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SEMISIMPLE ALGEBRAS OF INFINITE VALUED 
LOGIC AND BOLD FUZZY SET THEORY 

L. P. BELLUCE 

0. Introduction. In classical two-valued logic there is a three way 
relationship among formal systems, Boolean algebras and set theory. In 
the case of infinite-valued logic we have a similar relationship among 
formal systems, MV-algebras and what is called Bold fuzzy set theory. The 
relationship, in the latter case, between formal systems and MV-algebras 
has been known for many years while the relationship between 
MV-algebras and fuzzy set theory has hardly been studied. This is not 
surprising. MV-algebras were invented by C. C. Chang [1] in order to 
provide an algebraic proof of the completeness theorem of the infinite-
valued logic of Lukasiewicz and Tarski. Having served this purpose (see 
[2] ), the study of these algebras has been minimal, see for example [6], [7]. 
Fuzzy set theory was also being born around the same time and only in 
recent years has its connection with infinite-valued logic been made, see 
e.g. [3], [4], [5]. It seems appropriate then, to take a further look at the 
structure of MV-algebras and their relation to fuzzy set theory. This 
relation, in itself, is not complicated; those MV-algebras which are 
semi-simple are precisely the Bold algebras of fuzzy sets. Now, though 
MV-algebras are a certain generalization of Boolean algebras their 
structure is much more complicated and one striking difference between 
them is that not every MV-algebra is semi-simple. Indeed, it is known 
( [1] ) that the class of semi-simple algebras is not a universal class. So the 
wrinkle here is in deciding whether or not a given MV-algebra is 
semi-simple. To this end a deeper structure theory needs development and 
it is the purpose of this paper to initiate such an investigation. We end this 
paper in a representation theorem for S0-complete atomic MV-algebras. 
Many questions remain unanswered, in particular whether or not a 
complete MV-algebra is semi-simple. 

In Section 1 we give the basic definitions and properties of MV-
algebras. Since all this material is in [1], [2] we only present what is needed 
later. Section 2 looks at the relationship between MV-algebras and Bold 
fuzzy set theory presenting an analogue of the Stone representation 
theorem for Boolean algebras. Section 3 begins the deeper study of our 
subject and introduces a distributive lattice intimately associated to a 
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given MV-algebra. This lattice will provide some insight into the prime 
ideal space of an MV-algebra. Section 4 studies representations and 
concludes with a structure theorem for K0-complete and atomic MV-
algebras. 

1. An MM-algebra is a non-empty set A with two binary operations 
+ , *, one unary operation and two special elements 0, 1 such that 

1. (A, + ,0> , (A, -, 1) 

are commutative semi-groups with identity. 

2. x + x=l9X'X = Q, 0 = 1 

for all x e A. 

3. (x + y) = x • y, x • y = x + y, x = x 

for all x, y e A. 
4. Defining V, A by 

x\J y = x + x - y, x A y = (x + y) • y 

we have that 

(A,V9 0>, (A, A, 1> 

are to be commutative semi-groups with identity. 

5. x- (y\/ z) = x-yV x- z,x + (y A z) = (x + y) A(x + z) 

for all JC, y, z e ^4. 
Though these axioms seem cumbersome and are not the most efficient 

they are convenient. These are the same axioms as in [1]. 
The defined operations V, A with 0, 1 make A a commutative lattice 

with least element 0 and greatest element 1 under the ordering x ^ y if 
and only if x A y = x. We then have (see [1] ). 

THEOREM 1. Let A be an MV-algebra and let x, y G A. Then 

a) x - y ^ x A y ^ x 

b) x ?â x\/y = x + y 

c) x ^ y if and only if x • y = 0 if and only ifx-\-y = 1 

d) x + y = y if and only if x • y = x 

e) x - (y 4- z) ^ y -h x • z 

f) j c - y A 3 c - ^ = 0 

g) x - x = x if and only if x A x = 0. 
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One of the most important examples for us of an MV-algebra is the unit 
interval A = [0, 1] of real numbers. Here we define 

x + y = min(l, x + y), x • y = max(0, x + y — 1) and x = \ ~ x. 

Then 

xV y = max(x, y), x A y = min(x, y). 

We will refer to this algebra just by [0, 1]. 
Another example of importance, though not for this paper, is the set of 

equivalence classes of well-formed formulas of infinite-valued proposi-
tional logic under the relation: a = ft if and only if a, /? are provably 
equivalent. 

Recall that given a set X, a fuzzy subset of X is a function f:X —> [0, 1]. 
Consequently A = [0, 1]* becomes an MV-algebra under the obviously 
induced operations. Any subalgebra of A will be called a Bold algebra of 
fuzzy sets. Usually the algebras of fuzzy sets use only V, A. For more 
of this see [3]. 

Let G be any linearly ordered abelian group, written additively, a e G, 
a > 0. Let 

A = [0, a] = {x G G: 0 ^ x ^ a}. 

Then A is an MV-algebra under the operations 

x -\- y = min(a, x + y), x • _y = max(0, x + >> — a), x = a — x. 

In this algebra the role of " 1 " is played by a. It is shown in [2] that every 
linearly ordered MV-algebra arises in this manner from some linearly 
ordered abelian group. 

A quick examination of these examples will show the elements of an 
MV-algebra are not, in general, idempotent nor do they satisfy the 
distributive law 

x • (y -f z) = x - y 4- x • z. 

This is another major difference between MV-algebras and Boolean 
algebras. In fact an MV-algebra in which each element is idempotent is a 
Boolean algebra; similarly an MV-algebra in which the distributive law 
holds is also Boolean. 

2. In this section we give an analogue of the Stone representation 
theorem. Our approach is more from the view point of the Gelfand 
representation theorem since it seems more suitable to the algebra of fuzzy 
sets. The prime and maximal ideal spaces are herein introduced. In an 
MV-algebra not all prime ideals are maximal so the corresponding spaces 
are distinct. We present here only one simple theorem about these 
spaces since we shall show in the next section each of these spaces is 
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homeomorphic to the corresponding space of some distributive lattice. 
Let A be an MV-algebra throughout this section. 

Definition. An ideal in A is a non-empty subset I Q A such that 
x, y G / imply x + y ^ I, x e /, y = x imply y e /. 

We give two easy characterizations of ideals. 

THEOREM 2.Ï) I Q A is an ideal if and only if I =£ &, I is closed under 4-, 
and x G /, y e A imply x A y e /. 

ii) I Q A is an ideal if and only if I ¥= 0,7 is closed under + , and x e 7, 
y G A imply x • y e 7. 

