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A rigorous derivation and validation for linear fluid–structure-interaction (FSI) equations
for a rigid-body motion problem is performed in an Eulerian framework. We show
that the ‘added stiffness’ terms arising in the formulation of Fanion et al. (Revue
Européenne des Éléments Finis, vol. 9, issue 6–7, 2000, pp. 681–708) vanish at the
FSI interface in a first-order approximation and can be neglected when considering the
growth of infinitesimal disturbances. Several numerical tests with rigid-body motion are
performed to show the validity of the derived formulation by comparing the time evolution
between the linear and nonlinear equations when the base flow is perturbed by identical
small-amplitude perturbations. In all cases both the growth rate and angular frequency
of the instability matches within 0.1 % accuracy. The derived formulation is used to
investigate the phenomenon of symmetry breaking for a rotating cylinder with an attached
splitter plate. The results show that the onset of symmetry breaking can be explained
by the existence of a zero frequency linearly unstable mode of the coupled FSI system.
Finally, the structural sensitivity of the least stable eigenvalue is studied for an oscillating
cylinder, which is found to change significantly when the fluid and structural frequencies
are close to resonance.

Key words: flow–structure interactions, computational methods

1. Introduction

Fluid–structure-interaction (FSI) studies span a vast and diverse range of
applications – from natural phenomenon such as the fluttering of flags (Shelley & Zhang
2011), phonation (Heil & Hazel 2011), blood flow in arteries (Freund 2014), path of rising
bubbles (Ern et al. 2012), to the more engineering applications of aircraft stability (Dowell
& Hall 2001), vortex induced vibrations (Williamson & Govardhan 2004), compliant
surfaces (Riley, Gad-el Hak & Metcalfe 1988; Kumaran 2003) etc. The phenomena that
emerge out of an FSI problem often exhibit a highly nonlinear, dynamically rich and
complex behaviour with different flow regimes such as fluttering and tumbling of plates
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falling under gravity (Mittal, Seshadri & Udaykumar 2004), or the unsteady path of rising
bubbles (Mougin & Magnaudet 2001; Ern et al. 2012). Despite its nonlinear nature, the
initial transitions from one state to another may often be governed by a linear instability
mechanism. The simplified case of a linear instability of a parallel boundary layer over
a compliant surface was first derived and investigated by Benjamin (1959, 1960) and
Landahl (1962). For boundary layers over Krammer-type compliant surfaces, the linear
hydrodynamic instability study was performed by Carpenter & Garrad (1985, 1986) using
this formulation and subsequently several studies have used the same formulation for
studying flow instabilities over flexible surfaces, for example, Carpenter & Morris (1990)
and Davies & Carpenter (1997).

When the parallel flow assumption is no longer valid a global approach needs to be
taken. From the perspective of global instabilities in FSI problems, the first such study
was reported by Cossu & Morino (2000) for the instability of a spring-mounted cylinder.
The authors considered a rigid two-dimensional cylinder that was free to oscillate in
the cross-stream direction, subject to the action of a spring-mass-damper system. The
linearized equations were solved in a non-inertial frame of reference attached to the
cylinder. For low (solid to fluid) mass density ratios, the authors report that the critical
Reynolds number for vortex shedding drops to Rec ≈ 23. Mittal & Singh (2005) also
reported a similarly low critical Re for a cylinder oscillating in both streamwise and
transverse directions. A non-inertial reference is also used by Navrose & Mittal (2016) to
study the lock-in phenomenon of cylinders oscillating in cross-stream through the linear
stability analysis. More recently, Magnaudet and co-workers approached the problem of
rising and falling bodies through the perspective of linear instability. Fabre, Assemat
& Magnaudet (2011) developed a quasi-static model to describe the stability of heavy
bodies falling in a viscous fluid. Assemat, Fabre & Magnaudet (2012) performed a linear
study of thin and thick two-dimensional plates falling under gravity. The problem is
again formulated in a non-inertial frame of reference of the moving body undergoing
both translation and rotation. The authors showed a quantitative agreement between the
quasi-static model of Fabre et al. (2011) and the linear stability results for high mass-ratio
cases, although the agreement systematically deteriorated as the mass ratio was reduced.
Tchoufag, Fabre & Magnaudet (2014a) performed similar studies for three-dimensional
disks and thin cylinders, Tchoufag, Magnaudet & Fabre (2014b) applied the linear stability
analysis to spheroidal bubbles and Cano-Lozano et al. (2016) to oblate bubbles.

In general, linear FSI investigations have largely followed one of two methodologies.
Either through the parallel flow approach or through frames of reference attached to
the rigid body in motion. There are a few exceptions to this. Lesoinne et al. (2001)
formulated the linear FSI problem in the arbitrary-Eulerian–Lagrangian (ALE) form of
the inviscid Navier–Stokes where they treated the grid velocity as a pseudo-variable.
Fanion, Fernández & Le Tallec (2000) derived a more general formulation starting from
the ALE equations in the weak form, which has been used by Fernández & Le Tallec
(2003a,b). The authors derive a formulation independent of the fluid grid velocity, but
both the boundary conditions and the fluid stresses at the FSI interface are modified. The
velocity continuity boundary condition transforms to a transpiration boundary condition
while additional stress terms at the interface are obtained comprising of higher-order
derivatives of the base flow. These additional stresses have been termed as ‘added stiffness’
terms (Fernández & Le Tallec 2003a,b). Goza, Colonius & Sader (2018) used an immersed
boundary method for the global stability analysis of inverted flag flapping. In a very recent
development, Pfister, Marquet & Carini (2019) also derived the linear FSI formulation
with the ALE framework. In their formulation the fluid and structural quantities are solved
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on the moving material points. The standard Navier–Stokes and divergence equations are
therefore modified to account for the motion of the material points. Using this formulation
on moving material points, the authors have investigated several different FSI problems
including ones with nonlinear structural models, elastic flutter instabilities and finite aspect
ratio structures (Pfister et al. 2019; Pfister & Marquet 2020).

In the current work we follow the methodology of Fanion et al. (2000) and Fernández
& Le Tallec (2003a) which, in spirit, is similar to the methodology used by Benjamin
(1960) and Landahl (1962) for compliant wall cases. However, unlike Fanion et al.
(2000) we proceed with the linearization of the equations in their strong form. The final
expressions for the linearized equations are all evaluated on a stationary grid (Eulerian
formulation). The resulting expressions for the linearized FSI problem are very similar
to the ones obtained by Fanion et al. (2000); however, some crucial differences arise for
the stresses at the interface. The ‘added stiffness’ terms arising in the work of Fanion
et al. (2000) are shown to vanish at first order. While we invoke no special assumptions
for the linearization of the fluid equations (other than small-amplitude perturbations),
the current capabilities of our numerical solver limits the class of FSI problems that
can be validated. Therefore, we confine the focus of the current work to FSI problems
undergoing rigid-body motion and defer a more general formulation and validation to
future work. The derived formulation for rigid-body linear FSI is numerically validated
by comparing linear and nonlinear evolution of different cases which are started from the
same base flow state, perturbed by identical small-amplitude disturbances. It is shown
that the linear and nonlinear simulations evolve nearly identically through several orders
of magnitude of growth of the perturbations. The nonlinear cases eventually reach a
saturated state while the linear simulations continue with the exponential growth. The
derived equations are then used to investigate the instability of an oscillating cylinder at
subcritical Reynolds numbers, for an ellipse in both pure translation and pure rotation, and
for the case of symmetry breaking in a cylinder with an attached splitter plate. Finally, in
§ 4 we investigate the structural sensitivity of the least stable eigenvalue in the coupled
FSI problem of an oscillating cylinder at Re = 50, with varying structural parameters.

The remainder of the paper is organized as follows. In § 2 we describe the problem
in a general setting and derive the linearized equations for a FSI problem for rigid-body
motion. Numerical validation and results for the derived formulation are presented in § 3.
In § 4 we introduce the adjoint problem for the linear FSI system of a cylinder oscillating
in cross-flow and show the changes in structural sensitivity of the unstable eigenvalue.
Section 5 concludes the paper.

2. Linearization of FSI

2.1. General problem description
We primarily follow the index notation with the implied Einstein summation. Bold face
notation is used to represent vectors where necessary. Consider a FSI problem as illustrated
in figure 1. The bounded region in white marked by Ω f represents the fluid part of the
domain and the grey region marked by Ω s represents the structural domain. The combined
fluid and structural regions are bounded by the boundaries represented by ∂Ω f

v and ∂Ω f
o .

Here ∂Ω f
v represents the far-field boundary conditions which define the problem and ∂Ω f

o
represents the open boundary condition applied for computations performed on a finite
sized domain. The structural domain is bounded by the time varying FSI interface Γ (t) on
which the fluid forces act. The Navier–Stokes equations, along with the incompressibility
constraint govern the evolution of the fluid in Ω f . For a problem with moving interfaces,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

68
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.685


903 A35-4 P. S. Negi, A. Hanifi and D. S. Henningson

∂Ω f
v

∂Ω f
v

∂Ω f
v

∂Ω f
o

Ω f

Ω sΓ 0 Γ(t)

FIGURE 1. Domain for a general FSI problem. The equilibrium position of the interface is
marked by Γ 0 and the perturbed position is marked by Γ (t).

the Navier–Stokes is usually formulated in the ALE formulation (Ho & Patera 1990, 1991)
defined on moving material points as

∂Ui

∂t

∣∣∣∣
W g

+ (Uj − Wg
j )

∂Ui

∂xj
= − ∂P

∂xi
+ 1

Re
∂2Ui

∂xj∂xj
, (2.1a)

∂U0
i

∂xi
= 0. (2.1b)

Here U and P represents the fluid velocity and pressure, respectively, while W g represents
the velocity of the material points. We refer to the time derivative in this formulation
(∂Ui/∂t|W g) as the ALE time derivative evaluated when following a material point with
velocity W g. Note that W g is not uniquely defined. The only restriction on material point
velocity is for the points on the interface Γ (t), where the fluid velocity is equal to the
velocity of the interface points. Typically W g is defined by some function which smoothly
extends the velocity at the interface to the rest of the fluid domain.

