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Taylor’s swimming sheet is a classical model of microscale propulsion and pumping.
Many biological fluids and substances are fibrous, having a preferred direction in
their microstructure; for example, cervical mucus is formed of polymer molecules
which create an oriented fibrous network. Moreover, suspensions of elongated motile
cells produce a form of active oriented matter. To understand how these effects
modify viscous propulsion, we extend Taylor’s classical model of small-amplitude
zero-Reynolds-number propulsion of a ‘swimming sheet’ via the transversely isotropic
fluid model of Ericksen, which is linear in strain rate and possesses a distinguished
direction. The energetic costs of swimming are significantly altered by all rheological
parameters and the initial fibre angle. Propulsion in a passive transversely isotropic
fluid produces an enhanced mean rate of working, independent of the initial fibre
orientation, with an approximately linear dependence of the energetic cost on the
extensional and shear enhancements to the viscosity caused by fibres. In this regime,
the mean swimming velocity is unchanged from the Newtonian case. The effect
of the constant term in Ericksen’s model for the stress, which can be identified
as a fibre tension or alternatively a stresslet characterising an active fluid, is also
considered. This stress introduces an angular dependence and dramatically changes
the streamlines and flow field; fibres aligned with the swimming direction increase the
energetic demands of the sheet. The constant fibre stress may result in a reversal of
the mean swimming velocity and a negative mean rate of working if it is sufficiently
large relative to the other rheological parameters.

Key words: micro-organism dynamics, propulsion, swimming/flying

1. Introduction

Large organisms propel themselves through a fluid by utilising the inertia of the
surrounding fluid. For very small organisms and cells swimming at low Reynolds
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FIGURE 1. Parallel filament mesh in cervical mucus during the time of ovulation; bar =
10 pm. Republished with permission of Oxford University Press, from ‘Ultrastructure
of the Human Periovulatory Cervical Mucus’, Ceric et al. (2005); permission conveyed
through Copyright Clearance Center, Inc.

numbers, inertial propulsion is not possible (Fauci & Dillon 2006; Lauga & Powers
2009); time-reversible kinematics result in no net displacement for the small body.
Taylor’s ‘swimming sheet’ is one of the classical models of zero-Reynolds-number
swimming; time-reversal symmetry is broken by the wave direction.

Many of the biological fluids in which these cells and organisms swim are
non-Newtonian; hence, modelling of swimming in such fluids is of interest. The
present study is motivated by the fibrous nature of many biological media, for
example, the cervical mucus encountered by the spermatozoa of many internally
fertilising species, and active suspensions of elongated cells. Throughout the menstrual
cycle, the rheology of cervical mucus changes due to hormonally induced variations
in hydration and associated changes in the glycofilament mucin structure. During
ovulation, these fibres form a parallel network (figure 1), and sperm migration occurs
through this glycofilament structure (Chrétien 1982; Ceric, Silva & Vigil 2005). It is
therefore of great interest to determine how Stokesian swimming is modified by the
presence of an aligned fibrous network.

Taylor’s pioneering study of Stokesian swimming consists of an infinite sheet
undergoing waves of lateral displacement (figure 2). This model was formulated as
the far-field Stokes flow produced by a swimming motion given by a small-amplitude
sinusoidal wave, and the associated mean rate of working was calculated as a
measure of the energetic cost of swimming. Subsequent studies included a 3D
model of a waving cylindrical tail (Taylor 1952), investigations by other authors into
larger-amplitude motion (Drummond 1966) and more recently the unsteady Stokes
flow problem (Pak & Lauga 2010).

Generalisation of Taylor’s model to non-Newtonian fluids has been an area of
significant interest; for a detailed review see Lauga & Powers (2009). Chaudhury
(1979) initially extended the model to incorporate viscoelastic fluids; it was found
that the properties of the fluid lead to an increased steady swimming velocity for
lower Reynolds numbers. This problem was reconsidered more recently by Lauga
(2007), who deduced that the mean swimming velocity in a nonlinear viscoelastic
fluid is reduced relative to that in a Newtonian fluid; in certain cases the swimming
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FIGURE 2. A schematic of Taylor’s swimming sheet in a Newtonian fluid. Working in
a frame of reference in which the sheet is stationary, b* is the amplitude, A* = 2n/k*
is the wavelength and k* is the wavenumber. The flow at infinity in the x*-direction is
U*. A travelling wave traverses the sheet with speed ¢* = w*/k*, where w* is the angular
velocity.

direction is reversed (Fu, Powers & Wolgemuth 2007); see also Fu, Wolgemuth &
Powers (2009) and Teran, Fauci & Shelley (2010). Vélez-Cordero & Lauga (2013)
found propulsion in shear-thinning fluids to be more efficient than that in Newtonian
or shear-thickening fluids. Riley & Lauga (2014) modelled active propulsion with
fluid-structure interaction, and in a subsequent study deduced that for multiple
travelling waves, the mean swimming velocity of the sheet is enhanced (Riley &
Lauga 2015). Further to this, Krieger, Spagnolie & Powers (2014), Krieger, Dias &
Powers (2015a) and Krieger, Spagnolie & Powers (2015b) considered how liquid
crystals affect the swimming of micro-organisms. Steady-state and startup models for
hexatic liquid crystals were considered along with a nematic steady-state model.