Proof i) This is obvious since JC A ;y = >> if and only if j^ ^ x. ii) One 
direction is clear since x - y ^ x. Assume then, I ¥= 0, is closed under 
+ and x e / and y ^ A imply JC • y G i . Now let x ^ I, y ^ x. Then 
x • (3c + y) e 7. But X'(x+y) = xAysoxAy=y^I. 

An ideal M of A is maximal if and only if M ^ y4 and for all ideals 
IQA,MQIQA implies M = 7 or M = A. 

As usual, ideals give rise to congruence relations, x == y if and only if 
x • y 4- JC • y e J, and consequently quotient algebras A/1, homomor-
phisms etc. [1]. 

For maximal ideals M we have, 

THEOREM 3. A/M is isomorphic to a sub algebra of[0, 1]. 

For the proof of this see the remarks after 3.21 of [1] and Lemma 6 
of [2]. 

Thus we have for each maximal ideal M a homomorphism 

<PM:A - > , 4 / M - > [ 0 , 1]. 

Now let M be the set of all maximal ideals of A. With each x e A we 
associate a fuzzy subset of J(, namely, 

x:J?-^>[0, 1] where x(M) = <pM(x). 

H^(A) = [x: x e A} then^(A) is a Bold algebra of fuzzy sets, 

Je + y = (x + y), x - y = (x • y), x = x, 0 = 0, 1 = 1. 

Then the map JC —> x is a homomorphism of A into ^(A). In general this 
map is not an injection. 

THEOREM 4. For each MV-algebra A there is a Bold algebra of fuzzy sets 
^(A) and a homomorphism of A onto ^(A). The homomorphism x —» JC is 
one-one if and only if Rad(^4 ) = 0, where Rad(^4 ) is the intersection of all 
maximal ideals of A. 

Proof. (This is basically 4.9 of [1] ). We know JC —> x is a homomorphism. 
JC = y if and only if for each maximal ideal M, x • y H- x • y e M. Thus 
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Rad(/1) = 0 implies x-y + x-y = 0sox-y-\-x-y = 0; 
by Theorem 1, JC = v. If Rzd(A) ^ 0 choosey e Rad(^), y ¥= 0. Then 
A ^ A 

y = 0 = 0 and so x —> x is not one-one. 
Rad(^4 ) is called the radical of A and we say A is semi-simple if and only 

if Rad(/1) = 0. The above theorem tells us, then, that the semi-simple 
MV-algebras are Bold algebras of fuzzy sets. As mentioned in the 
introduction, not all MV-algebras are semi-simple. Later we will give a 
necessary and sufficient condition for an MV-algebra to be semi-simple, 
which will imply each Bold algebra of fuzzy sets to be semisimple. 

For each x e A let 

S(x) = {M:M e J? and x £ M). 

It is obvious that S(x • y) c S(x) n S(y), hence the sets S(x) generate a 
topology ST on ~#. It is easy to show that 

THEOREM 5. 3T is a compact Tyspace and if x is idempotent then S(x) 
will be open and closed. 

In MV-algebras the prime ideals play a more important role than the 
maximal ideals. It seems likely that the prime ideal space will be more 
revealing than the maximal ideal space. Though neither of these spaces is 
much investigated in this paper we shall prove in the next section a general 
theorem about them. 

An ideal P Q A is called prime if and only if I ¥= A and for each 
x, y G A, x - y e P or x y e P. 

It is shown in [2] that P is a prime ideal if and only if A/P is a linearly 
ordered MV-algebra. Since [0, 1] is linearly ordered we see that every 
maximal ideal is prime. Examples are given in [1] of linearly ordered 
MV-algebras not contained in [0, 1], consequently prime ideals need not 
be maximal. 

Letting 0* denote the set of all prime ideals of A and defining 

R(x) = {P e &>: x £ P} 

we have as before that the sets R(x), x G A, generate a topology on 0. 
This topology is also a compact Tx-space and for x idempotent R{x) will 
be open and closed. 

3. In this and the following section occurs the principal part of this 
paper. We construct a lattice associated to a given MV-algebra A whose 
ideal structure parrots that of A. This will give us another way to get at the 
prime and maximal ideal spaces of A. The relationship between A and its 
associated lattice will also enable us to get at certain structural features of 
A itself. Though undoubtedly the transition from A to this lattice loses 
some information, enough is retained to make its introduction worthwhile. 
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Note that this lattice is not (A, V, A, 0, 1) whose ideal structure is in 
general quite different from that of A. Just take [0, 1] for example which 
only has the trivial ideals as an MV-algebra whereas every subinterval 
[0, x] is a lattice ideal. 

Since we shall work primarily with prime ideals in this section we begin 
with a characterization reminiscent of prime ideals in rings. A will be a 
fixed MV-algebra throughout this section. 

THEOREM 6. Let P be an ideal of A. Then, P is prime if and only if for any 
x, j e P , x A j G ? implies x e P or y e P. 

Proof Suppose x A y £ P implies x G ? o r j / e P . Since x • y A x - y 
= 0 it follows that x • y e P or x • y e P so P is prime. Conversely 
suppose P is prime and x A y e P. Assume x • y e P. Then 

xAy + x-y<^P. 

So 

(3c 4- y) • x + x • y e P. 

Now we know from part 1 that 

x = x - I ^==x-(x + x\/y)^X'(x+y-\-X'y) 

^ (3c 4- y) - x 4- x - y 

and so x G P. Similarly 3c • jy e P implies _y e P. 
Now consider the set 0* of prime ideals of A. Let ^ C ^ be any 

non-empty subset. On the algebra A define x = j>(mod Sf) if and only if 
for each P e S? x e P if and only if y e P. Thus two elements of A are 
related (mod S?) if and only if no prime P e £f can separate them. 

THEOREM 7. = (mod ^ ) is a congruence relation on A with respect to 
4 , A. 

Proof Clearly = (mod 6f) is an equivalence relation. Suppose then 
that x = y9 z = w, (mod Sf is to be understood). Let P e ^ and assume 
x 4- z G P. Then JC, z e P and s o ^ w e P and we have j -f w G P. By 
symmetry, then, JC 4 z = y 4- w. Suppose now that x A z €E P. Since P is 
prime, JC e P or z e P. Thus y e P or w e P. In either case 7 A w e P. 
Again by symmetry, x A z = y A w. 

Note that = (mod y ) is also a congruence with respect to V and that 
x 4- z = x V z. 