The equations governing the structural motion depend on the type of modelling
or degrees of freedom of the structure being considered. Confining the discussion to
rigid-body motion problems, we represent the structural equations in a general form as

M∂2ηi

∂t2
+ D ∂ηi

∂t
+ Kηi = Fi. (2.2)

Here M is a generalized inertia, D is a generalized damping, K is a generalized stiffness
and Fi represents the fluid forces acting on Γ (t). The equation represents a typical linear
spring-mass-damper system for rigid-body motion. The structural degrees of freedom are
represented by ηi, whose definition depends on the type of modelling used for the structure.
For example, for a cylinder free to oscillate in one direction subject to a spring-damper
action (as in Cossu & Morino 2000), ηi represents the position of the centre of mass in
that direction, M is the cylinder mass, D is the damping coefficient, K is the spring
stiffness constant and Fi is the integral of the fluid forces acting on the cylinder in the ith
direction.

The fluid and structural domains are coupled at the FSI interface through a no-slip and
no penetration condition. Defining xΓ as the (time-dependent) position of points on the
interface Γ (t) and vΓ as their instantaneous velocity, we may write the boundary condition
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as

Wg
i = Ui = dxΓ

i

dt
= vΓ

i on Γ (t). (2.3)

The coupled problem is now defined by (2.1a) and (2.1b) in the fluid domain, (2.2) in the
structural domain, coupled with the no-slip condition at the interface (2.3). The problem
is completed by the application of appropriate Dirichlet boundary conditions on ∂Ω f

v and
open boundary conditions on ∂Ω f

o . We assume that the outer domain boundaries always
remain stationary.

2.2. Steady state
For the problem described in § 2.1, consider a full system state given by (U0, P0, η0)
(referred to as the base flow state), defined on material points x0, which satisfies the
time-independent incompressible Navier–Stokes and structural equations (along with the
respective boundary conditions), i.e.

U0
j
∂U0

i

∂xj
+ ∂P0

∂xi
− 1

Re
∂2U0

i

∂xj∂xj
= 0, (2.4a)

∂U0
i

∂xi
= 0, (2.4b)

Kη0
i − F 0

i = 0, (2.4c)

Ui = vΓ
i = 0; on Γ 0. (2.4d)

Here F 0
i are the fluid forces acting on the structure at equilibrium and Γ 0 is the equilibrium

position of the FSI interface.

2.3. Linearization of the structure
We begin with the linearization of the structural equations. In defining the generalized
structural equation (2.2) we make an implicit assumption that the structural equations
are inherently linear, which we consider appropriate for the class of rigid-body motion
problems that are being considered. In principle, nonlinear spring-mass-damper systems
may also be considered but for the moment we restrict the discussion to linear
spring-mass-damper systems. Given an initial stationary solution η0

i of the structural
equation, we may introduce a perturbed state given by the superposition of the stationary
state and small-amplitude perturbations, i.e. ηi = η0

i + η′
i. Similarly, we decompose the

fluid forces acting on the structure as Fi = F 0
i + F ′

i , where F ′
i are the fluid forces acting

on the structure due to the (yet unknown) linearized fluid perturbations. Introducing the
decomposition into (2.2), we obtain the equations for the structural perturbations

M∂2η′
i

∂t2
+ D ∂η′

i

∂t
+ Kη0

i + Kη′
i − F 0

i − F ′
i = 0. (2.5)

Equation (2.5) will be completed if we can evaluate the expression for the term F ′
i arising

due to the linearized fluid perturbations. The two systems (fluid and structure) are coupled
through the term F ′

i and the velocity boundary conditions at the interface.
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2.4. Taylor expansion based linearization of the fluid equations
To begin with, we define an affine mapping between the material points in the reference
(equilibrium) configuration and the perturbed points as

x = [I + R′]x0 + b, (2.6a)

∴ Δx = R′x0 + b. (2.6b)

Here b is a vector representing a constant translation of the material points, I is the identity
matrix and R′ can be considered to be a ‘perturbation matrix’ for the material points.
Using such a decomposition allows us to conveniently express the inverse mapping

∂x0

∂x
=
(

∂x
∂x0

)−1

= [I + R′]−1
. (2.7)

For a small deformation, we may assume that ||R′|| � 1 and the matrix inverse may then
be written as [I + R′]−1 = I − R′ + R′2 − R′3 · · · . (2.8)

Retaining only the first-order term of the expansion, we obtain the approximate inverse as

∂x0

∂x
=
(

∂x
∂x0

)−1

≈ [I − R′] . (2.9)

We refer to (2.9) as the geometric linearization of the problem. This allows us to
conveniently reformulate all derivative terms evaluated on the perturbed grid in terms of
the derivatives in the reference configuration. In addition, since R′ is a perturbation matrix,
this allows us to identify higher-order terms arising due to this geometric nonlinearity and
later discard them when we retain only the first-order terms. In what follows, all quantities
of the form ∂/∂x0

j represent the evaluation of derivatives in the reference configuration.
Next we define a perturbation field for the fluid components (u′, p′). The perturbation

field is also defined on the same equilibrium grid x0 on which the base flow (U0, P0) has
been defined. The total velocity and pressure fields on the perturbed locations are then
evaluated using a superposition of the first-order Taylor expansions for the base flow and
the perturbation field, i.e.

Ui(x, y, z) = U0
i +

(
∂U0

i

∂x0
j

Δxj

)
+ u′

i +
(

∂u′
i

∂x0
j

Δxj

)
, (2.10a)

P(x, y, z) = P0 +
(

∂P0

∂x0
j

Δxj

)
+ p′ +

(
∂p′

∂x0
j

Δxj

)
. (2.10b)

The last term in (2.10a) and (2.10b) is dropped since it represents a second-order quantity
arising due to the interaction of fluid and geometric perturbation terms. This results in the
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expressions for the total velocity and pressure as

uξ

i (x, y, z) =
(

∂U0
i

∂x0
j

Δxj

)
, pξ (x, y, z) =

(
∂P0

∂x0
j

Δxj

)
, (2.11a,b)

Ui(x, y, z) = U0
i + uξ

i + u′
i, (2.12a)

P(x, y, z) = P0 + pξ + p′. (2.12b)

Where (2.12a) and (2.12b) are derived from (2.10a) and (2.10b), respectively, after
dropping the second-order terms, and using the compact notations uξ

i and pξ to represent
the first-order quantities of the Taylor expansion of the base flow velocity and pressure,
respectively. Physically, this means that, for a point moving in space, we ignore changes
in the perturbation field experienced due to the motion of the point, however, we include
the first-order changes in the base flow field. The expressions in (2.12a) amount to a triple
decomposition of the total velocity field, where the three terms U0

i , uξ

i and u′
i signify the

base flow field, the perturbation of the base field observed by a point due to its motion
and the perturbation velocity field, respectively. Additionally, associated with the motion
of the material points, a velocity of the material points can also be defined such that

wi = ∂xi

∂t
= ∂Δxi

∂t
. (2.13)

Taking the time derivative of (2.12a), we obtain the ALE time derivative of the total
velocity along the trajectory of the material point motion

∂Ui

∂t

∣∣∣∣
w

= ∂U0
i

∂t
+ ∂

∂t

(
∂U0

i

∂x0
j

Δxj

)
+ ∂u′

i

∂t

=⇒ ∂Ui

∂t

∣∣∣∣
w

=
(

wj
∂U0

i

∂x0
j

)
+ ∂u′

i

∂t
. (2.14)

Next we substitute the triple decomposition of the velocity and pressure fields into the
governing equations for the fluid motion and perform the geometric linearization so that
all derivative quantities are consistently evaluated based on the reference configuration.
Starting with the divergence-free constraint at the perturbed configuration leads to the
following set of expressions:

∂Ui

∂xi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U0
i

∂x0
i︸︷︷︸

I

+Δxj
∂

∂x0
j

(
∂U0

i

∂x0
i

)
︸ ︷︷ ︸

II

+ ∂u′
i

∂x0
i︸︷︷︸

III

− ∂u′
i

∂x0
k

R′
ki︸ ︷︷ ︸

IV

− ∂

∂x0
k

(
∂U0

i

∂x0
j

)
ΔxjR′

ki︸ ︷︷ ︸
V

− ∂U0
i

∂x0
j

∂Δxj

∂x0
k

R′
ki︸ ︷︷ ︸

VI

.

(2.15)

Term I vanishes since it represents the divergence-free constraint of the base flow in the
reference configuration. Similarly, term II contains the same divergence-free constraint
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inside the brackets and hence also vanishes. Terms IV, V and VI all represent terms that
are second order in the perturbations quantities u′,Δx and R′. Therefore, to a first-order
approximation these quantities can be dropped. This leaves the final divergence constraint
as

∂Ui

∂xi
= ∂u′

i

∂x0
i

= 0. (2.16)

Note that the derivative is evaluated in the reference configuration (but satisfies the
divergence-free constraint on the perturbed locations up to a first-order approximation).