A transversely isotropic fluid exhibits a (perhaps spatially and temporally varying)
preferred direction, and has been used to model fibre-reinforced fluids. Previous
applications include the mechanical behaviour of collagen gel, the growth of plant
root cell walls, suspensions of biomolecules and a multiphase model of extracellular
matrix (Green & Friedman 2008; Dyson & Jensen 2010; Dyson et al. 2015; Holloway,
Dyson & Smith 2015). These models comprise a modified constitutive equation
describing a viscous fluid with suspended aligned fibres and an expression for the
evolution of fibre orientation. A transversely isotropic fluid also provides a model of
‘active’ suspensions of elongated swimmers (Holloway et al. 2016).

In this study, we consider swimming in transversely isotropic fluids via the
constitutive law of Ericksen (1960). In §2, we introduce the governing equations
associated with transversely isotropic fluids. The problem is solved in §3, solving
for the leading-order velocity field, mean swimming velocity at next order and mean
rate of working. The dependence of these quantities on the rheological parameters is
explored in §4 and discussed in §5.

2. Governing equations
The incompressibility and generalised Navier—Stokes equations are
V*-u* =0, (2.1)

ou*
o* < Y™ + (u* - V*)u*) =V*.0o", 2.2)

where u* = (u*, v*) is the velocity, p* is the density and o* is the stress tensor.
We work in a 2D Cartesian coordinate system (x*, y*); asterisk notation represents
dimensional variables. A constitutive law is also required for ¢*, which we prescribe
in the next section.
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2.1. Transversely isotropic stress tensor

Ericksen’s (1960) model consists of a stress tensor which is linear in strain rate
and depends on a unit vector a describing the fibre orientation; this model takes the
simplest form that satisfies the required invariances,

o = —p 8y + 2u'e; + piaa; + praqiaaiey + 2 (aaiey; + anage;,). (2.3)

We define p* as the pressure, §; as the Kronecker delta function and ej; = (du; /0x; +
auj’.‘ /0x})/2 as the rate-of-strain tensor (Ericksen 1960).

By considering simple flows with a uniform director field, we may interpret the
rheological parameters as follows. By setting uj = u; = uj =0, the stress tensor for
an incompressible Newtonian fluid remains, with ‘matrix viscosity’ u* (Holloway
et al. 2015). The term with pu} has no dependence on velocity, suggesting that
wui relates to a tension in the fibre direction (Dyson & Jensen 2010). This term
can also be related to the stresslet-type active behaviour of fibres in a perfectly
aligned active fluid (Holloway et al. 2016). We will therefore refer to this quantity
as the active parameter. This term can be taken as a simple model for suspensions
of self-propelling microscopic bodies such as bacteria or active gels of molecular
motor proteins. The viscosity associated with extensional flow parallel to the fibre
direction is pu[; = pu* + (13 +4p3)/2, the viscosity associated with the flow orthogonal
to the fibre direction is p% = p* and the viscosity of shear flow in the fibre
direction is u? = pu* + u3 (Dyson & Jensen 2010). Since wj only has an impact
on extensional viscosity parallel to the fibre direction, uj, it is termed the anisotropic
extensional viscosity. The parameter uj distinguishes w7 from wu} and so is labelled
the anisotropic shear viscosity; this parameter represents the difference between shear
viscosities parallel and perpendicular to the fibre direction (Green & Friedman 2008;
Dyson & Jensen 2010; Holloway et al. 2015).

2.2. Fibre evolution equation

A fibre evolution equation describes the evolution of fibre orientation with time. We
use the form given by Green & Friedman (2008),

da

Fv +u*-Va+a-(a-Vu)la=a-Vu*, 2.4)
which corresponds to a specific case of Ericksen’s (1960) equation in the long-fibre
limit. It should be noted that |a] = 1, and thus the model only considers local

alignment of fibres and not their length. This gives a generalised form of Jeffery’s
treatment for long ellipsoidal particles aligning with flow (Jeffery 1922; Dyson &
Jensen 2010).

Since a -a =1, the component of (2.4) in the a-direction is automatically satisfied.
The orthogonal component of (2.4) is

0
a- 37;1 +u*-Vatla-(a-Vula—a-Vu'| =0, (2.5)

where a’ is a unit vector perpendicular to a.

2.3. Boundary conditions

We work in a frame of reference moving with the swimmer in the x*-direction; the
horizontal flow as y* — oo therefore gives the mean swimming velocity. No-slip
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conditions on the sheet, representing a travelling wave with speed ¢* = w*/k*, are
thus

w=0, v'=-wb"cos(k’x* —w't"), ony =y =>b"sin(k’x" —'t"). (2.6a,b)

The parameter b* is the amplitude, k* is the wavenumber, y; is the equation of the
sheet surface and A* = 2n/k* is the wavelength. The velocity must remain bounded
as y* — oo.