Now for each x e 4̂ let [JC] denote the equivalence class of x under = 
and let [A]^> denote the set of all such equivalence classes. On [A]^ 
define 4 , • by 

[x] 4 [y] = [x +y],[x]'[y] = [xAy]. 
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Let 1 = [1], 0 = [0] and define [x] ^ [y] if and only if [x] • [y] = [x]; the 
relation â is obviously well defined. 

THEOREM 8. {[A]^, + , •, i , 0, 1) w Û distributive lattice with least 
element 0 and greatest element 1. 

Proof. Clearly x + x = x, x A x = x. Also obvious is x 4- 0 = x, 
x A 1 = x. So we get that 

[x] 4- [x] = [x], [x] • [x] = [JC], [x] + 0 = [x], [x] • 1 = [x]. 

Both -f, • are obviously commutative and associative. To prove distribu-
tivity we need to show 

JC A (y 4- z) = (x A >>) + (x A z). 

So let P G «y and suppose 

( I A J ) + ( I A Z ) G P. 

Then x A y, x A z G P. If x G P then JC A (y 4- z) G P. If x £ P then by 
Theorem 6, y, z G P, SO y 4- z G P. Again, then, JC A (_y 4- z) G P. 
Conversely, suppose X A ( J / + Z ) G P . Now 

x A j , x A z ^ x A ( _ y 4 ~ z ) 

so we get x A >>, JC A z G P; thus 

(x A ^) H- (JC A Z) G P. 

Thus \A\c/> is an idempotent, commutative semi-ring with 0 and 1. Now 

M • ( [* ] + Ly] ) = [*] + [Jc] ' M = [x 4- x A j ,] = [x] 

since clearly x 4- x A -y = x. Thus [x] ^ [x] 4- [y]\ similarly [y] ^ 

[x] 4- [y]. Suppose then that [x] ^ [z],[y] = izl T h u s 

[x] ' [z] = [x], [ j ] • [z] = [y], 

so 

[ * ] • ( [ * ] + M ) = W + Lv]. 
Hence [x] 4- [j;] ^ [z]; so we see that 

\.u.b.([x],[y]) = [x] + [y]. 

Clearly [x] • [y] ^ [x], [y], so if [z] ^ [x], [>>] we get 

W - (M • [y]) = N 

so that 

g.l.b. ( [ x ] , [ j ] ) = [*]•[>>]. 

Finally, it is evident that 0 ^ [x] ^ 1 and the theorem is proved. 
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Note that for each [x] G [A \#> there is a [3c] G [A ]^ with [x] 4 [x] = 1 ; 
in general [x] • [3c] ¥= 0 so [^4]^ is not a complemented lattice. 

Recall that an ideal in a distributive lattice is a non-empty subset / 
closed under -f and such that if a G J, and è is arbitrary, then ab G / . We 
now relate the ideals of A to those of [A ]#>. 

Let / be an ideal of A. Define 

/* = { [x] G [A]^:îor some y G [X], y G / } . 

THEOREM 9. / * is an ideal of [A ]^>. 

Proof. Since / ¥= 0 it is evident that I* ^ 0. Let [x], [y] G J*. 
Then there are z G [x], w G [j;] with z, w G /. Hence z 4 w G /. Thus 
[z 4- w] G J*. But 

[z 4 w] = [z] 4 [w] = [x] 4 [j>] 

and so /* is closed under 4 . Now let [x] G /*, [ j ] G [v4]y>. For some 
z G [x] we have z G J. Thus Z A J E / ; S O 

[*]•[>>] = [z]-[>>] = [z Ay]^ /*. 

Now /* need not be proper; however, if / Q USf then /* will be proper. 
For suppose 1 £ ? . Then for some x G [1] we have x G /. So if / Q US? 
then for some prime P G ^ w e would have x G P. But x = 1 (mod S?) 
and s o l e P which is impossible. 

As noted previously, v4 is a lattice under the operations of V, A; 
moreover the mapping JC —» [x]:.4 —> [A]y> is a lattice morphism. Since 
lattice ideals of 4̂ are not in general ideals of A this morphism, as a lattice 
morphism is not of much use to us. As a map however we see it does carry 
ideals of A to those of [A \^. 

We now describe how to go from the ideals of [A]^> to those of A. 
Let L be an ideal of [A ]^>. 

THEOREM 10. Let L* = U{ [x]:[x] G L} . Then 
i) L* is an ideal of A 

ii) (L*)* = L 
iii) 1 G L* if and only if [I] G L. 

Proof i) Let x, j G L^. Then [x], [ j ] G L so [x 4 j>] G L; thus 
x 4- j> G L*. If x G L#, _y G ^ then [x A j>] G L and so x A y G L*. 
Hence L* is an ideal. 

ii) Let [x] G (L*)*. Then for some y G [X] we have ^ G L*. Hence 
[^] e L. But [y] = [x] so [x] G L and we have (X*)* Q L. Conversely, 
let [x] G L. Then x G L* SO [X] G (L*)*. Thus L Q (X*)*. 

iii) If 1 = [1] G L then obviously 1 G L*. On the other hand if 1 G L* 
then 1 = [1] G (L*)* = L. 

https://doi.org/10.4153/CJM-1986-069-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-069-0


1364 L. P. BELLUCE 

A proper ideal in a distributive lattice is called prime if and only if 
whenever it contains a product it contains one of the factors. 

Let &#> denote the set of prime ideals of [A \^. Then, 

THEOREM 11. If P G Sf then P* G 9^ 

Proof. P Q u«y obviously so P* is proper. Suppose then that 
[x] • [y] G p*. Thus, [x Ay] ^ P*. So there i s a z G [ i A j ] with z G P. 
Since P G y it follows that x A y G P. Hence x G P or >> G P so 
[x] G P* or [7] G P*. Thus P* G ^ . 

A kind of converse to this theorem is 

THEOREM 12. Let P G & 77i£?w (P*)* = P. 

Proa/. Let x G P. Then [x] G P* SO X G (P*)*. Conversely, let 
x G (P*)*. Then x G [>>] for some [y] G P*. Thus there is a z G [y] with 
z G P. But [x] = [z] - [>>] so x G P. Hence P = (P*)*. 

THEOREM 13. Suppose M ^ S? is a maximal ideal of A. Then M* is a 
maximal ideal of [A ]^. 