In a similar manner, we may introduce the triple decomposition of the velocity and
pressure field into the ALE form of the Navier–Stokes evaluated at the perturbed locations
as(

U0
j
∂U0

i

∂xj
+ U0

j
∂uξ

i

∂xj
+ uξ

j
∂U0

i

∂xj

)
+
(

U0
j
∂u′

i

∂xj
+ u′

j
∂U0

i

∂xj

)
+
(

∂Ui

∂t

∣∣∣∣
w

− wj
∂Ui

∂xj

)

=
(

−∂P0

∂xi
+ 1

Re
∂2U0

i

∂xj∂xj

)
+
(

−∂pξ

∂xi
+ 1

Re
∂2uξ

i

∂xj∂xj

)
+
(

−∂p′

∂xi
+ 1

Re
∂2u′

i

∂xj∂xj

)
. (2.17)

The nonlinear transport terms have already been dropped. We now substitute the ALE time
derivative from (2.14) and introduce the geometric linearization to consistently evaluate
derivatives based on the original configuration. A full expansion of all the terms can be
found in appendix A. We write the final form of the Navier–Stokes obtained after the
expansion and simplification of the terms and dropping all terms higher than first order:[

U0
j
∂U0

i

∂x0
j

+ ∂P0

∂x0
i

− 1
Re

∂2U0
i

∂x0
j ∂x0

j

]
+ Δxl

∂

∂x0
l

[
U0

j
∂U0

i

∂x0
j

+ ∂P0

∂x0
i

− 1
Re

∂2U0
i

∂x0
j ∂x0

j

]

+
[

∂u′
i

∂t
+ U0

j
∂u′

i

∂x0
j

+ u′
j
∂U0

i

∂x0
j

+ ∂p′

∂x0
i

− 1
Re

∂2u′
i

∂x0
j ∂x0

j

]
= 0. (2.18)

The terms in the first square bracket may be identified as the steady-state equation for the
base flow in the reference configuration. The terms inside the second square bracket are
also the steady-state equations in the reference configuration. In fact, the set of terms from
the first two brackets together represent the first-order Taylor expansion of the steady-state
equations for the base flow at the perturbed points. Thus, all the terms in the first two
brackets vanish. In hindsight, the final set of expressions obtained seems rather obvious. In
fact one may observe the first three terms in the expansion of the divergence-free constraint
and realize that they amount to a similar expression. Terms I and II in (2.15) together form
the first-order Taylor expansion of the base flow divergence-free constraint at the perturbed
locations. Since the solution of the steady-state equations and the base field divergence is
identically zero everywhere, their Taylor expansions also vanish at the perturbed locations.
Thus, we are left with the final linear equations for the perturbed quantities which is also
independent of the arbitrarily defined velocity of the grid motion w:

∂u′
i

∂t
+ U0

j
∂u′

i

∂x0
j

+ u′
j
∂U0

i

∂x0
j

+ ∂p′

∂x0
i

− 1
Re

∂2u′
i

∂x0
j ∂x0

j

= 0. (2.19)
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2.5. Linearized boundary conditions
Before proceeding to evaluate the total linearized forces on the perturbed points, we
consider the global balance of fluxes for the base flow at the equilibrium and the perturbed
positions. This allows us to evaluate the forces arising due to the variation of the boundary
in a steady base flow. We use the conservative form of the equations, starting with the
base flow state in the equilibrium configuration and evaluate the integral over the whole
domain:

∂

∂x0
j

(U0
i U0

j − σ 0
ij ) = 0

=⇒
∫

Ω0

∂

∂x0
j

(U0
i U0

j − σ 0
ij ) dΩ = 0

=⇒
∫

∂Ω
f
v

(U0
i U0

j − σ 0
ij )n

0
j dS +

∫
∂Ω

f
o

(U0
i U0

j − σ 0
ij )n

0
j dS −

∫
Γ 0

σ 0
ij n

0
j dS = 0. (2.20)

Here n0
j dS represents the local surface vector in the equilibrium configuration. For

compact notation, we have denoted the stresses due to the fluid at equilibrium as σ 0
ij ,

defined as

σ 0
ij = −P0δij + 1

Re

(
∂U0

i

∂x0
j

+ ∂U0
j

∂x0
i

)
. (2.21)

The three integrals in (2.20) represent the momentum flux through the far field (∂Ω f
v ),

outflow (∂Ω f
o ) and FSI interface (Γ 0), respectively. Of course it is not necessary to

integrate over the whole domain, and the integral may be performed over any arbitrarily
chosen part of the domain. The use of divergence theorem will then provide us with the
flux balance across the surfaces of this arbitrarily chosen volume. Accordingly, we may
choose an arbitrary volume enclosed by three surfaces. Two of the surfaces of this arbitrary
volume are chosen such that they coincide with ∂Ωv and ∂Ωo and a third surface may
be chosen arbitrarily, which we denote as C. Performing the volume integral over this
arbitrary volume and using the divergence theorem gives the relation between the fluxes
across the boundaries,∫

∂Ω
f
v

(U0
i U0

j − σ 0
ij )n

0
j dS +

∫
∂Ω

f
o

(U0
i U0

j − σ 0
ij )n

0
j dS +

∫
C
(U0

i U0
j − σ 0

ij )nj dS = 0. (2.22)

We highlight here that at this point we are not calculating the balance of total momentum
in a flow field that has been perturbed. But rather, we are evaluating the expressions for
the momentum flux, across different enclosing surfaces, for the same steady base flow.
Comparing (2.20) and (2.22) it is easy to see that the fluxes through the arbitrary surface
C and the FSI interface Γ 0 must be equal, i.e.∫

C
(U0

i U0
j − σ 0

ij )nj dS =
∫

Γ 0

(−σ 0
ij )n

0
j dS. (2.23)

Up to this point no assumptions have been invoked and (2.23) is simply a result of
momentum flux conservation. The surface C is arbitrary and can be deformed in any
desired fashion. Therefore, the surface can be assumed to be a perturbation of the
equilibrium FSI interface Γ 0 (for example, the perturbed interface obtained during an
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unsteady FSI problem). For the exact evaluation of the base-flow momentum flux across
the perturbed surfaces, the exact values at the perturbed points would be required.
However, following the Taylor expansion based procedure, these may be evaluated using
the truncated Taylor series. Noting that U0 is identically zero on Γ 0, the resulting
linearized expression for the surface integral over this perturbed interface may be evaluated
as

∫
Γ 0

σ 0
ij n

0
j dS +

∫
Γ 0

σ 0
ij n

′
j dS +

∫
Γ 0

σ
ξ

ij n0
j dS =

∫
Γ 0

σ 0
ij n

0
j dS

=⇒
∫

Γ 0

[
σ 0

ij n
′
j + σ

ξ

ij n0
j

]
dS = 0. (2.24)

Here n′
j dS represents the first-order change in the surface vector due to the perturbation

of the boundary and we have dropped the second-order terms for convection uξ

i uξ

j and the
surface force σ

ξ

ij n′
j. The expression σ

ξ

ij is simply the first-order term of the Taylor expansion
of the base flow stresses, defined as

σ
ξ

ij = Δxk
∂

∂x0
k

[
−P0δij + 1

Re

(
∂U0

i

∂x0
j

+ ∂U0
j

∂x0
i

)]
. (2.25)

The first term in (2.24) represents the variation of the base flow forces due to the change
in surface normal and the second term represents the variation due to the change in
boundary position. To a first-order approximation, these terms balance to zero. Note that
no assumption has been made on the type of deformation at the boundary and the condition
holds for any arbitrary deformation of the boundary. We note that these are precisely the
terms that arise in Fanion et al. (2000) and Fernández & Le Tallec (2003a,b) that have
been termed as ‘added stiffness’. To a first-order approximation, they simply sum up to
zero and play no role in the linear dynamics. However, we note that it is the integral of
the added stiffness terms that vanishes and not necessarily the point wise values. One may
now evaluate the total linearized forces arising from (2.18) on the perturbed FSI interface
and obtain the linearized boundary conditions for the stress balance (2.5) as

M∂2η′
i

∂t2
+ D ∂η′

i

∂t
+ K(η0

i + η′
i) +

∫
Γ 0

σ 0
ij n

0
j dS

+
∫

Γ 0

σ 0
ij n

′
j dS +

∫
Γ 0

σ
ξ

ij n0
j dS +

∫
Γ 0

σ ′
ijn

0
j dS

⎫⎪⎪⎬
⎪⎪⎭ = 0,

=⇒ M∂2η′
i

∂t2
+ D ∂η′

i

∂t
+ Kη′

i +
∫

Γ 0

σ ′
ijn

0
j dS = 0, (2.26)

where σ ′
ij is the fluid stress due to the perturbation field (u′, p′) defined as

σ ′
ij = −p′δij + 1

Re

(
∂u′

i

∂x0
j

+ ∂u′
j

∂x0
i

)
. (2.27)
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The velocity continuity boundary conditions on the moving interface Γ (t) simply
become

Ui = vΓ
i on Γ (t)

=⇒ ΔxΓ
k

∂U0
i

∂xk
+ u′

i = vΓ
i . (2.28)

Thus, the perturbation velocities must account for the Taylor expansion term of the base
flow at the perturbed boundary. Fanion et al. (2000) and Fernández & Le Tallec (2003a,b)
refer to this as the transpiration boundary condition.

The linear FSI problem for the perturbations is turned into a standard linear perturbation
problem with the exception of the modified boundary conditions (transpiration instead
of no-slip). The additional forces at the perturbed boundary are simply due to the
perturbation field (u′, p′) and no ‘added stiffness’ terms arise in a linear approximation.
One may immediately notice that the final form is a generalization of the form derived by
Benjamin (1959, 1960) and Landahl (1962) for parallel flow cases. Finally, we highlight
an assumption that is inherent throughout the mathematical derivation. When evaluating
the base flow terms at the perturbed points, a first-order Taylor expansion has been
used. This is perfectly valid when the perturbed points are inside the equilibrium fluid
domain however, when the perturbed points move outside this domain, the validity of
the Taylor expansion is less clear. The implicit validity of the Taylor expansion beyond the
equilibrium fluid domain underpins the mathematical results of both the unsteady problem
in § 2.4 as well as for the steady problem in the current subsection. To the best of our
knowledge,we are unaware of any previous work which may resolve this conundrum. We
provide a heuristic answer in the next section where several examples are considered for
rigid-body motion in symmetric and asymmetric configurations to show the validity of the
current approach.