2.4. Non-dimensionalisation

The model is non-dimensionalised as follows:
u'=—u, x'=—, f=—, p‘=o'up, o'=owuo. (2.7a—e)

The continuity and fibre evolution equations are unchanged. For microscopic
swimmers, the Reynolds number, Re = p*w* /k*zu*, is much less than 1, so we neglect
inertial terms. The resulting system of partial differential equations is therefore

V-u=0, (2.8)
V.o0=0, (2.9)
0
at. a—‘tl—ku-Va—k[a-(a-Vu)]a—a-Vu =0, (2.10)
where
0y = —pd; + 2e;; + waia; + poaiqaraey + 2us(aae; + anaie,), (2.11)
with dimensionless groups
Ky J73 M3
M=——— o=, pz=—. (2.12a—c)
W w w

The boundary conditions (2.6) become
u=0, v=-—sgcos(x—1t), ony=y,=¢esin(x—1), (2.13a,b)

where ¢ = k*b* << 1. Moreover, u and v must remain bounded as y — oo.

Four regimes in parameter space, depicted in figure 3, will be considered in our
results: (i) a passive transversely isotropic fluid, occurring when p; = 0; (ii) an
active fluid (u; non-zero) with u, = u; = 0; (iii) a nearly isotropic regime, where
all parameters take values up to 5; (iv) the regime where at least one of 1, u, and
w3 is much larger than 1. It should be noted that w; may be positive or negative,
representing active ‘puller’ or ‘pusher’ behaviour respectively (Saintillan 2010).

3. Asymptotic solution
3.1. Stream function formulation

To determine the effect of fibres on the mean swimming velocity, we consider an
initially spatially uniform fibre angle, ¢, aligned such that a(x, y, 0) = (cos ¢, sin ¢).
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(i) Passive and
transversely isotropic

H2 p
/ (iv) Active and
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FIGURE 3. Regimes of interest in the parameter space: (i) the plane ;=0 is the passive
transversely isotropic regime; (ii) the dashed line represents the active-only regime where
Ur =3 =0; (iii) the quarter cylinder is the nearly isotropic regime where neither p, nor
w3 is large; (iv) the remaining region is the fully active and transversely isotropic regime.

FIGURE 4. A schematic showing the initial uniform orientation angle, ¢, and the small
perturbation away from this angle, 6.

As the sheet swims, this alignment will evolve, initially as a small perturbation
0(x,y, t) such that

a = (cos(¢p +0), sin(¢p +9))
~ (cos¢p — O sing, sing + 6 cos ¢p) 3.1
(see figure 4). The components of the stress tensor in terms of ¢ and 6 are given in

appendix A. Taking the curl of (2.9) eliminates pressure, reducing (2.9) to a single
equation. Since the flow is incompressible, we introduce a dimensionless stream

function
0y oy
oy ax

u (3.2a,b)

transforming (2.9) to

2 2
1 ., ) , , 2% 9% 30 90
1+ — 2 Vi — 2sin2¢ [0 | — — — — ) - =
( + 2 sin” 2¢ + 3 ) ,ull sin d)( (8y2 e + oy o
n 0%6 n 2 9%0 96 44 a6 06 i 0%0
cos — - — — —
0xdy axz  0y? dx Jy 0xdy

6 [d* 0 0* 1 /0% 0% 0? 0?
[ (8 (T Py B 1 (0w oy
2\ ox* axzdy?  oy* 2 \ ox?  0y? 9y?  ox?
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06 (93 0° 9%0 9?2 a0 93 0°
_ 90 (3 3 4 +2 v +—13 vo_9w
dy \ 9y? 0x20y dxdy 0xdy  0x oxdy?  0x3
0 1/ o 0 0* 0
+6 id + = v _o¥ +cos4g¢ | 20 vo_ oW
ax?dy? 2 \ 9x3dy  9xdy? ax3dy  0xdy3
N 020  9%0\ 9%y 06 [y 3 *y
0x2  0y? ) 0xdy Ox \ 9y 0x20y

b0 (, 0y DY\ 0 (Pw v ot \]_ a3
dy U axdy?  oxd dxdy \ 9y?  ox? ax2oyr )| '

When p; = uy = ps = 0, (3.3) reduces to the familiar biharmonic equation of
Newtonian Stokes flow. The evolution equation (2.10) becomes

a0 ay 960 9y 90 . 3 0 . 0%y
b 777 Zgin2e ) =
8t+{8y ox  ox ay}jL(Sln ¢+ sm ¢> 9y2
9’ 6 9’
+ (sin 2¢ + 6 cos 2¢) ax;/fy_i_ (Cosz¢—2sin2¢> T,:éf
. 2 . %Y
+6 [(cosd)—esmgb) —(s1n¢+ecos¢)]
0x0y

: : (azw 821#))
+ (cos¢p —O0sing)(singg +60cos@p) | — — — =0. (3.4)
9y*  0x?

The boundary conditions (2.13) become

0 0
—wzo, —w:scos(x—t), ony=¢sin(x —t), (3.5a,b)
ay ox

with ¥ having bounded first derivatives as y — oo.