Proof If M e y then A/* is proper in [A]^. Let, then, .L be an ideal 
of 1^4]^ with M* G /,. Then (M*)# Q L*. Now M is maximal, hence 
prime in A so we have by Theorem 12, (M*)* = M. Thus L* = A or 
L* = M. If L* = 4̂ then L = [A]^> by Theorem 10 hi). If L* = M 
then L = (L*)* = M*. Thus M* is maximal. 

Thus the map I -* I* carries primes and maximals in Sf to primes and 
maximals respectively of [A ]#>. Next we show that primes in [A ]y> give rise 
to primes in A though not necessarily in £?. 

THEOREM 14. Let L G d^, Then L* G 9. 

Proof L is proper, hence so is L*. Now let x Ay G L*. Then 
[x A y] G (L#)* = L; so [x] • [}»] G L and since L G &>9 [x] G L or 
[y] G L. So we see that x G L ^ o r y G L*, SO L* G 9. 

Let J ^ denote the ideals of A contained in U£f. Let J$> be the proper 
ideals of [A ]^>. We have a mapping / •—> 7* of J ^ on ^ which carries the 
prime and maximal ideals in Sf into the prime and maximal ideals 
respectively of [A ]y>. We also have a mapping L —» L* of Jg5 to the set of 
ideals of v4. This map carries prime ideals to prime ideals. Suppose now 
that for x G A, [x] ¥= [1] G \A\</>. Then x =£ l ( m o d ^ ) so for some prime 
ideal P G y, x G P. So if L is any proper ideal in [A \#> it follows that 
L* ç \jy. Thus we see that the mapping L —> L* is a map of J ^ onto J^ 
Moreover it is one-one by Theorem 10 ii). 

Let's now consider the case where Sf = 9. We obtain 
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THEOREM 15. P —> P* is a one-one map of & to &*. This mapping, 
moreover, carries Jt onto Jt*, the set of maximal ideals of[A]g>. 

Proof Let P, Q G @. If P* = Q* then by Theorem 12 P = (P*)* = 
((?*)* = (?• (By Theorem 11 we know P*, g* G ^ * ) . If I G ^ * then 
L* <= g> and (Z,*)* = L. If M e J we know by Theorem 13 that 
M* G Jt*. Suppose then that L G Jt*. Let 7 be an ideal of A, I =£ A, 
L* ç / . Then 

L = (L*)* ç 7* * [A]p. 

Hence L = I*. If x G I then [ X ] E L S O X G L*. Thus 7 = L* so L* G ^ 
and we see the map c a r r i e s ^ onto^#*. 

Also, in the case S? = 0>, we have that x = 1 (mod ^ ) if and only if 
ord x < oo where ord * is the least integer n such that TO; = 1 (see [1] ). 
For clearly, ord x < oo implies JC = 1 (mod &). When no such n exists we 
say that ord JC = oo. In this case let 

^ = {yy = nx f° r some n ^ 0}. 

7 will then be a proper ideal in A hence contained in some maximal ideal 
M G 0>. Then x G M, 1 £ M so 

JC ^ 1 (mod ^ ) . 

We now compare the topologies on & and ^* . Recall from Section 2 
that the sets P(JC), JC G ^4, generate a topology on ^ . Consider also the 
family of sets 

T( [JC] ) = {L:L G ^ * and [JC] € L } , JC G ^4, 

which determine a topology on [A]g>. Now for any subset °U Q SP let 

^ * = {P*:P G # } . 

THEOREM 16. R(x)* = T( [x] ), w/zere P(x)* /zas1 //ze obvious meaning. 

Proof Let P* G P(JC)*. Then JC « P so [JC] n P = 0. Thus [JC] € P* so 
P* G P( [JC] ). Conversely, let L G T( [x] ). Then by Theorem 15 L = P* 
for some P G ^ . So [JC] £ P*, hence JC £ (P*)* = P. So P G P(JC) and 
P* = L (E R(x)*. 

Now let 

«T = {P(JC):JC G . 4 } , ^ * - {P ( [JC] ) : JC ^ A). 

We have a map P(JC) —» P(JC)* of y to ^"*. We will show this map is 
one-one, onto and preserves arbitrary unions, finite intersections. 

THEOREM 17. P(JC)* = R(y)* implies R(x) = R(y). 

Proof Given P(JC)* = R(y)* we have T( [JC] ) = T( [y] ). So for each 
P G ^ * we have [JC] £ P* if and only if [y] £ P*. This implies JC £ P if 
and only if y £ P since P = (P*)*. Therefore P(x) = R(y)-
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THEOREM 18. (R(x) n R(y))* = R(x)* n R(y)*. 

Proof. Obviously R(x) n R(y) = R(x Ay). So 

(tf(x) n R(y))* = T([xAy])= T([x][y]) 

= T( [x] ) n 7 \ [>»] ) 

also obviously. Thus 

(R(x) n R(y))* = R(x)* n P(>0*. 

THEOREM 19. Let J be an index set. Then 

(Ux(EjR(x))* = UxeJR(x)\ 

Proof. Let 

P* G ( U ^ , * ( * ) ) * . 

Then by definition P e U ^ j P(x) so for some x G / , P e R(x). Thus 
P* G P(x)* so we have inclusion in one direction. Conversely, if 

P* G U x e ; R(x)* 

then P* G P(JC)* for some X G / S O 

P G P(JC) Ç U X G / R(x). 

Hence 

P* e ( U x e 7 « ( * ) ) * 

and we have inclusion in the other direction. 

Summarizing we have, 

THEOREM 20. For each MV-algebra A there is a distributive lattice 
[A \@ with 0, 1 such that the prime ideal spaces of A and [A ]#> are homeo-
morphic. 

We point out that the map A —> [A ]^ is a functor from the cateogry of 
MV-algebras to the category of distributive lattices with 0, 1. It is not 
known which distributive lattices are in the range of this functor. 

Having now shown the structure of the set of ideals of an MV-algebra is 
the same as that of some distributive lattice, we wish to take up the 
relationship between the structure of A and that of [A]^. We will 
assume here t h a t ^ ç &^cp ̂  0 a n c j n ^ = |Q}. We note that n0> = {0}. 
C\</> _ | Q J implies that in \A\^ [0] = {0} since if x ¥= 0 there is a prime 
P e SP with 0 e P and x & P. We use this fact many times. 