3. Linear instability results

3.1. Numerical method
Numerical tests are performed to validate the linear equations for FSI derived in the
previous section. The cases considered are an oscillating cylinder with a spring-damper
action, oscillating and rotating ellipse initially held at an angle to the flow, and
rotating cylinder-splitter body. All computations were performed using a high-order
spectral-element method code (Fischer, Lottes & Kerkemeier 2008). The code uses
nth-order Lagrange interpolants at Gauss–Lobatto–Legendre (GLL) points for the
representation of the velocity and (n − 2)th-order interpolants at Gauss–Legendre points
for the representation of the pressure in a Pn − Pn−2 formulation (Maday & Patera 1989).
A third-order backward difference is used for the time integration of the equations. The
viscous terms are evaluated implicitly while extrapolation is used for the nonlinear terms.
Over integration is used for a consistent evaluation of the nonlinear terms and a relaxation
term based on the high-pass filtered velocity field is used to stabilize the method (Negi
2017). The stabilization method is based on the approximate deconvolution model with
relaxation term (ADM-RT) method used for the large-eddy simulation of transitional
flows (Schlatter, Stolz & Kleiser 2004, 2006) and has been validated with channel flows
and flow over wings in Negi et al. (2018). Moving boundaries are treated using the ALE
formulation (Ho & Patera 1990, 1991) and the fluid and structural equations are coupled
using the Green’s function decomposition approach whereby the geometrical nonlinearity
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FIGURE 2. Streamwise velocity of the base flow state for a cylinder in cross-flow at
Re = 23.512.

is evaluated explicitly via extrapolation, while the added-mass effects are treated implicitly
(Fischer, Schmitt & Tomboulides 2017). In addition, we have also implemented a fully
implicit fixed-point nonlinear iteration method (Küttler & Wall 2008) for coupling of
the fluid and structural equations. Both methods give nearly identical results in all tested
cases. For the nonlinear and linear stability results reported in this work, the semi-implicit
method of Fischer et al. (2017) has been used. For the case of adjoint analysis, the fully
implicit fixed-point iterations have been used. All quantities are non-dimensionalized
using the fluid density ρ, free stream velocity U∞ and the cylinder/ellipse diameter D.

3.2. Oscillating cylinder at subcritical Reynolds numbers
For the first case, we investigate a two-dimensional circular cylinder free to oscillate
in the cross-stream direction subject to the action of a spring-damper system. The
Reynolds number of the flow based on the cylinder diameter is Re = 23.512. The inlet
of the computational domain is 25 diameters upstream of the cylinder while the outflow
boundary is 60 diameters downstream of the cylinder. The lateral boundaries are 50
diameters away on either side. A uniform inflow Dirichlet boundary condition is applied
on the inflow and the lateral boundaries while the stress-free boundary condition is
applied on the outflow boundary. The computational domain is discretized using 2284
spectral elements which are further discretized into 10 × 10 GLL points for a ninth-order
polynomial representation for the velocity. This amounts to a total of 228 400 degrees of
freedom in the domain. The base flow for all cases was calculated by keeping the structure
fixed at its initial position. At Re = 23.512, the flow with a fixed cylinder is linearly stable.
The convergence to steady state was accelerated by using BoostConv (Citro et al. 2017).
Figure 2 shows the calculated base flow state (streamwise velocity). Sen, Mittal & Biswas
(2009) report a linear empirical relation for the length of the reverse flow region behind
the cylinder which predicts L/D = 1.146 for the given Reynolds number. The length of the
reverse flow region was found to be L/D = 1.150 for the calculated steady flow, matching
well with the results of Sen et al. (2009).

We denote η as the vertical position of the cylinder and the structural equation is
modelled using a spring-mass-damper system for the vertical displacement of the cylinder.
Following the earlier notation, we denote the fluid domain as Ω f , the structural domain
as Ω s and the FSI interface as Γ . In all our cases, the structural equation contains a
second-order derivative in time. The order of the time derivative is reduced by introducing
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M K D ωn λs

5.4977 3.4802 6.597 × 10−2 0.7956 −0.006 ± 0.7956i

TABLE 1. Structural parameters for a two-dimensional cylinder oscillating in the cross-stream
direction.

a variable substitution for the velocity ϕ of the structure. The combined nonlinear
equations for the FSI system can be written as

∂Ui

∂t

∣∣∣∣
W g

+ (Uj − Wg
j )

∂Ui

∂xj
+ ∂P

∂xi
− 1

Re
∂2Ui

∂xj∂xj
= 0 in Ω f , (3.1a)

∂Ui

∂xi
= 0 in Ω f , (3.1b)

Mdϕ

dt
+ Dϕ + Kη − F2 = 0 for Ω s, (3.1c)

∂η

∂t
− ϕ = 0 for Ω s, (3.1d)

U1 = 0 on Γ, (3.1e)

U2 − ϕ = 0 on Γ, (3.1f )

Fi −
∮

Γ

[
pδij − 1

Re

(
∂ui

∂xj
+ ∂uj

∂xi

)]
nj∂Ω = 0 fluid forces on Γ. (3.1g)

The parameters for the structural system are specified in table 1. The mass M corresponds
to a density ratio of 7 (solid to fluid), and the damping constant D is set to 0.754 %
of the critical damping. Here ωn = √K/M represents the undamped natural frequency
of the spring-mass system, λs = −ωn(ζ ± i

√
1 − ζ 2) represents the damped structural

eigenvalue of the spring-mass-damper system, with ζ = D/(2
√KM) being the damping

ratio.
Following the Taylor expansion based triple decomposition of the total fluid velocity

and pressure, the linearized system of equations governing the fluid and structural
perturbations (u′, p′, η′, ϕ′) can be written as

∂u′
i

∂t
+ U0

j
∂u′

i

∂x0
j

+ u′
j
∂U0

i

∂x0
j

+ ∂p′

∂x0
i

− 1
Re

∂2u′
i

∂x0
j ∂x0

j

= 0 in Ω f , (3.2a)

∂u′
i

∂x0
i

= 0 in Ω f , (3.2b)

u′
i = 0, on ∂Ωv, (3.2c)

σ ′
ijn

0
j = 0 on ∂Ωo, (3.2d)

Mdϕ′

dt
+ Dϕ′ + Kη′ − F ′

2 = 0 for Ω s, (3.2e)
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∂η′

∂t
− ϕ′ = 0 for Ω s, (3.2f )

u′
1 + η′ ∂U0

1

∂x0
2

= 0 on Γ, (3.2g)

u′
2 + η′ ∂U0

2

∂x0
2

− ϕ′ = 0 on Γ, (3.2h)

F ′
i −

∮
Γ 0

[
p′δij − 1

Re

(
∂u′

i

∂x0
j

+ ∂u′
j

∂x0
i

)]
n0

j ∂Ω = 0 fluid forces on Γ. (3.2i)

Note that even though the cylinder is free to move only in the vertical direction, the
streamwise perturbation velocity u′

1 is non-zero at the cylinder surface due to the Taylor
expansion term of the base flow. Additionally, when evaluating the fluid forces in (3.2i),
the direction of the normal n0

j is based on the equilibrium position of the FSI interface.
Before calculating the spectra of the linearized problem, we compare the evolution

of the linear and nonlinear flow cases when the base flow is perturbed by identical
small-amplitude perturbations. If the perturbation amplitude is small then nonlinear effects
will be negligible and one can expect the linear and nonlinear evolution to be the same.
The solutions would eventually diverge due to amplitude saturation in the nonlinear case.
Performing this comparison has another advantage in this particular case. Given the low
Reynolds number of the case, we expect the dynamics of be governed by a single least
damped global mode. Therefore, by tracking the growth in perturbation amplitude through
the linear regime, one can determine both the frequency and the growth rate of the unstable
mode from the nonlinear simulations. This allows us to validate both the frequency and
the growth rate obtained from the linearized equations.

The base flow is disturbed by pseudo-random perturbations of order O(10−6) and the
flow evolution is tracked. Figure 3(a) shows the variation of η with time during the initial
stages of the evolution. Both the linear and nonlinear results fall on top of each other
providing the first evidence of the validity of the derived linear equations. Note that the
nonlinear simulations have been performed using the ALE framework including the mesh
movement, while there is no mesh motion in the linear equations which have been derived
to be independent of the grid velocity W g. The time evolution of η clearly indicates a single
growing mode in the flow. By tracking the peak amplitudes of the oscillations, denoted as
ηpks, one can determine the growth rate and the frequency of the unstable mode. Figure 3(b)
shows the time evolution of ηpks in a semi-log plot. After an initial transient phase both the
growth rate and angular frequency of the disturbances stabilize to a constant value and the
ηpks plot traces a straight line in the semi-log plot, signifying exponential growth in time.

Finally, we introduce the ansatz (u′, p′, η′, ϕ′) = (û, p̂, η̂, ϕ̂) eλt to reduce the linear
equations into an eigenvalue problem for the angular frequency λ. The system is solved
by estimating the eigenvalues of the time-stepping operator. The method was first used
by Eriksson & Rizzi (1985) and has been used in several previous works by Barkley,
Gomes & Henderson (2002), Bagheri et al. (2009b) and Brynjell-Rahkola et al. (2017)
etc. The eigenvalue estimation is done using the implicitly restarted Arnoldi method
(Sorensen 1992) implemented in the open source software package ARPACK (Lehoucq,
Sorensen & Yang 1998). Figure 4 shows the one-sided eigenspectra obtained with a single
unstable mode. Here λr represents the real part of the eigenvalue (growth rate) and λi
represents the imaginary part of the eigenvalue (angular frequency). In table 2 we report
the comparison of estimates obtained through the nonlinear simulations, linear simulations
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FIGURE 3. Comparison of linear and nonlinear evolution of cylinder position η for identical
small-amplitude disturbance. (a) The time evolution of η in the first few cycles of the oscillation.
(b) The evolution of peak amplitudes of the oscillation in a semi-log scale.
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FIGURE 4. One-sided eigenspectrum for a cylinder in cross-flow at Re = 23.512.

Case Nonlinear Linear Arnoldi

Oscillation (Re = 23.512) 9.86 × 10−3 ± 0.704i 9.85 × 10−3 ± 0.704i 9.86 × 10−3 ± 0.704i

TABLE 2. Unstable eigenvalue estimates obtained from different methods for an oscillating
cylinder at Re = 23.512.

and the Arnoldi method. For both the linear and nonlinear simulations, the initial transient
period of 10 oscillation cycles was discarded and the estimates are evaluated from the time
period when both the growth rate and frequency have stabilized. All three methods have a
very good agreement with each other, with the relative difference in the growth rate being
less than 0.1 %. The streamwise velocity component of the eigenvector for the unstable
frequency is shown in figure 5.
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FIGURE 5. (a) Real and (b) imaginary parts of the streamwise velocity component of the
eigenvector corresponding to the unstable eigenvalue for Re = 23.512.