3.2. Perturbation expansion

To apply the boundary conditions at y=0 rather than on the sheet, we make the small-
amplitude expansion

] 02
l + asin(x—t)—f +...=0, (3.6)
9y |- ay* |,
0 0?
i + &sin(x — 1) v +..-=¢ecos(x—1). (3.7
0x |, dydx|,_

The velocity and fibre angle perturbations thus take the form

W(x’ y, I 8) :8‘,”0()@ Yy, t) + 821#1()6’ Y, [) +-- 5 (38)
O(x,y, t; €) =eb0p(x, y, 1) + 20, (x, y, £) +- - - . (3.9)

As in Taylor’s analysis, the background flow (i.e. the sheet swimming velocity) will
occur at order &2.
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3.3. Leading-order solution

Substituting the expansions into (3.3) and (3.4) and equating coefficients of powers of
¢ yields the leading-order partial differential equation. At order ¢, (3.3) yields

5% 26, 0%,
(1 + P2 Gn2 g + u;) Vo — (2 $in 26— 4+ cos 2¢ (“ - “))

4 0x0y axr  9y?
84'§//0 sin 4¢ 8410() a4¢0
4 _ —0, 3.10
+H2 (COS ¢ 0x20y? + 2 (8x8y3 9x3dy (3-10)

and (3.4) yields

a0 . 3o i TP 1/
B + sin 2¢ oxdy + cos” ¢ 02 + sin” ¢ 5y =0. (3.11)
The boundary conditions (3.6) and (3.7) become
0 0
Wo_o W0 _ ose—1). on y=0, (3.12a,b)
ay dx

combined with the requirement that the derivatives of i, are bounded as y — oo.
Equations (3.10) and (3.11) are solved with the ansatz

Vo =/ ) cos(x — 1) + f>(y) sin(x — 1), (3.13)
0o = g1(y) cos(x — 1) + g>(y) sin(x — 1), (3.14)

for some functions fi, f>, g1, g&2. Comparing coefficients of sine and cosine leads to a
system of four ordinary differential equations,

(14 2 8in* 26 + pa) (" = 2 + 1) + w1 (cos 26 (g1 + g7) — 2sin 2¢ g))

+ 12(3 sinde (fy" +f3) — cos 4 ') =0, (3.15)
(1+ fpasin® 2¢ + pu3) (" — 265 + f2) + 11(cos 26 (g2 + g5) +2sin2¢ g})

— a3 sinde (f +f]) +cosdg fy) =0, (3.16)

g1 —sin2¢ f] +sin’g fy — cos’p f, =0, (3.17)

2> —sin2¢f; —sin’¢ f + cos’p f; =0, (3.18)

where the prime denotes differentiation with respect to y.
Substituting (3.17) and (3.18) into (3.15) and (3.16), the system reduces to two
ordinary differential equations for f; and f>. Assuming a basis of solutions of the form

(;) = @) eV (3.19)

reduces the problem to the linear system

L (}?) = (8) ,  where L= (2: Ei) ) (3.20)
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The components of L are given in appendix B. It should be noted that L;; = L,, and
further that L, = —L,,. For a non-trivial solution, the determinant of the matrix L must
be zero, yielding the equation

L, + L3, =0; (3.21)
hence,
Ly = &ily,, (3.22)
and so
Ly
A= —ff?’
12
= Fif}. (3.23)

Equation (3.21) has eight complex roots, A;, four with positive real part and four
with negative real part. Since the velocity must remain bounded as y — oo, we
disregard the positive roots. The other four form two complex conjugate pairs,

Ay =a;+if;, A =ao —ip, (3.24a,b)
/12 =oy+ iﬁZ» 14 =0 — 1/32 (3250,b)

It should be noted that the A; are known analytically; however, they are not given here
due to space constraints.
The solution form for v is thus

4
Yo=Y Aj(cos(x— 1) +&sin(x — 1))e"”, (3.26)

j=1

where & = —i for j=1,2 and § =i for j=3, 4. Assuming that the constants take the
general form A; =A; +1B; for j=1, 2, 3, 4, the boundary conditions (3.12) give

N o1 — oy

T 2((a — @)+ (B — )Y
. o —ajar + B — i

S 2((n — )+ (B — B)D)]
_ aif — oy + B — BiBe
C2((ar — )2+ (B — B

The fibre angle perturbation is then of the form

Al A2:_Ala A3:Als A4:_Ala

B;=—-By, (3.27)

B

B,

4
6y = ZAJ [(/lj sin 2¢ + “;‘j(—/lf sin® ¢ + cos® ¢)) cos(x — 1)
j=1

+ (§4;sin 2¢ 4 A7 sin’ ¢ — cos” ¢) sin(x — 1)] . (3.28)

The change in the small perturbation to the orientation, 6, is dependent on the initial
orientation angle of the fibres along with their position.
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3.4. Order-&* solution and mean swimming velocity

The mean swimming velocity is determined by the horizontal component of the flow
as y tends to infinity. The leading-order stream function, equation (3.26), tends to zero,
and hence the non-zero mean swimming velocity is determined at order &2,

9
U~ U, = tim &2 2V (3.29)

oo dy

We neglect the oscillatory terms to determine the leading-order term in the expansion
of mean swimming velocity, which we denote as U;. The bar notation represents an
average over one time period.

