is 

based on a two-fluid model, one so-called fluid being an assembly of thermals and 

the other being the background environment. Entrainment, erosion and turbulent 

exchange of energy and momentum are represented in the equations of motion, using 

laboratory calibrations where possible. The goal is to derive a set of equations 

determining the heat flux and the Reynolds stresses that would be applicable to a 

sufficiently wide variety of circumstances for a meaningful calibration to be 

possible. The success or failure will be reported elsewhere. 

It has been the aim of this article to clarify the ideas and assumptions 

behind the simple mixing-length theories used in astrophysics, and so provide a 

basis for the necessary improvement and generalization to circumstances more 

complicated than those for which the theory was originally formulated. Some 

indication of how this might be achieved has been given. Other measures that may 

have to be taken include abandoning the idea that the flow can always be 

described adequately in terms of a single length scale ( . This may be necessary 

for a theory of semi convection, for example. It must be realized, however, that 

many attempts to improve or generalize the theory involve additional physical 

mechanisms, and consequently the introduction of new parameters that must be 

determined by observation. 
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