Thus, we find the flow is unstable for an oscillating cylinder at nearly half the critical
Reynolds number for the stationary case. Cossu & Morino (2000) also found instability at
the same Reynolds number for a cylinder oscillating in the cross-flow direction, albeit for
slightly different structural parameters.

The undamped natural frequency of the structural system ωn is varied parametrically to
investigate the changes in instability while keeping the density ratio constant. The damping
constant is also varied such that the damping is always equal to 0.754 % of the critical
damping of the spring-mass-damper system. The one-sided spectra of the various cases
is shown in figure 6. The instability of the system arises for a narrow range of ωn with
the peak of the instability centred around ωn ≈ 0.796. The system rapidly becomes stable
again as the structural frequency is varied away from the peak value. In the range where
the system is unstable, the unstable frequency of the combined FSI system is close to the
undamped frequency ωn . Much of the low frequency spectra remains unaffected by the
variation of ωn . We note that some of the results are in contrast with some of the findings
of Cossu & Morino (2000) who performed global stability of the oscillating cylinder
at the same Reynolds number and density ratio. In their study, the authors find a low
frequency unstable mode with eigenvalue λ = 1.371 ± 0.194i for a structural eigenvalue
of λs = −0.01 ± 1.326i. The flow case marked with diamonds in figure 6 corresponds
to the same case investigated by Cossu & Morino (2000). While we find the system
to be unstable at the subcritical Reynolds number of Re = 23.512, we do not find the
instability for the same structural parameters. Unlike Cossu & Morino (2000), we also do
not find the existence of a low frequency unstable mode within the investigated structural
parameters. In all our investigated cases, the effect of the structure on the spectrum remains
confined close to the angular frequency of the spring-mass-damper system. (Note that the
non-dimensionalization of length in Cossu & Morino (2000) is with respect to the radius
of the cylinder, while it is with respect to the diameter in the current study. Hence, the
respective angular frequencies are doubled in the current study.)

We consider another subcritical case at Re = 40 which has been investigated in Navrose
& Mittal (2016). In this case the authors consider an oscillating cylinder in cross-flow, with
a mass ratio of 10 and without any structural damping (D = 0). The results are reported
for the variation of the reduced velocity U∗ which is defined as U∗ = U∞/( fnD), where
fn = ωn/(2π) is the natural frequency of the spring-mass system. We investigate the case
with U∗ = 8, again comparing evolution of small-amplitude perturbations in the linear
and the nonlinear cases. The initial cycles and the evolution of peak amplitude is shown
in figures 7(a) and 7(b). The estimated eigenvalues from the linear, nonlinear and Arnoldi
method are reported in table 3. The estimates match to within 0.1 % accuracy. For the
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FIGURE 6. One-sided eigenspectra for a cylinder in cross-flow at Re = 23.512 for varying
undamped frequency, ωn , of the spring-mass system.
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FIGURE 7. Comparison of linear and nonlinear evolution of cylinder position η at Re = 40 and
U∗ = 8. (a) Time evolution of η in the first few cycles of the oscillation. (b) Evolution of peak
amplitudes in a semi-log scale.

nonlinear simulations, the amplitude of oscillations saturates at y/D = 0.4. This compares
well with the saturation amplitude reported in Navrose & Mittal (2016) for this case.

The variation of stability characteristics with varying reduced velocities is also
investigated through the evaluation of the eigenvalue spectra for several different cases.
The variation of spectra for different parameters is shown in figure 8(a). Similar to the
trend seen for the Re = 23.512 case, the flow exhibits unstable eigenvalues within a narrow
band of frequencies. The variation of growth rate with the reduced velocities is shown in
figure 8(b). The growth rates for U∗ = 6 and U∗ = 10 lie just above the stability threshold.
This compares very well with the results of Navrose & Mittal (2016) who report the
unstable range as 5.9 < U∗ < 10.1 as the parameter range of instability for the oscillating
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Case Nonlinear Linear Arnoldi

Oscillation (Re = 40) 5.26 × 10−2 ± 0.738i 5.26 × 10−2 ± 0.738i 5.26 × 10−2 ± 0.738i

TABLE 3. Unstable eigenvalue estimates obtained from different methods for an oscillating
cylinder at Re = 40 and U∗ = 8.
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FIGURE 8. (a) One-sided spectra for an oscillating cylinder at Re = 40 for varying reduced
velocities U∗. (b) Variation of the growth rate with reduced velocity U∗.

cylinder at Re = 40. The peak growth rates occur at U∗ ≈ 8.0 in Navrose & Mittal (2016),
which is also the case in the current work.

3.3. Confined oscillating cylinder
In the previous two cases we simulated physical scenarios with effectively unbounded
domains. In this subsection we consider the case of an FSI instability in a bounded domain.
We replicate the physical set-up studied in Semin et al. (2012), where a cylinder is free to
oscillate in the vertical direction and is confined between two parallel walls. The channel
height is denoted at h and the ratio of the cylinder diameter to channel height is D/h =
0.66. The computational domain is set up to match the simulations of Semin et al. (2012),
with the inlet located at −5h and the outflow boundary located at 7h. A parabolic profile is
imposed on the inlet for the streamwise velocity and the mean streamwise velocity (Ū) at
the inlet is used for the normalization of the velocity scales. The length scale is normalized
by the channel height h, and the Reynolds number is defined using these two scales as
Re = Ūh/ν. The solid to fluid density ratio is set to 1.19, which corresponds to the density
ratio studied by Semin et al. (2012) both numerically and experimentally. The cylinder is
free to oscillate in the vertical direction without any external restoring forces or damping.
Thus, the only forces acting on the cylinder are the fluid forces. We investigate the loss of
stability in the FSI system for three different Reynolds numbers of Re = 25, 22 and 20.

Following the usual procedure outlined earlier, the base flow for the three different
Reynolds numbers is obtained for a stationary cylinder. Small-amplitude perturbations
are then seeded into the system and the linear and nonlinear evolution of the system is
tracked in time. The base flow state for Re = 25 is shown in figure 9. Figure 10(a) shows
the evolution of the peak amplitudes of the oscillation. Again, evident from the graph is the
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FIGURE 9. Streamwise velocity of the base flow state for a confined cylinder at Re = 25.
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FIGURE 10. (a) Comparison of linear and nonlinear evolution of peak amplitudes vertical
displacement η for a confined cylinder at three different Reynolds numbers. (b) One-sided
eigenvalue spectra for the three different Reynolds number cases.

Case Nonlinear Linear Arnoldi

Re = 25 7.38 × 10−1 ± 7.61i 7.38 × 10−1 ± 7.61i 7.39 × 10−1 ± 7.61i
Re = 22 5.58 × 10−1 ± 7.81i 5.58 × 10−1 ± 7.81i 5.58 × 10−1 ± 7.81i
Re = 20 3.94 × 10−1 ± 7.96i 3.94 × 10−1 ± 7.96i 3.94 × 10−1 ± 7.96i

TABLE 4. Unstable eigenvalue estimates for a confined cylinder at different Reynolds numbers.

fact that exponential growth is well captured by the linear formulation, and both linear and
nonlinear regimes undergo the same amplification through several orders of magnitude.
Figure 10(b) shows the eigenvalue spectra for the three cases. A comparison of the linear,
nonlinear and Arnoldi approximations of the unstable eigenvalue is given in table 4 and the
unstable eigenvector is shown in figure 11. The saturated limit-cycle amplitudes saturate
at ηmax = 0.090, 0.076 and 0.062 for Re = 25, 22 and 20, respectively. The corresponding
Strouhal numbers, defined as Sr = fh/Ū, with f being the saturated oscillation frequency,
are calculated as Sr = 1.13, 1.17 and 1.22. The values correspond well with the results of
Semin et al. (2012) for the given density ratio.
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FIGURE 11. Real (a) and imaginary (b) parts of the streamwise velocity component of the
unstable eigenvector for a confined cylinder at Re = 25.
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FIGURE 12. Streamwise velocity of the base flow state for a rotated ellipse at Re = 50.

3.4. Asymmetric flow case of a rotated ellipse
The previous subsections investigated the flow around an oscillating circular cylinder
through the linear stability analysis. The base flow for these cases exhibits symmetry about
the horizontal axis passing through the origin. In order to test the linear formulation a case
where no such symmetries arise we consider the case of a rotated ellipse in an open flow.
The ellipse geometry is generated with the minor axis length of a = 0.25 aligned with the
streamwise direction, the major axis length of b = 0.5 aligned in the cross-flow direction
and the centre of the ellipse located at the origin of the coordinate system (0, 0). The
ellipse is then rotated by an angle of 30◦ clockwise. The stabilized base flow around the
rotated ellipse is calculated at Re = 50, where the diameter along the major axis is used
as the length scale for the Reynolds number. The streamwise velocity for the stabilized
base flow is shown in figure 12, which clearly shows the lack of symmetry of the base flow
close to the ellipse.

We consider two cases of FSI: an ellipse free to oscillate in the cross-flow direction and
a case with the ellipse free to rotate about the out-of-plane axis passing through its centre.
In both cases the ellipse is considered to be held stationary due to a constant external force
which balances the fluid forces at equilibrium. The density ratio is set to 10 for the ellipse
and no spring or damping forces are considered. Thus, the ellipse motion is governed
entirely due to fluid forces and the inertia of the ellipse. We expect any modelling errors
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FIGURE 13. Comparison of linear and nonlinear evolution of the position of a rotated ellipse
at Re = 50. The top two panels represent the vertical translation cases while the bottom two
represent the rotational cases. (a) Time evolution of vertical position η in the first few cycles
of the oscillation. (b) Evolution of peak amplitudes in a semi-log scale for vertical oscillations.
(c) Time evolution of rotational angle η. (d) Evolution of peak amplitudes of the rotational angle
in a semi-log scale.