At order &%, the boundary conditions (3.6) and (3.7) become

0 92 0 92

Ol sinGe— 1) ‘é‘) 0. W sine-n 2 =0, (3.30a.b)

ay =0 ay =0 ox =0 dyox =0

and hence
Y 1 .
g = 5 (o — B1B2) (1 —cos2(x — 1) — (a1 B — axBy) sin 2(x — 1)),  (3.31)
y=0

0
Wil o, (3.32)
ax |,_o

Because of the form of the boundary conditions, the ansatz is

U1 =£i() +H ) cos 2(x — 1) 4+ f5(y) sin 2(x — 1), (3.33)

for some functions fl, fz and ]% Substituting the solution form (3.33) into the order-&>
expansion of (3.3), shown in full in appendix B, and equating coefficients of non-
oscillating terms, we have

fl" =0, (3.34)

and hence
fiy) =AY’ + By’ + Cy +D. (3.35)
To ensure that the velocity remains bounded as y — oo, we set A =B =0. From the

boundary conditions (3.31) and (3.32), we find that C = (¢, — 8182)/2 and D =0,
and hence

fi) = %(alaz — BiB). (3.36)

Differentiating fl (y) with respect to y, the leading-order term in the expansion of mean
swimming velocity is calculated as

U= 5(ai0r = Bi o). (3.37)
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3.5. Mean rate of working

To determine how Stokesian swimming is affected by transverse isotropy, the mean
rate of working at order ¢ is investigated, i.e. the rate of working per unit area of the
sheet against viscous stress, e2W (Taylor 1951). The mean value of this quantity is
given by

) (3.38)

y=0

where y; is the equation of the sheet surface and 07,|,—¢ is the normal stress evaluated
on the sheet. The no-slip condition is =0 on the sheet, and hence du/dx =0, and,
via (2.8), dv/dy =0. In terms of the stream function, oy, is

) . 3 . 3y Y
0p=—p—+pu;sin“ ¢+ (u,cosgpsin’ ¢ + uzsin2¢) | — — —- | . (3.39)
9y?  ox?
Solving (2.9), using the leading-order expression for the stream function (3.26),
determines the pressure. Noting that cos?(x —f) = 1/2, we obtain an expression for
the leading-order term in the expansion of the mean rate of working,

W = —& [(afar — arfi(B1 +262)
+ o (Ol§ — B2(2B1 + B2)))(8 + 12 (1 + cos 4¢p) + 8uz)
+ 421 + a1 Br) o sindg] . (3.40)

4. Results

The leading-order terms in the expansions of the mean swimming velocity (3.37),
the mean rate of working (3.40), the fibre perturbation (3.28), the velocities uy =
0Y/0y, vg = —0Yy/dx and the stream function (3.26) have been found analytically
in terms of lengthy expressions for «;, B;. The analytical results for the mean rate of
working have been recreated numerically using finite differences and integration by
the midpoint method. Each separate component has been verified along with the full
solution. The solutions agreed to within a small degree of numerical error. For brevity,
we will refer to the time averages of the leading-order terms in the expressions for
the swimming velocity and the rate of working as the mean swimming velocity and
the mean rate of working respectively, and we will plot terms without the leading &>
factors as defined by U;, W in (3.29) and (3.38).

We now discuss the results in more detail. Four different flow regimes are
considered (figure 3): (i) a passive transversely isotropic fluid, occurring when
uy = 0; (i) an active fluid where u, = u; =0 and p; is non-zero; (iii) a nearly
isotropic regime, where all parameters take values up to 5; (iv) the regime where
at least one of w;, o and p; is much larger than 1. A range of initial orientation
angles, ¢, between 0 and 27 is considered for all regimes and the active parameter,
U1, 1s allowed to take both positive and negative values to account for ‘puller’ and
‘pusher’ active behaviour respectively. It should be noted that since the fibres have
no directionality, the regime ¢ = 0—7 is identical to ¢ = n-2m.

4.1. Regime (i): effect of passive fibres on mean swimming velocity and rate
of working

Passive fibres exert no shear-independent force and have no self-propulsive properties;
hence, the active parameter p; is set to zero. In this regime, the mean swimming
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FIGURE 5. Mean rate of working by the swimmer in a transversely isotropic fluid where
@1 =0. (a) The mean rate of working for varying p, and ps;. This result is identical for
all initial angles ¢. (b) The change in the mean rate of working for increasing u; for
a range of u; and set p, values: pu, =0 (solid line), u, =300 (dashed line), w, = 600
(dash-dotted line) and w, =900 (dotted line).

velocity takes on the Newtonian value, U; = 1/2, and the mean rate of working is
independent of the initial orientation angle ¢. In figure 5(a), the mean rate of working
is always greater than or equal to the Newtonian case, W = 1. The increase in the
mean rate of working is linear throughout, with @; having a larger impact than u,.
Figure 5(b) depicts the relationship between the mean rate of working and the parallel
viscosity py =1+ (2 +4u3)/2, where each line represents a different value of ;.
The increase in the mean rate of working with p is linear, apart from the case where
wu3 is small and w, is large, with a large mean rate of working as p, increases.