Recall from [1] that an MV-algebra is locally finite means every JC e A, 
x T̂  0, has finite order, i.e., ord x < oo. Now every locally finite A is a 
subalgebra of [0, 1]. This is just the case where {0} is a maximal ideal. 
Obviously every subalgebra of [0, 1] is locally finite. Locally finite algebras 

https://doi.org/10.4153/CJM-1986-069-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-069-0


SEMISIMPLE ALGEBRAS 1367 

are, then, just the simple MV-algebras, i.e., the only ideals are {0}, A. We 
have, 

THEOREM 21. Let A be locally finite. Then [A]#, = {0, 1}, 0 ¥= 1. 

Proof. Let x ^ A, x ¥= 0. then nx = 1 for some n so we have x = 1 
(mod 5^). Thus [1] = 1. Clearly [x] * [0]. 

A kind of converse to this theorem is 

THEOREM 22. IfS? = ^ <WK/ [A]#> = {0, 1} f/œw ,4 w locally finite. 

Proof Let x G i , i ^ 0. Then [x] = 1 so x = 1 (mod @). Hence 
x belongs to no prime ideals. It follows from 4.4, 4.6 of [1] that 
ord x < oo. 

Every locally finite algebra is linearly ordered obviously and we can 
extend the above results to 

THEOREM 23. A is linearly ordered if and only if [A]^ is linearly 
ordered. 

Proof. If [A]^ is linearly ordered then all its ideals are prime (see 
ex. 1, pg. 42, Birkhoff s Lattice Theory). Hence { [0] } is prime. So 
{ [0] }* = {0} is prime in A by Theorem 14. Thus A is linearly ordered 
(Lemma 1 of [2] ). Now if A is linearly ordered then for each x, y e A 
either xAy = xorxAy=y. Hence in [A]^> either [x] • [y] = [x] or 
M ' [y] = [y]- So we may conclude that [A]y> is linearly ordered. 

The next result deals with atoms of [A\c/> and is somewhat curious. 

LEMMA. Let [x] be an atom of[A]^. Then as a subset of A, [x] is linearly 
ordered. 

Proof. Let a, b e [x]; then [a] = [x] = [b]. Set a! = a • b, bf = â • b. 
Then 

a' A b' = a- b A â- b = 0 

by Theorem 1, f). Hence [a'] • [b'] = [0]. Now a! = a! A a since by 
Theorem 1, a) a! ^ a. So it follows that \a'\ ^ [a] = [x]. Similarly, 
[b'] ^ [x]. Since [x] is an atom we have [a'] = [x] or [a'] = 0 
and [b'] = [x] or [V] = [0]. Since [a'] • [bf] = [0] = 0 we know [a'] ¥= [x] 
or [b'] ¥= [x]. If [#'] ¥= [x] then [#'] = 0 which means a • b = 0 and so 
a ^ b. Similarly if [Z/] =£ [x] then b ^ a. Thus [JC] is linearly ordered. 

THEOREM 24. If [x] is an atom of [A]^ then {0} U [x] is a linearly 
ordered ideal of A. 

Proof. Let L = {0, [x] }; then L is an ideal of [A \^> and so L* is an ideal 
of A. L* = {0} U [x] and by the lemma is linearly ordered. 
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For X ç A, X * 0 define 

X1- = {a:a ^ A and a A X = 0} 

where 

a A X = {a A x:x <E X}. 

X1- will be called the annihilator of X. As in ring theory the annihilator 
produces an ideal. 

THEOREM 25. If X Q A, X ^ 0, X ^ {0}, f/iew X 1 w a proper ideal 
in A. 

Proof. Let a, 6 G X 1 , x G X Now 

(a 4- ft) A x = (a + ft + 3c) • JC ^ a + (ft + x) • JC 

= A + (6 A x) = a. 

So 

(a -f è) A i = (A + /)) A x A i = a A x - 0. 

Thus a + è e / . I f a e l 1 and b ^ a it is clear that è e ^ . S o I 1 is 
an ideal. Since X ¥= {0} we have 1 £ X so X is proper. 

In some cases X is a prime ideal, that is 

THEOREM 26. If I is a linearly ordered ideal of A then I is a prime 
ideal. 

Proof We know / is a proper ideal. Suppose then that a A b e / , 
a^I^.b <£ I±. Then there are c\ c" e / with a A c' * 0, ft A c" * 0. 
Let c = cf \l c". Since / is an ideal and c = cf + c", we see that c ^ I. 
Moreover, since 

a A c' ^ a A c, ft A c" ^ ft A c 

we have a A c, b A c are not 0. Since J is an ideal, a A c, ft A c e /. We 
can assume a A c ^ ft A c. Thus 

aAc = aAaAc^aAbAc = 0. 

This contradiction proves the theorem. 

Notice the above theorem only requires that / be a linearly ordered ideal 
of the lattice (A, V, A, 0, 1). It is not known if all prime ideals of A can be 
obtained as annihilators in this manner. 

Now for each JC e A let 
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Then Lx is a principal ideal in [A ]#> and depends only on the equivalence 
class of x. Thus (Lx)* is an ideal of A. Let Jx = (Lx)i~ and Bx = A/Jx 

which also only depends on the equivalence class of x. Combining the 
previous results gives 

T H E O R E M 27. If[x] is an atom then Bx is a linearly ordered MV-algebra 

and x/Jx9 the image of x in Bx, is not 0. 

Proof. Since [x] is an atom, Lx = (0, [x] }. Thus (Lx)* is a linearly 
ordered ideal of A. Thus Jx is a prime ideal so Bx is linearly ordered. Now 
x <= (Lx)* and x A x ¥= 0 so x £ Jx; hence x/Jx ¥= 0. 

We will use these results in the next section. 

4. In this section we consider a special type of subdirect product 
representation of a given MV-algebra A which, in some sense, is minimal. 
Whether or not a given A has this type of representation is crucial to its 
being semisimple. 

Let A be a given MV-algebra. By a representation of A we will mean a 
collection of MV-algebras {At}, i e V for some index set T, such that A 
can be embedded isomorphically into the direct product I I , At 

subdirectly. The At will be referred to as the components of the 
representation. 

Given a representation {^4,}, / G T, of A and /0 G T, the component At 

will be called superfluous if {At}, i e T — {/0} is also a representation 
of ^ . A component ^4, is essential if and only if it is not superfluous. 

We can characterize essential components by 

THEOREM 28. At is essential if and only if there is an x G A such that 
xi > 0 and x- = 0 for j =£ /', where xi is the image of x under the 
mapping 

Proof Suppose we have such an x. For each j let R be the kernel of the 

map 

A^UiA^Aj. 