Case Nonlinear Linear Arnoldi

Oscillation 9.56 × 10−2 ± 0.749i 9.57 × 10−2 ± 0.748i 9.58 × 10−2 ± 0.748i
Rotation 2.60 × 10−2 ± 0.806i 2.60 × 10−2 ± 0.806i 2.60 × 10−2 ± 0.806i

TABLE 5. Unstable eigenvalue estimates for vertical oscillation and rotational cases for a
rotated ellipse at Re = 50, obtained with three different methods.

in fluid forces to show up strongly for such a case. Proceeding in the usual manner, the
comparison of small-amplitude linear and nonlinear evolution for the oscillating case is
shown in figures 13(a) and 13(b), while the comparison for the rotational case is shown
in figures 13(c) and 13(d). The eigenvalue estimates for both cases are shown in table 5.
A good agreement is found for all the cases considered. We note that for the case with
vertical oscillations, a zero frequency unstable mode also exists. This was deduced from
the time evolution of the simulations since the positive and negative peaks showed a
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FIGURE 14. One-sided spectra for a rotated ellipse at Re = 50. (a) Spectrum for an ellipse free
to oscillate in the vertical direction and (b) spectrum for the ellipse free to rotate about its centre.
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FIGURE 15. Streamwise velocity component of the eigenvector for (a,b) vertical oscillation and
(c,d) rotational FSI cases. The left panels show the real part of the eigenvector and the right
panels show the imaginary part of the eigenvector corresponding to the unstable eigenvalue.

marginally different growth rate. The Arnoldi procedure also showed the existence of both
an oscillatory and zero frequency unstable mode. A nonlinear least squares procedure was
then used to estimate the growth rate and the unstable frequencies. The one-sided spectra
for the two cases is shown in figure 14 and the streamwise components of the eigenvector
associated with the (oscillatory) unstable eigenvalues are shown in figure 15. We mention
that we have evaluated the ‘added stiffness’ terms of Fanion et al. (2000) and Fernández &
Le Tallec (2003a,b) for all of the tested cases and we find that these terms always remain
several orders of magnitude smaller than the forces arising due to the fluid perturbations.
This further confirms the earlier mathematical result (2.24) that the ‘added stiffness’ terms
represent a higher-order correction and do not play a role in the linearized dynamics.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

68
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.685


Global stability of FSI problems 903 A35-23

0
–6

–4

–2

0Y

2

4

–6

–4

–2

0

2

4

5 10 15
–0.05

0.36

0.76

1.17

–0.24

0.68

0.22

1.14

X
0 5 10 15

X

(b)(a)

FIGURE 16. Base flow state for a cylinder with splitter plate at (a) Re = 45.0 and (b) Re = 156.
Note that the splitter plate is not discernible in the visualization due to its very small thickness
(0.02D).

3.5. Spontaneous symmetry breaking
We use the derived linear formulation to investigate the case of a circular cylinder with an
attached splitter plate set at zero incidence to the oncoming flow. The structural equations
take the same form as in (3.1c), with η now representing the deviation of the rotational
angle from the equilibrium position. The terms M,D,K and F represent the moment
of inertia, rotational damping, rotational stiffness and the out-of-plane moment acting on
the body, respectively. The cylinder is free to rotate about its centre and the rotational
stiffness K and damping D are both set to zero. Thus, the cylinder rotates only due to
the action of the fluid forces. The particular set-up, along with a variant where the splitter
plate is flexible, has been a subject of investigation by several previous authors (Xu, Sen
& Gad-el Hak 1990, 1993; Bagheri, Mazzino & Bottaro 2012; Lācis et al. 2014). For
certain lengths of the cylinder-splitter body, the system exhibits an interesting dynamic
where the body spontaneously breaks symmetry and the splitter plate settles at a non-zero
angle to the oncoming flow. The breaking of symmetry leads to the generation of lift
force which could play a role in locomotion through passive mechanisms (Bagheri et al.
2012). The symmetry breaking phenomenon is known to occur for both subcritical and
supercritical Reynolds numbers (Lācis et al. 2014) and in both two- and three-dimensional
configurations (Lācis et al. 2017). We investigate the phenomenon through our linear FSI
framework. According to the results of Lācis et al. (2014), symmetry breaking is expected
to occur for splitter-plate lengths of less than 2D. Accordingly, we set the splitter-plate
length to be 1D and a thickness of 0.02D. Following Lācis et al. (2014) we use a solid
to fluid density ratio of 1.001 for Re = 45 and 1.01 for Re = 156. Figures 16(a) and
16(b) show the base flow states for the diameter based Reynolds numbers of Re = 45
(subcritical) and Re = 156 (supercritical).

Figure 17 shows the spectra for the two different Reynolds numbers. Both cases have an
eigenvalue lying on the positive y-axis (λ = 0.10 + 0i for Re = 45 and λ = 0.19 + 0i for
Re = 156). This represents the symmetry breaking eigenmode of the system since it does
not oscillate about a zero mean but rather leads to a monotonic growth in the rotational
angle. For the higher Reynolds number, several other modes of instability exist in the
flow which represent the von-Kármán modes of the flow. From the perspective of linear
analysis, these modes simply oscillate about the mean angle with growing oscillation
amplitudes. However, the zero frequency mode leads to a monotonic rise in the angle
and, thus, causes the symmetry breaking effect. For Re = 45, we also simulate the linear
and nonlinear cases after adding a random small-amplitude perturbations to both flow
cases. Figure 18 shows the time evolution of the angle η of the cylinder-splitter body.
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FIGURE 17. One-sided spectra for the cases exhibiting spontaneous symmetry breaking at
Re = 45 and Re = 156 for a rotatable cylinder with splitter plate.

Both the simulations undergo the same exponential growth of about five orders of
magnitude before the nonlinear case saturates, while the linear case continues its
exponential growth. The saturation of the nonlinear simulations occur at η ≈ 15.5◦, which
is the same turn angle reported by Lācis et al. (2014) for a splitter plate of length 1D. Thus,
the linear FSI framework predicts the onset of symmetry breaking instability. Of course for
the system to finally exhibit symmetry breaking a nonlinear mechanism is required since
the flow must equilibrate at the new position. However, the onset can be traced to the zero
frequency unstable mode.

As noted earlier, the work of Pfister et al. (2019) also considered the problem of linear
instability in FSI problems and considered more general structural models including
nonlinear structural models and finite aspect ratio geometries. The approach towards
linearization of the fluid quantities however has been different from the one taken in the
current study. It is therefore interesting to contrast the linearization approaches of the two
studies. In particular, both studies start with the ALE form of the full Navier–Stokes and
clearly realize the importance of treating the motion of material points consistently. The
point of departure between the two studies has been on the approach towards the treatment
of the material point motion in the fluid domain. Pfister et al. (2019) take the approach of
incorporating the changes into the equations itself. On the other hand, in the current work
the linearized operator at the deformed material points is further approximated by way
of a Taylor series expansion and geometric linearization. The final form of the linearized
Navier–Stokes obtained is the obvious conclusion of these different approaches. Pfister
et al. (2019) obtain a modified linear operator on a moving grid which incorporates the
effects of domain deformation, while the current work obtains the modified linear operator
defined on the original stationary grid (the modification arising only at the boundaries). It
appears the crucial aspect in the FSI linearization is the consistent treatment of material
point motion. Finally, we make a note that the PhD thesis of Pfister (2019) reports some

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

68
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.685


Global stability of FSI problems 903 A35-25

0
10–10

10–8

10–6

10–4

10–2

100

102

104

106

50 100 150 200 250

Linear
Nonlinear

300
Time

η
 (r

ad
ia

ns
)

FIGURE 18. Time evolution of the angle for a rotatable cylinder with the splitter plate at
Re = 45.

cases with more complex structural models where the added stiffness terms appear to have
a non-trivial effect on the instability characteristics of the FSI problems.

4. Structural sensitivity of the eigenvalue

As noted in figures 6 and 8(a), the unstable eigenvalue of the coupled FSI system
changes as the structural parameters are varied, while the base flow is held constant. The
variation occurs both for the growth rate as well as the frequency of the eigenvalue. One
might expect the sensitivity of the eigenvalue to structural perturbations to change as well.
We investigate the eigenvalue sensitivity to structural perturbations for different values of
the structural parameters for a spring-mounted two-dimensional circular cylinder, which
is free to oscillate in the cross-stream direction. The linear FSI problem is defined
by (3.2a)–(3.2i). In the following sections we assume all derivatives are evaluated in
the reference configuration and we drop the superscript 0 from the derivative terms.
In addition, uppercase letters denote base flow quantities and lowercase letters denote
perturbation quantities, and the superscripts 0 and ′ are dropped from the base flow and
perturbation quantities.

The eigenvalue sensitivity is typically studied through the use of adjoint equations
(Giannetti & Luchini 2007; Luchini & Bottaro 2014). For any linear operator L, the adjoint
operator L† is defined such that it satisfies the Lagrange identity

〈L†p, q〉 = 〈p,Lq〉 (4.1)

for any arbitrary vectors q and p in the domain of L and L†, respectively. The symbol 〈·, ·〉
denotes the inner product under which the above identity holds. In the current context the
operator L represents the linearized Navier–Stokes equations for FSI, also referred to as
the direct problem, L† is the corresponding adjoint operator with the definition of the inner
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product as the integral over the domain Ω and time horizon T:

〈p, q〉 =
∫

T

∫
Ω

pHq dΩ dt. (4.2)

Defining the vector q = (u, p, η, ϕ), which lies in the domain of L, and an adjoint vector
q† = (u†, p†, η†, ϕ†) which lies in the domain of L†, the adjoint equations may be found
by taking the inner product between the adjoint variables and the direct equations. The use
of integration by parts, divergence theorem and a judicious manipulation of terms leads
to a set of expressions for the adjoint equations. The full derivation of the equations along
with the boundary conditions may be found in appendix B. The final form of the adjoint
equations is expressed as

−∂u†
i

∂t
+ u†

j
∂Uj

∂xi
− Uj

∂u†
i

∂xj
+ ∂p†

∂xi
− 1

Re
∂

∂xj

(
∂u†

i

∂xj
+ ∂u†

j

∂xi

)
= 0 in Ω f , (4.3a)

∂u†
i

∂xi
= 0 in Ω f , (4.3b)

−Mdϕ†

dt
+ Dϕ† − η† +

∮
∂Ω

σ
†
2jnj dΩ = 0 in Ω s, (4.3c)

−dη†

dt
+ Kϕ† −

∮
∂Ω

(
∂Uk

∂x2

)
σ

†
kjnj dΩ = 0 in Ω s, (4.3d)

u†
1 = 0 on Γ, (4.3e)

u†
2 − ϕ

†
2 = 0 on Γ, (4.3f )

σ
†
ij −

[
−p†δij + 1

Re

(
∂u†

i

∂xj
+ ∂u†

j

∂xi

)]
= 0 adjoint forces on Γ, (4.3g)

u†
i = 0 on ∂Ωv, (4.3h)

(σ
†
ij + u†

i Uj)nj = 0 on ∂Ωo. (4.3i)

Here σ
†
ij is referred to as the adjoint fluid stresses acting on the cylinder. Unlike in the direct

equations, the adjoint fluid velocities are spatially homogeneous on the FSI interface Γ .
The sign of the diffusive term indicates the equations evolve an adjoint field backward in
time. A variable substitution τ = −t can be made to return the equations to forward (in τ )
propagation.