4.2. Regime (ii): active-only effects on mean swimming velocity and rate of working

The active-only regime considers @, and p; to be zero with w; non-zero. The mean
swimming velocity is considered in figure 6 and the mean rate of working in figure 7.
For pu; =0, we regain the Newtonian result, and hence both the mean swimming
velocity and the mean rate of working are independent of the fibre angle. For non-zero
active parameter w,, the mean swimming velocity and mean rate of working vary
considerably with the fibre angle. In particular, negative mean swimming velocity —
i.e. reversal of swimming direction — and negative mean rate of working are observed
in certain regimes for large w,, with a sudden and dramatic switch in sign close to
¢ =37 /4 (figures 6¢,d and 7c¢,d). It should be noted that this can be resolved through
refinement of the plotting grid and is not a discontinuity. A change from ‘pusher’- to
‘puller’-type active behaviour (equivalent to a change in sign of w;) is equivalent to
a reflection in the line ¢ = /2 (31/2).

4.3. Regime (iii): nearly isotropic behaviour in leading-order mean swimming
velocity and rate of working

A small perturbation away from the isotropic case is considered here; u;, @, and ws
take values of up to 5. When p; is much smaller than 1 and positive (figure 8a,b),
a small perturbation away from the Newtonian case is observed. As p; continues
to increase, angular dependence becomes more prevalent. For the mean swimming
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FIGURE 6. Mean swimming velocity versus the initial orientation ¢, where u, = u; =0.
Panels (@) and (b) depict small positive and negative p; values: O (solid line), 0.1
(dashed line), £1 (dash-dotted line) and £5 (dotted line). Panels (c) and (d) depict larger
1 values: O (solid line), 2300 (dashed line), £600 (dash-dotted line), 900 (dotted line),
where the arrows denote increasing ;.

velocity, w, has minimal impact, while w; reduces the range of values that the
background flow can take. For the mean rate of working (figure 9), @, again has
little impact on the results, and the effect of increasing w3 is to increase the cost
of swimming. When p; = £5 (figure 9e,f), the mean rate of working may become
negative, and the effect of increasing w; is to reduce the range of values that the
mean rate of working will take.

4.4, Regime (iv): the effect of large rheological parameters on leading-order mean
swimming velocity and rate of working

The final regime is where at least one of w;, u, and p; is much larger than 1.
Figures 10 and 11 depict how the mean swimming velocity and mean rate of working
change with the initial orientation angle, ¢. When either u, or u; is non-zero, the
steep peaks that occurred at ¢ = 3n/4 (7n/4) (figure 6¢) and ¢ = n/4 (Sw/4)
(figure 6d) within regime (ii) no longer appear. Further, when w, is non-zero and
w3 =0, the mean swimming velocity becomes negative for certain initial orientation
angles, i.e. the swimming direction is reversed. When u; becomes non-zero, the
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FIGURE 7. Mean rate of working versus the initial orientation ¢, where u, = usz = 0.
Panels (a) and (b) depict small positive and negative p; values: O (solid line), £0.1
(dashed line), 1 (dash-dotted line) and £5 (dotted line). Panels (c¢) and (d) depict larger
w1 values: 0 (solid line), £300 (dashed line), 600 (dash-dotted line), 900 (dotted line),
where the arrows denote increasing p;.

results collapse down towards the Newtonian case, altered predominantly by the
active parameter, ;. Similar results are seen for the mean rate of working; however,
for non-zero us; (figure 1lc,d), the reference value about which variations occur is
significantly increased.

4.5. Orientation, velocity and stream function

Finally, to understand how the fibre orientation and velocity are impacted by the
anisotropic fluid properties, the orientation angle (¢ + 6) and velocity are considered
in active and passive regimes, and the stream function is considered in all four regimes
of interest (figures 12-14 respectively). Each variable is plotted for one wavelength
of the sheet, x = 0-2mw. We focus on the case where the fibres are aligned with the
sheet, i.e. ¢ =0, and plot results at time t=0 (i.e. the start of one oscillation period).
See the supplementary movies available at https://doi.org/10.1017/jfm.2016.821.
Considering first the fibre orientation, in all cases, perturbations to the initial
orientation angle are greater in the vicinity of the sheet and are displaced with the
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FIGURE 8. Mean swimming velocity versus ¢, where the parameters i, @, and u; take
values of up to 5. Panels (a) and (b) show w; = =£0.1, (¢) and (d) show pu; = =+1 and
(e) and (f) show w; = =£5. Each line depicts a different p, and w3 combination: u, =
0, w3 =0 (solid line), u, =1, u3; =0 (dashed line), u, =0, uz =1 (dash-dotted line) and
2 =1, u3 =1 (dotted line).


https://doi.org/10.1017/jfm.2016.821

https://doi.org/10.1017/jfm.2016.821 Published online by Cambridge University Press

516 G. Cupples, R. J. Dyson and D. J. Smith

(a) 121 (b) 12 1
8 8
W 4 4
0 0
_4 . . 4 .
0 /2 b4 31/2 27 0 /2 b1t 3n/2 271
(c) 124 (d) 12
8 8
—4 T T -4 T
0 /2 b4 31/2 27 0 /2 bid 31/2 27
(e) 121 (f) 124
8 4
W af A
i
o1 Ik
r r r r -4 r r
0 /2 b4 31/2 27 0 /2 T
¢ ¢

FIGURE 9. Mean rate of working versus ¢, where the parameters w;, u, and u; take
values of up to 5. Panels (a) and (b) show p; = +£0.1, (¢) and (d) show p; ==+1 and
(e) and (f) show p; = +£5. Each line depicts a different p, and p; combination: p, =
0, w3 =0 (solid line), u, =1, w3 =0 (dashed line), u, =0, w3 =1 (dash-dotted line) and
=1, uz =1 (dotted line).

movement of the sheet (figure 12 and movie 1). For passive rheology, the fibre
reorientation is dampened very quickly moving away from the sheet (figure 12a).
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FIGURE 10. Mean swimming velocity versus ¢ when at least one of u;, w1, and u; is
much larger than 1. Panels (@) and (c) depict positive w; values and (b) and (d) depict
negative w; values. The values p; takes are O (solid line), £300 (dashed line), 600

(dash-dotted line) and £900 (dotted line). In (a) and (b), u, =900, u; =0, and in (c)
and (d), uy =0, w3 =900, where the arrows denote increasing ;.