For / ¥= i we have x,• = 0 so x G P. Thus 
J j J 

hence 4̂ is not contained in 1 1 ^ / A- subdirectly. Thus Al is essential. 
Conversely, suppose Ai is an essential component of some representation 
{^y},7 G T. Then {Aj},j e T — {/} is not a representation. Thus 

n 7 . , ^ ^ 0. 

Choose 
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x G nj¥si Pj9 x ¥= 0. 

Then Xj = 0, j ¥= i and xz > 0. 

We will call a representation {At}, i G T, irreducible if and only if each 
^ is essential. We then have 

THEOREM 29. An MV-algebra A has an irreducible representation if and 
only if there is an S? Q ÇP such that r\S? = {0} and [A^] is atomic. 

Proof. Suppose {At}, i G T, is an irreducible representation. For each 
/ G T let ij be as in the above theorem. Let Sf = {Pf.i G Y}. T h e n ^ ç & 
and nS? = {0}. Now let [x] G [v4^], x ^ 0. Choose / E T so that xz ¥* 0. 
Since ^z is essential there is a j <E A with j z > 0, y- = 0, j ¥- i. Now if 
& G ^ then P = ij. for some y e r . I f x G ? then x,- = 0 soy ¥= i. Hence 
^ = O s o j G P. This implies 

x A y = y (mod y ) , 

i.e., [x] • [.y] = [ j ] so [ j ] g [x] and [y] * 0. If [z] < [>>] then [ z A ^ ] = 
[z] and for some P <E S?, z <E P, and ^ € P. So for y ¥= i, y G P thus 
z A _y G jP., hence z G p.. So for / we have P = Pt and z G P-. Thus 

z G n , e r Pj = n ^ ; 

so z = 0. Hence [y] is an atom of [A^], [y] ^ [x], so [v4̂ >] is atomic. 
Conversely, suppose [A^\ is atomic, nSf = {0}. Let AT be the set of 
atoms of [v4 ,̂]. Let 

^ = YI[X]&AT Bx> 

where Bx = A/Jx as in Theorem 27. We know by Theorem 27 that each Bx 

is linearly ordered and is an epimorphic image of A. Let <p:A —> B be given 
by 

<p(a)[x] = a/Jx. 

<p is clearly a homomorphism. Suppose a > 0. Then [a] > 0 so there is a 
[x] G v4T with [x] ^ [a]. Now x/Jx ^ 0 in Bx. If a e Jx then A A x = 0 
so [x] • [a] = [0]; but [x] • [a] - [x] * [0]. So a £ Jx, and a/7 x ^ 0. Thus 
<p(a) ¥= 0 so we have <p(a) = 0 if and only if a = 0 and this implies <p 
is an isomorphism of A into B. Since each Bx is an epimorphic image of 
A, we can infer that {Bx}, [x] G AT, is a representation of A Now for 
[x] G AT we know x/Jx ^ 0. If ^4P = { [x] } then clearly Bx is essential 
so we can assume there is a [y] G AT, [y] ¥= [x]. Then [x] • [y] = 0 
and so x A y = 0. In fact, if [/] = [y] then again, x A / = 0. Thus for 
Lv = {0, [y] } we have x G (Ly)^; that is x G Jy. Hence x/Jy = 0. 
So by Theorem 28 we see that Bx is essential. Therefore the representa­
tion {Bx}, [x] G AT, is irreducible. 
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Now let x be an atom of A. Then for each y ^ A, x A y = x or 
x A y = 0. Thus for any S? Q 0> with n ^ = {0} we have [JC] ¥= 0, 
[x] • [_y] = [x] or [JC] • [ j ] = 0. It follows that [x] is an atom of [A^]. 
Hence 

THEOREM 30. If A is atomic then A has an irreducible representation. 

Proof. Let 5f = &. Choose any [JC] e [A]#>, [JC] ^ 0. then JC ¥= 0 so 
there's an atom y ^ A, y ^ x. Thus, by the preceeding remarks, [y] is an 
atom of [A]p and [y] ^ [JC]. Hence [,4]̂ > is atomic so by the previous 
theorem A has an irreducible representation. 

Suppose now that A is locally finite so that for each x e A, x ¥* 0 there 
is an n with nx = 1. Now ^4, which is necessarily linearly ordered ( [1] ), is 
Archimedean in the sense that for each x, y e A, x ¥= 0, there is an n with 
y ^ «x. We are trying, here, to get some understanding of semisimple 
MV-algebras. So now let A be semisimple with a representation {At}, 
i G T, each At locally finite. Suppose JC, y e A are such that nx ^ y for all 
« ^ 0. If 4̂ were locally finite this would imply JC = 0 or y = 1. Thus in 
the subdirect product, 

A G IL-er4-
we would have nxt ^ yt for all n and each /'. Each At is locally finite so we 
have xt = 0 or yt = 1. Consider now the product JC -yinA. Then in each 
,/41 we have 

/ x / 0 , if JC,- = 0; 

Thus for each i, (x • y)i = xt. It follows then that JC • y = x. We use this 
discussion to motivate the following definition. 

Definition. An MV-algebra A is archimedean if and only if for each 
JC, y G A, if nx ^ y for all n ^ 0 then x • y — x. 

Thus we have proved 

THEOREM 31. Every semisimple MV-algebra A is archimedean. 

As we have seen, every locally finite MV-algebra A is archimedean. We 
also have 

THEOREM 32. A linearly ordered archimedean algebra A is locally finite. 

Proof. Suppose not. Let x be such that JC ^ 0, nx < 1 for all n. Since 
A is linearly ordered we must have nx < 5c for all n as x ^ nx implies 
(n + 1)JC = 1. A is archimedean so JC • 3c = JC. But then JC = 0 contrary to 
our choice of JC. 
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The property of being archimedean characterizes the semisimple 
algebras, that is we have the converse of Theorem 31 : 

THEOREM 33. Let A be archimedean. Then A is semisimple. 

Proof. Suppose x Œ Rad(v4). Then x has infinite order, i.e., nx < 1 for 
all n. Let P be a prime ideal. If x & P then P is not maximal. In A/P, x/P, 
the image of x, must also have infinite order; for P can be extended to a 
maximal ideal M and x E M, so x/P e MIP and MIP is a proper ideal in 
AIP since M ¥* P. Thus n(x/P) < x/P for all n, A/P being linearly 
ordered. Now,4 has a representation {A/P}, P e 0>. Consider the element 
(nx) A x; its image in the Pth-component A/P is 

/ A - w o /°> if x <E P; 
(nxAx)/P= [nx/p . i x ^ p 

So for each P e ^ , 

(«x A x) /P = «x/P, 

hence «JC A 3c = n i for all «. Thus nx ^ x for all « ^ 0 and so by the 
archimedean property x • x = 0, therefore x = 0. This shows that A is 
semisimple. 