A validation of the adjoint equations can be found by comparing the spectra of the
direct and adjoint problems. The eigenvalues of the adjoint problem are the complex
conjugate of the eigenvalues of the direct problem. For real matrices, the spectra for both
problems is the same. Figure 19 shows the direct and adjoint spectra for a spring-mounted
two-dimensional cylinder at a diameter based Reynolds number of Re = 50, mass ratio of
10, corresponding to M = 7.854, K = 1.1537 which corresponds to the natural frequency
of the spring-mass system of ωn = 0.3833. The damping is set to zero (D = 0). As
observed in the figure, the spectra for both the direct and adjoint problems have a very
good agreement with each other.

For a general linear eigenvalue problem Lq = λq, a first-order approximation to the
perturbed eigenvalue problem (L + ΔL)(q + Δq) = (λ+ Δλ)(q + Δq) can be obtained
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FIGURE 19. Comparison of the eigenspectra for the direct and adjoint problems for a density
ratio of 10 and natural frequency ωn = 0.3833.

by making use of the corresponding adjoint eigenvector vector field q† (Giannetti &
Luchini 2007), resulting in an expression for the eigenvalue perturbation as

Δλ = 〈q†,ΔLq〉
〈q†, q〉 , (4.4)

(L† − λ∗I)q† = 0, (4.5)

where ∗ implies complex conjugation and q† represents the right eigenvector of the adjoint
operator L† with the eigenvalue of λ∗. To estimate the drift in eigenvalue, knowledge of the
specific operator perturbation ΔL is required. However, as shown by Giannetti & Luchini
(2007), a spatial sensitivity map of the eigenvalue perturbation can be found by assuming
the perturbation operator to be of the form of a spatially localized feedback, with the
feedback being proportional to the local values of the field variables (velocities). For such
a case, we may estimate the eigenvalue drift along with its upper bound for each spatially
localized operator perturbation as

Δλ = 〈q†, δ(x − x0, y − y0)C0q〉
〈q†, q〉 , (4.6)

|Δλ| ≤ ||C0||Θ(x0, y0), (4.7)

Θ(x, y) = ||q†(x, y)|| · ||q(x, y)||
||〈q†, q〉|| , (4.8)

where C0 is a matrix that defines the feedback due to the localized operator perturbation
and the local coupling between different velocity components. The quantity Θ(x, y) gives
an indication of regions where the localized feedback will produce a large drift in the
eigenvalue, thus representing the sensitivity of the eigenvalue to structural perturbations.
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λ ωn

1.3325 × 10−2 ± 0.74189i Stationary
1.8128 × 10−2 ± 0.73109i 0.0767
1.9773 × 10−2 ± 0.72781i 0.3833
7.2151 × 10−2 ± 0.74010i 0.7665
1.3119 × 10−2 ± 0.74237i 3.8327

TABLE 6. Unstable eigenvalue corresponding to the structural natural frequency ωn for the
oscillating cylinder cases.
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FIGURE 20. Comparison of the structural sensitivity map for the least stable eigenvalue for
different values of the natural frequency ωn . The top panel (a) is the structural sensitivity
for the stationary cylinder case. The bottom four panels (b–e) represent the cases with FSI.
(a) Stationary cylinder; (b) ωn = 0.0767; (c) ωn = 0.3833; (d) ωn = 0.7665 and (e) ωn =
3.8327.

The structural sensitivity of a spring-mounted cylinder is investigated for varying natural
frequencies ωn of the spring-mass system. In all subsequent cases the structural damping
is set to zero and the density ratio is set to 10. The natural frequency of the spring-mass
system is varied and the sensitivity map Θ of the least stable eigenvalue is evaluated.
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FIGURE 21. Close-up of the sensitivity map for ωn = 0.7665.

Table 6 shows the variation of the natural frequency ωn and the corresponding least
stable eigenvalue. The table also shows the unstable eigenvalue for a stationary cylinder
at Re = 50. Figure 20 shows the corresponding changes in structural sensitivity of the
least stable eigenvalue. When the structural frequency is much lower than the unstable
frequency (figure 20b), the sensitivity map resembles the sensitivity map of the stationary
cylinder with small changes close to the cylinder. A small region of sensitivity is generated
close to the cylinder, which is located symmetrically with respect to the horizontal axis.
This region grows in intensity as ωn approaches closer to the unstable frequency (20c).
Close to resonance (20d), the dominant region shifts to the cylinder, lying symmetrically
on the top and bottom. The near wake region is still sensitive to structural perturbations,
however, it is no longer the dominant region. As ωn is increased to be much larger than
the unstable frequency, the sensitivity map resembles the stationary case again. In all
cases with FSI, the sensitivity is non-zero at the cylinder surface. However, the values
remain small if ωn is far from resonance. Close to resonance, small regions on the
cylinder surface have high sensitivities. A close-up of the sensitivity map for ωn = 0.7665
is shown in figure 21, which shows non-zero values of Θ at the cylinder surface. The
non-zero sensitivity on the cylinder surface has implications for control of vortex induced
vibrations. In particular, it is found that control techniques for elimination of vortex streets
which apply to stationary cylinders do not always work for vibrating cylinders (Dong,
Triantafyllou & Karniadakis 2008).

5. Conclusions

An Eulerian formulation for the linear stability analysis of rigid-body motion FSI
problems is rigorously derived and validated. The final form of the linear equations is
evaluated on the equilibrium grid on which the base state is defined and the first-order
effects of moving interfaces are captured by the modification of the interface boundary
conditions. The ‘added stiffness’ terms that arise in the formulation of Fanion et al. (2000)
and Fernández & Le Tallec (2003a,b) are shown to vanish to a first-order approximation
and play no role in the linearized perturbation dynamics. The formulation is validated
for rigid-body motion FSI problems by comparing the evolution of the linear equations
with the nonlinear system when both systems are perturbed with identical small-amplitude
disturbances. This has been performed for several different cases for both rotation and
translation motion, in symmetric as well as asymmetric flow cases, and bounded and
unbounded flows. The linear and nonlinear equations evolve in a near identical manner
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and the extracted frequency and growth rates for the two cases match to within 0.1 %
relative difference.

The FSI linear framework is used to analyse the case of symmetry breaking for a rotating
cylinder with a rigid splitter plate. The linear stability analysis predicts the existence of a
zero frequency unstable mode. This mode is identified as the cause of symmetry breaking
since it causes the system to monotonically deviate from the equilibrium position and thus
causing the onset of the symmetry breaking effect. The zero frequency unstable mode can
be found for both the subcritical and supercritical Reynolds numbers.

Finally, the eigenvalue sensitivity to structural perturbations is investigated using the
adjoint equations for FSI, for a two-dimensional cylinder oscillating in the cross-stream
direction at Re = 50, for varying natural frequencies of the spring-mass system. When the
structural frequencies are far from the unstable frequency, the sensitivity is hardly affected.
However, close to resonance, the sensitivity map changes completely and the dominant
region of sensitivity lies close to the cylinder, located symmetrically above and below. In
all cases of FSI, the sensitivity at the surface is non-zero, however, it attains large values
only close to the resonance condition between the fluid and the structure.
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Appendix A. Navier–Stokes of Taylor expansion terms

We evaluate the Navier–Stokes at the perturbed locations using the Taylor expansion of
the velocity and pressure fields and then use the geometric linearization to consistently
evaluate derivatives at the perturbed configuration. Nonlinear terms arising due to the
interaction of perturbations terms u′, p′,R′ and Δx ′ are dropped, and the equation may be
expanded as[

U0
j
∂U0

i

∂xj
+ U0

j
∂uξ

i

∂xj
+ uξ

j
∂U0

i

∂xj
+ ∂P0

∂xi
+ ∂pξ

∂xi
− 1

Re
∂2U0

i

∂xj∂xj
− 1

Re
∂2uξ

i

∂xj∂xj

]

+
[

∂Ui

∂t

∣∣∣∣
w

− wj
∂U0

i

∂xj
+ U0

j
∂u′

i

∂xj
+ u′

j
∂U0

i

∂xj
+ ∂p′

∂xi
− 1

Re
∂2u′

i

∂xj∂xj

]
= 0,

=⇒

I︷ ︸︸ ︷[
U0

j
∂U0

i

∂x0
k

(Ikj − R′
kj)

]
+

II︷ ︸︸ ︷[
U0

j
∂

∂x0
k

(
∂U0

i

∂x0
l

Δxl

)
(Ikj − R′

kj)

]

+

III︷ ︸︸ ︷[(
∂U0

j

∂x0
l

Δxl

)
∂U0

i

∂x0
k

(Ikj − R′
kj)

]
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+

IV︷ ︸︸ ︷[
∂P0

∂x0
k

(Iki − R′
ki)

]
+

V︷ ︸︸ ︷[
u′

j
∂U0

i

∂x0
k

(Ikj − R′
kj)

]