Once w; is non-zero, fibre displacement appears further away from the sheet
(figure 12b) and movements propagate to the right.

Figure 13 and movie 2 show the velocity components in x and y. The leading-order
velocity decays quickly moving away from the sheet, as is evident in figure 13(a);
in the active-only regime (figure 13b), the flow decays more slowly. The velocity
field shows a similar rightward propagation to fibre angle in the active-fluid case
(figures 120 and 13b). These results are mirrored in figure 14 and movie 3, where
the streamlines of the resulting flow are displayed. In the passive regime (i), the
streamlines are symmetric about x = 1t with anticlockwise flow between x =0 and =
and clockwise flow for x = w-2m. Introducing w, distorts the streamlines, and, when
Uo = i3 = 0, the streamlines are deflected to the right (figure 14b); introducing the
other two parameters dampens this deflection (figure 14c,d).

5. Discussion

The classical Taylor’s swimming sheet problem was modified to account for
transverse isotropy, modelling swimming in fibre-reinforced fluids or active media.
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FIGURE 11. Mean rate of working versus ¢ when at least one of u;, i, and w3 is much
larger than 1. Panels (@) and (c) depict positive p; values and (b) and (d) depict negative
w1 values. The values wu; takes are O (solid line), 300 (dashed line), 600 (dash-dotted
line) and £900 (dotted line). In (a) and (b), u, =900, u3; =0, and in (¢) and (d), u, =
0, u3 =900, where the arrows denote increasing ;.

The quantities of interest were the steady background flow, which corresponds to the
mean swimming velocity, and the mean rate of working. The results presented were
non-dimensional. The dimensional velocity scales with the wave speed, and the rate
of working scales with the square of the frequency, the viscosity and the wavenumber.
The ratio of the mean swimming speed to the wave speed is proportional to 1/
When U, takes the maximum value found here, such that U; ~ 40, this corresponds

to swimming faster than the wave speed when ¢ > 1 /\/U»l ~0.16. It should be noted
that swimming with a prescribed beat amplitude and frequency, regardless of the
rheology of the fluid, will not in general be achievable in a real biological system.
When u, is zero, no dependence on the initial orientation angle is observed and
the mean swimming velocity takes on the Newtonian value, regardless of the size
of the other parameters. For non-zero p;, certain initial orientation angles enable
less energetically costly but slower swimming, with lower mean rates of working
and swimming velocities. The initial angles maximising the mean swimming velocity
and the mean rate of working are not in general the same. When active fibres are
parallel to the swimming direction, swimming is both faster and more energetically
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FIGURE 12. Fibre angle, ¢ + ¢6,, in passive and active regimes: (a) the passive regime
(1 =0, up =pu3;=>5) and (b) the active-only regime (| =35, u, = 3 =0). In each panel,
t=0, £ =0.2 and the initial orientation angle is ¢ =0. See movie 1.
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FIGURE 13. Velocity field in passive and active regimes: (a) passive regime (u; =0, pu, =
n3 =15) and (b) active-only regime (u; =5, o = 3 =0). In each panel, r =0 and the
initial orientation angle is ¢ =0. See movie 2.

costly compared with active fibres perpendicular to the swimming direction. The
sheet utilises the surrounding environment to boost its velocity, a result seen in
Leshansky (2009) for point-like obstacles and Chrispell, Fauci & Shelley (2013) for
swimming in viscoelastic fluids near walls. However, these authors also predict an
increased swimming efficiency, a result not seen here. A change from ‘pusher’ to
‘puller’ behaviour (equivalent to a change in sign of ;) equates to a reflection of
the initial fibre angle in the y-axis. The activity parameter p; allows the mean rate
of working to take on negative values, suggesting that the tension/stresslet exerted
by the fibres on the sheet may at times overcome the work the sheet does on the
fluid to move. For some values of 1, the mean swimming velocity may be negative,
indicating a reversal of swimming direction; this change is dependent on the uniform
orientation angle ¢, a result also observed for rotated viscoelastic networks (Wrébel
et al. 2016). The inclusion of active behaviour dramatically changes the streamlines
and flow field.
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FIGURE 14. Instantaneous streamlines in the four regimes considered: (a) passive regime
(u1 =0, up = 3 =15), (b) active-only regime (u; =5, o = 3 =0), (¢) nearly isotropic
regime (u;, =u3=1, up =0) and (d) regime where at least one of the parameters is much
larger than 1 (u; = up, = w3 =900). In each panel, =0 and the initial orientation angle
is ¢ =0. See movie 3.