It is easy to see that each Bold algebra of fuzzy sets is archimedean; a 
slight modification of the argument for Theorem 31 will do it. 

For each positive integer m let A (m) be the subalgebra of [0, 1] defined 
by 

A(m) = {0, \/m, 2/m, . . . , (m — X)/m, 1}. 

We then have 

THEOREM 34. If A is atomic and semisimple then A has a representation 
[A(m) }, m e r , where T is a subset of the non-negative integers. 

Proof Let At be the set of atoms of A. For each x <E At let Px be a prime 
ideal with x £ Px. Let 

J = ^x^At Px-

If y G J, y ¥* 0 then there is an x e At with x ^ y. Thus i e / which 
implies x ^ Px. Thus / = {0} and so {^4/P^}, x e ^4 ,̂ is a representation 
of A. Now x / i^ is an atom in A/Px. For let 0 < y/Px ^ x/Px. Then 

>VPX A x/Px = (y A x)/Px = jVP,. 

Since j y A x = 0 o r j y A x = xwe must have y A x = x, so x ^ y. Thus 
y/Px = x/Px, and x/Px is an atom. Suppose x/Px has infinite order. 
Then, 

n(x/Px) g x/Px for all n. 
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Consider then, the element nx A x G A. For any z G At, z ¥* x we have 
x A z = 0 Œ Pz. Since z # ^ we have x G j ^ . Thus for any «, (nx)/Pz = 0 
and so 

(«x A x)/Pz = 0. 

Also we have 

(nx A x)/Px = nx/Px. 

Thus for each y G At we have 

(«x A x ) / ^ = «x/Py 

and this implies nx A x = nx. So for each ny nx ^ x and since, by 
Theorem 31, ̂ 4 is archimedean we get x = x • x = 0. This contradiction 
shows that x/Px has finite order; by 3.19 of [1] we infer that A/Px is 
isomorphic to some A(m) for some integer m > 0. 

One might try to prove the above theorem more directly by using the 
fact that 

A Q r U r 4 
where each A{ is locally finite, then showing each At is atomic. However it 
seems that this approach requires that one show that no maximal ideal 
contains all of the atoms. In an arbitrary MV-algebra this is not true (see 
pg. 474 of [1] ). 

We now begin the task of showing that if A is atomic and complete then 
A is also semisimple. Since in general an atomic MV-algebra need not be 
semisimple, (the algebra C X C for example, pg. 474 of [1] ), some extra 
condition must be imposed. 

Again let A be an MV-algebra^ Q 0>, n<¥> = {0}. 

THEOREM 35. Let a G A be such that [a] is an atom of[A]^. Suppose 
x G [a], x T̂  0 an idempotent of A. Then x = [a] i.e., x = y for all 
y G [a]. 

Proof We have [x] = [a] so for any prime P G ^ x G P if and 
only if a G P. For any prime P, x A x G P since for an idempotent x, 
x A x = 0. Thus if x £ P then x G P and so a • x G P. If x G P G Sf 
then so is a and again a • x G P. Hence for all P G Sf, a - x G P SO 
a - x = 0; thus a = x. Now if y G [a] then [y] = [a] and the above 
argument shows y ^ x. 

Clearly then, an atom [a] can contain at most one idempotent. We want 
to see what happens if an atom [a] contains no idempotent. To this end let 
/ be an arbitrary proper ideal of A and let A} be the subalgebra generated 
by /. We describe Ar thusly: 
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THEOREM 36. x G Aj if and only if x G I or there are y, z G / and 
x = y -f z. 

Proof. Clearly i f j c G / o r j c = 7 + z with y, z ^ I then x G Af. Thus, 
let 

5 = / U {y + z:>>, z G / } . 

Then I Q B Q Ar. Let u, v ^ B. We have several cases to examine, 
i) w, v G /. Then certainly u + v G / c 5 . 

ii) w G J, v = y + z, j>, z G / . Then w + v = (u + y) + z G 5 . 
iii) u = y} + zl9 v = >>2 + z2, j>1? j>2, z„ z2 G L Then 

w 4- v = yx + y2 + zx • z2 ^ B 

since yx -f j 2 G /, Zj • z2 G /. 
Thus i? is closed under + . 
iv) u G /, v G 5 implies w • v G / ç B. 
v) w = yx -f Zj, v = y2 + z"2, j ^ , y2, zl5 z2 G /. Then 

w • v = ( ^ + zj) • <>2 + z2). 

So 

w • v = 0 + yx - zx H- y2 • z2. 

Since J^ • zl5 y2 • z2 G /, 0 G / w e see that u • v G Z?. 
Thus 5 is closed under + , •. 
vi) If w G / then clearly w G 5. If w = y + z, 7, z G / then 

w = y • z G / . 
Thus B is closed under -f, -, ~; 0 G / ç 5 So 1 G 5. Therefore 5 is a 

subalgebra of A containing / and obviously any subalgebra of A that 
contains / must contain B. Hence B = AT and the theorem is proved. 

THEOREM 37. Suppose [a] is an atom of [A]y> not containing any 
idempotent of A. Let I = (Xa)*, J — I . Then Ar is isomorphically em-
beddable in A J J. 

Proof. For x G Ar let <p(x) = x/J. Clearly <p is a homomorphism of 
A j into A/J. Suppose y(x) = 0. Then x G / ; since x G AJ, X G / or 
x = y + z for some >% z G / . If x G / then x G / n / s o JC = X A X = 0. 
Suppose then x = y + z, j , z G /. x G / implies y,z~ G J. Now y ^ I n J 
so y = 0. z G / so z A z = 0 thus z is an idempotent of ^4. Now z = 0 
implies x = 1 which in turn implies 1 G J and that's not possible. 
z =£ 0 implies z G [a] since / = {0} U [a]. Thus [a] contains an 
idempotent contrary to the assumption on [a]. It follows then that x = 0 
and so we see that <JP is one-one. 

The above argument can be modified slightly to arrive at the same 
conclusion under the assumption that [a] has no maximal element. 
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Again, let [a] be an atom of \A\^ let e G [a], e an idempotent. Let 
/ = (La)*. Define \a = e, x = x • e, x G / . Let 

sfa = </, + , - , ~ 0, lfl>. 