+

VI︷ ︸︸ ︷[
U0

j
∂u′

i

∂x0
k

(Ikj − R′
kj)

]
+

VII︷ ︸︸ ︷[
∂p′

∂x0
k

(Iki − R′
ki)

]
+

VIII︷ ︸︸ ︷[
∂

∂x0
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∂P0

∂xl
Δxl

)
(Iki − R′

ki)

]

−

IX︷ ︸︸ ︷[
1

Re
∂2U0

i

∂x0
k ∂x0

n

(IkjInj − IkjR′
nj − R′

kjInj + R′
kjR′

nj)

]

−

X︷ ︸︸ ︷[
1

Re

{
∂

∂x0
k

{
∂

∂x0
n

(
∂U0

i

∂x0
l

Δxl

)}}
(IkjInj − IkjR′

nj − R′
kjInj + R′

kjR′
nj)

]

−

XI︷ ︸︸ ︷[
1

Re
∂2u′

i

∂x0
k ∂x0
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(IkjInj − IkjR′
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kjInj + R′
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XII︷ ︸︸ ︷[
wj

∂U0
i

∂x0
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(Ikj − R′
kj)

]
+ ∂Ui

∂t

∣∣∣∣
w

= 0. (A 1)

For clarity, the terms are numbered and the expansions of the individual terms (after
dropping the higher order terms) are evaluated as

I = U0
j
∂U0

i

∂x0
j

− R′
kjU0

j
∂U0

i

∂x0
k

, VII = ∂p′
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∂x0
j ∂x0
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V = u′
j
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On collecting all terms of the expansions, several terms cancel and we obtain the following
simplified expression:

[
U0

j
∂U0

i

∂x0
j

+ 1
ρ

∂P0

∂x0
i

− 1
Re

∂2U0
i

∂x0
j ∂x0

j

]
+ Δxl

∂

∂x0
l

[
U0

j
∂U0

i

∂x0
j

+ 1
ρ

∂P0

∂x0
i

− 1
Re

∂2U0
i

∂x0
j ∂x0

j

]

+
[

∂Ui

∂t

∣∣∣∣
w

− wj
∂U0

i

∂x0
j

+ U0
j
∂u′

i

∂x0
j

+ u′
j
∂U0

i

∂x0
j

+ ∂p′

∂x0
i

− 1
Re

∂2u′
i

∂x0
j ∂x0

j

]
= 0. (A 2)

The first two bracketed terms together in (A 2) represent the first-order Taylor expansion
of the steady-state Navier–Stokes evaluated at the perturbed location Δx. Since the
steady-state equation for the base flow is identically zero everywhere, the Taylor expansion
also vanishes.

Appendix B. Derivation of adjoint

The adjoint equations are derived for the linearized FSI equations under the inner
product defined as the integral over the domain Ω and time horizon T:

〈q†, q〉 =
∫

T

∫
Ω

q†Hq dΩ dt. (B 1)

In the context of FSI, L represents the linearized FSI equations defined by (3.2a)–(3.2i)
and L† represents the adjoint operator satisfying the Lagrange identity under the inner
product defined in (B 1)

〈L†q†, q〉 = 〈q†,Lq〉. (B 2)

For linear FSI, we consider the case of a two-dimensional circular cylinder free to oscillate
in the vertical direction subject to the action of a spring-mass-damper system and the
fluid forces. The structural system is then defined by the position η and velocity ϕ of
its centre of mass in the vertical direction. In the following i = 2 represents the vertical
direction. The vectors are defined as q = (u, p, η, ϕ), which lies in the domain of L, and
q = (u†, p†, η†, ϕ†), which lies in the domain of L†. The Lagrange identity may be written
as

〈L†q†, q〉 = 〈q†,Lq〉,

=⇒ 〈L†q†, q〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
T

∫
Ω

u†
i

[
∂ui

∂t
+ uj

∂Ui

∂xj
+ Uj

∂ui

∂xj

]
dΩ dt

+
∫

T

∫
Ω

u†
i

[
∂p
∂xi

− 1
Re

∂

∂xj

(
∂ui

∂xj
+ ∂uj

∂xi

)]
dΩ dt

−
∫

T

∫
Ω

p† ∂ui

∂xi
dΩ dt +

∫
T
η†

(
dη

dt
− ϕ

)
dt

+
∫

T
ϕ†

(
Mdϕ

dt
+ Dϕ + Kη +

∮
∂Ω

σ2jnj dΩ

)
dt.

(B 3)
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Integrating by parts and using the divergence theorem leads to

〈L†q†, q〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
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∫
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i
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+ u†

j
∂Uj

∂xi
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i

∂xj

− 1
Re

∂

∂xj

(
∂u†

i

∂xj
+ ∂u†

j

∂xi

)
+ ∂p†

∂xi

]
dΩ dt

−
∫

T

∫
Ω

p

[
∂u†

i

∂xi

]
dΩ dt

+
∫

T

∮
∂Ω

[
u†

i uiUj + u†
i σij − uiσ

†
ij

]
nj dΩ dt

+
∫

T

[
ϕ

(
−Mdϕ†

dt
+ Dϕ† − η†

)
+ η

(
−dη†

dt
+ Kϕ†

)

+ϕ†
∮

∂Ω

σ2jnj dΩ

]
dt

+
[∫

Ω

(u†
i ui) dΩ

]T

0
+
[
Md(ϕ†ϕ)

dt
+ d(η†η)

dt

]T

0
,

(B 4)

where we have denoted the direct and adjoint stresses in compact notation as

σij = −pδij + 1
Re

(
∂ui

∂xj
+ ∂uj

∂xi

)
; σ

†
ij = −p†δij + 1

Re

(
∂u†

i

∂xj
+ ∂u†

j

∂xi

)
. (B 5a,b)

The temporal boundary terms for appropriately defined direct and adjoint operators vanish
(Bagheri, Brandt & Henningson 2009a). For the outer boundaries of the domain, the
structural variables play no role and the boundary terms may be written compactly as

∫
T

∮
∂Ω

[
ui(u

†
i Uj + σ

†
ij ) − u†

i σij
]

nj dΩ dt = 0. (B 6)

For homogeneous Dirichlet and stress-free conditions for the direct problem, the boundary
conditions for the adjoint problem reduce to

u†
i = 0 on ∂Ωv, (B 7)

(σ
†
ij + u†

i Uj)nj = 0 on ∂Ωo. (B 8)

On the interface boundary Γ , the structural equations are part of the boundary terms. The
base flow U is identically zero and using the velocityboundary condition at the interface
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for the direct variables, we obtain (for an oscillating cylinder case)

−
[∫

T

∮
∂Ω

u†
i σijnj dΩ dt

]
+
[∫

T
η

(
−dη†

dt
+ Kϕ† −

∮
∂Ω

∂Uk

∂x2
σ

†
kjnj dΩ

)
dt
]

+
[∫

T
ϕ

(
−Mdϕ†

dt
+ Dϕ† − η† +

∮
∂Ω

σ
†
ij nj dΩ

)
dt
]

+
[∫

T

∮
∂Ω

ϕ†σ2jnj dΩ dt
]

= 0. (B 9)

The second and the third brackets form the two adjoint structural equations, while
the first and the fourth brackets together form the boundary conditions for the coupling
between the fluid and the structure in the adjoint equations. The final set of adjoint
equations for FSI of the two-dimensional oscillating cylinder can be written as

−∂u†
i

∂t
+ u†

j
∂Uj

∂xi
− Uj

∂u†
i

∂xj
+ ∂p†

∂xi
− 1

Re
∂

∂xj

(
∂u†

i

∂xj
+ ∂u†

j

∂xi

)
= 0 in Ω f , (B 10a)

∂u†
i

∂xi
= 0 in Ω f , (B 10b)

−Mdϕ†

dt
+ Dϕ† − η† +

∮
Γ

σ
†
2jnj dΩ = 0 in Ω s, (B 10c)

−dη†

dt
+ Kϕ† −

∮
∂Ω

(
∂Uk

∂x2

)
σ

†
kjnj dΩ = 0 in Ω s, (B 10d)

u†
1 = 0 on Γ, (B 10e)

u†
2 − ϕ

†
2 = 0 on Γ, (B 10f )

σ
†
ij −

[
−p†δij + 1

Re

(
∂u†

i

∂xj
+ ∂u†

j

∂xi

)]
= 0 adjoint forces on Γ, (B 10g)

u†
i = 0 on ∂Ωv, (B 10h)

(σ
†
ij + u†

i Uj)nj = 0 on ∂Ωo. (B 10i)

Appendix C. Convergence tests

The convergence tests for an oscillating cylinder are reported in this section. The
convergence test is performed for the case of a spring-mounted two-dimensional cylinder
at a diameter based Reynolds number of Re = 23.512. The structural parameters are the
same as the ones reported in table 1. Table 7 reports the domain size and polynomial order
of the various tests performed to ensure converged results. A comparison of the spectra for
case 1 and case 2 is shown in figure 22. The panel on the left shows the spectra comparison
for two different polynomial orders. The two cases have nearly identical spectra implying
the convergence of results with grid resolution. The panel on the right shows the spectra
for three different domain sizes. For all three cases, the physical eigenvalue of the system
is always converged. The highly damped modes represent the box modes of the system
which vary slightly depending on the size of the computational box. A similar behaviour
of the damped eigenmodes can be found in Assemat et al. (2012). Overall, the results show
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Case Polynomial order (N) Streamwise domain Cross-flow domain

1 7 x ∈ [−25, 60] y ∈ [−50, 50]
2 9 x ∈ [−25, 60] y ∈ [−50, 50]
3 9 x ∈ [−25, 50] y ∈ [−40, 40]
4 9 x ∈ [−25, 45] y ∈ [−35, 35]

TABLE 7. Structural parameters for a two-dimensional cylinder oscillating in the cross-stream
direction.
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FIGURE 22. A comparison of spectra for different domain studies. (a) Spectra for two different
polynomial orders of N = 7 (case 1) and N = 9 (case 2). (b) Comparison of spectra for three
different domain sizes.

the convergence of the physical eigenvalue both in terms of grid resolution and numerical
domain.
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