For a passive transversely isotropic fluid, i.e. p; =0, increasing the magnitude of
the viscosity-like parameters increases the work the sheet must do on the fluid to
swim; the fluid becomes more difficult to move through. The mean rate of working
was found to be approximately linear in the parallel viscosity pu; =1+ (u, +4u3)/2,
with a small additional dependence on ;. For an active isotropic fluid (i is non-zero
and w, = u3 =0), we observe potentially unphysical behaviour when w; is increased
sufficiently, with rapid large variations with respect to ¢ in both the mean swimming
velocity and the rate of working. It should be noted, however, that a large value of
K1 with @, = 3 =0 may not represent a physically realistic fluid. These unphysical
effects are reduced by the inclusion of w3 in particular, and to a lesser extent p,,
dampening these large variations.

When the rheological parameters are all non-zero, increasing the anisotropic shear
viscosity causes the mean swimming velocity to collapse down towards the Newtonian
result, altered slightly by the active properties of the fluid. However, the mean rate of
working is increased in general. The anisotropic extensional viscosity has a similar
but much smaller effect.
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This study demonstrates that locomotion in active fluids is dramatically different
from locomotion in passive fluids. Our finding of zero, and indeed negative, rate of
working for some angular configurations and sufficiently large values of the active
parameter (; is a consequence of the energy input to the system by active stress.
This phenomenon may be related to superfluid behaviour recently observed in bacteria
suspensions (Lépez et al. 2015). Further, these results are suggestive that active
stresses in the bulk may enhance the motion of individual swimmers. It has long
been known that some flagellated swimmers may propel more rapidly in polymeric
than Newtonian fluids (Schneider & Doetsch 1974). An increase in the anisotropy of
the slender-body drag coefficients has been proposed as one underlying mechanism
(Berg & Turner 1979; Magariyama & Kudo 2002); recently, Martinez et al. (2014)
demonstrated that viscosity reduction associated with high-speed flagellar rotation
provides an alternative explanation. The present model does not support a change to
mean swimming speed purely through fluid anisotropy; because we analysed only 2D
propulsion with constant viscosity-like parameters, we are unable to comment on the
effect of shear-thinning on rotation.

The passive region of parameter space with p; = 0 represents the anisotropic
characteristics of the aligned passive microstructure of cervical mucus. Key aspects
that may be explored in future work include shear-dependent viscosity and dispersion
of fibre alignment. The active regime p; #0 may be considered as a model of motility
through an active aligned medium, which may capture some of the essential physics
of sperm migration through ciliated epithelium in the female reproductive tract. Our
predictions could be tested experimentally by constructing an actuated membrane and
studying the dynamics of an overlying suspension of swimming bacteria or microrods.

This study has opened up a number of exciting future research directions. These
include (but are not limited to) investigating the effects of viscoelasticity (cf. Kruse
et al., 2005), fibre dispersion (cf. Woodhouse & Goldstein, 2012) and the presence
of walls (cf. Katz, 1974). Similarly, coupling the flagellar elastic behaviour to the
viscous fluid mechanics to determine the effect on the beat pattern (Riley & Lauga,
2014), and a full 3D computational treatment of the problem would be of interest.
The model may also be developed to apply to peristaltic pumping by taking into
account a cylindrical tube geometry. Taylor’s swimming sheet has inspired decades
of research into biological propulsion; the study presented here shows that Taylor’s
model continues to enable insight into novel areas of active fluid mechanics.
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Appendix A. Components of the stress tensor

Assuming that the velocity takes the form u = (u(x, y, 1), v(x, y, t)), the components
of the stress tensor are calculated as

o1 = —p+ pi(cos g — 6 sin @)’ + (2 + pa(cos ¢ — 6 sin p)*
+4p15(cos ¢ — 0 sin ¢)?) ?T” + (o (cos ¢ — 0 sin ¢)>(sin ¢ + 0 cos @)
X
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+2u3(cos ¢ — 6 sin ¢)(sin ¢ + 6 cos ¢p)) ( + )
ay  0dy

+ po(cos ¢ — 0 sin ¢)*(sin ¢ + 6 cos ¢)* 2;’ (A1)
012 = 071
= i(cos¢ — 6O sin ¢)(sin ¢ + 0 cos ¢)
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X 2413(cos ¢ — 0 sin ) (sin ¢ + 6 cos )) (g;’ + gz)
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Appendix B
The components of the matrix L are calculated as
L, = (1 n % sin? 26 + M) A = 2% + 1) — o2 cos 4¢b

+ 1[2 sin 2¢ (A cos® ¢ — A% sin® @) + (1 + A%) cos 2¢ sin 2¢], (B1)
Ly = —ui[227 sin® 2¢p 4+ cos 2¢((A* + A*) sin® ¢ — (1 + 2%) cos” ¢)]

+ % (2% + ) sin 46, (B2)
where L22 = L“ and L21 = —L12.
Appendix C

The balance of (3.3) at order & is given by

56 26, 9%
(1+&sin22¢+,u3) Vi — o (2sin2¢ —b 4 cos2g [ 2 O
0x0y oxz  9y?

4
O sindg [y 0%y
4 _
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Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2016.821.
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