Then 

THEOREM 38. j / f l w Û linearly ordered MV-algebra. 

Proof. Since [a ] is an atom we know from Theorem 24 that / is linearly 
ordered. Since / is an ideal it is closed under -f, • and contains 0. Since 
e G [a] we see that \a G /. Now from Theorem 35 we know x ^ \a for 
all x G /. So for x G /, x + \a= \a so x + \a = \a. It now follows from 
Theorem 1 d) that x • \a = x. Since e = \a G / we see that for all x G / 
that x = x - \a ^ I and clearly x • 3c = 0. Now 

x 4 - j c = x + r l f l = x V l f l = la, 

for x & I. For x, j ; G / , 

(x + >>) = F T 7 • lfl - x • lfl • y • \a = x • y 

and 

x = x • \a - \a = (x + \a) • \a = x A la = x. 

Thus 

hence 

^y= x + y. o = ô • \a = l • ifl = \a. 
Define x \/a y = x - y + y; then 

* ^a y = X ' y ' la + J-

But x • y G / if x G /, so then 

x • y • \a = x • y and x V j = I V J . 

Similarly, define 

* Aa y = (x + y) ' y = (x + y ' la) - y-

Now since x A lfl ^ lfl A lfl we have x A \a = 0; so by 3.2 of [1], 

•* + y ' la = la ' (X + JO-

Thus, 

x Aa y = !<, • (* + J7) • ^ = (* + y) ' y = x A y-

It now follows that all the axioms of an MV-algebra are satisfied and so 
the theorem is proved. 
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Note that the above theorem goes through even if [a] is not an atom but 
then srfa would not necessarily be linear ordered. 

Now by an ^-complete algebra we mean an MV-algebra A such that for 
any countable subset X Q A the least upper bound 2 X exists in A. For 
X = {nx\n ^ 0} we write 2 nx for 2 X. We then obtain 

THEOREM 39. Let A be an #0-complete MV-algebra, [a] an atom in [A]^. 
Then [a] contains an idempotent. 

Proof. If [A]#, = {0, 1}, then [A] = 1 = [1] so 1 G [a]. Assume then 
that [a] ¥* 1 and contains no idempotents. Then for / = (Lfl)*, J = I we 
know / is proper and Ar is isomorphically embeddable into A/J, I is 
linearly ordered, / is prime. Thus Af is linearly ordered. Suppose for some 
x e Ah x ¥= 0, that x has infinite order. Then nx ^ x for all n. Since 
A j ç A and A is K0-complete, we know 2 nx exists in A and 2 nx = x. 
Thus 

x - 2 nx = 0. 

We claim 

x + 2 nx = 2 ft-* = 2 (-* + ft-*)-

For let z ^ JC + nx for all /?. Then 

z - x = (x + nx) • x = x A nx = nx for all «. 

So z • 3c ^ 2 nx and therefore 

But J C 4 - Z - 3 C = J C V Z and x ^ z s o 

z = x V z = i + 2 J nx. 

It follows that 

x + 2 nx = 2 (-* + ft-*); 

since it's evident that 

2 (x + «x) = 2 (ft + i)-* = 2 ft-* 

we then get 

x + 2 ft-* = 2 ft-*-

By Theorem 1 d) then 

x • 2 ft-* = -*• 

So x = 0 which is impossible. Thus A} is locally finite. Now 0 e [0] ç / 
so a G y47. Hence for some H, mz = 1. But then 1 G / which is impossible. 
Thus [a] must contain an idempotent. 
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LEMMA. Suppose [a] an atom in [A]^. Let x e A and suppose for some 
y e [a] that y $ x. Then there are u, v e A with [u] ^ [a], [v] • [a] = 0, 
x = u + v. 

Proof. Let w = x A j , v = x - U. Then » ^ JC so we have 

Since w ^ j^ G [Û] we have [w] = [a]. Let Z> = « A v. Then we have 

b = aAx'û~ = x-û~=û~. 

Now 

u -\- b = (u + a) A (u + v) = (u + a) A x, 

by axiom 5. Thus u + b ^ x. M b, u =£ 0 then 6, u G [a] and so 
6 4- w G [a] since {0} U [^] is an ideal in A. Now [a] is linearly ordered 
and since y e [a] we get 

u + b^y or y ^ u + b. 

If w, 6 = 0 then certainly w + b = j . Now y ^ u -\- b implies y = x which 
is contrary to our assumption. Thus u + b < y. Hence 

u + b^xAy = u 

so 

u + b = u = 0~\-u. 

Now b ^ v ^ U and 0 ^ ïï so by 1.14 of [1], 6 = 0. So # A v = 0 and we 
have [a] • [v] = 0. 

THEOREM 40. Let [a] be an atom in [A]^, I — (La)# , J = I . Suppose 
[a] contains an idempotent. Then stfa is isomorphic to AI J, in symbols 
s#a ^ AU. 

Proof. Let e be the unique idempotent in [a]. For x in s/a let 

<P(JC) = x/J e AU. 

Clearly <p preserves + , - , " , 0. Moreover <p(x) = 0 if and only if x e J n / 
if and only if x = 0, so <p is one-one. e £ J so <p(e) ^ 0; e = e so 
<p(e)2 = <p(e) so <p(e) is an idempotent in A/J. But A U is linearly ordered 
and the only idempotents in a linearly ordered MV-algebra are 0, 1. Hence 
<p(e) = 1. Now for x e / , i.e., JC in J ^ , 3C = x • e so 

<p(x) = <p(x) • <p(e) = <p(x). 

Thus <p is an injection of srfa into AU. Now let z e yl and consider 
z / / e ^4/7. If z = y for all y ^ [a] then e ^ z s o 

1 = e/j g z/y g l 
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and so 

<p(e) = 1 = z/J. 

Suppose then there is a y e [a] with y $ z. By the lemma there are 
w, v e v4 with w + v = z, [w] = [0], [v] • [a] = 0. This means u e /, 
v e J. Hence 

cp(w) = I / / / = 1//J + V/J = (U + V ) / / = Z/J . 

Thus <p is an epimorphism so J ^ = ^4/J. 

Assembling the previous theorems we have 

THEOREM 4L Suppose A is tt0-complete and [A\#> is atomic. Then A is 
semisimple. 

Proof. From Theorem 29 we know that A has an irreducible 
representation {Bx}, [x] G AT; thus A Q T1[X]<EAT B\ subdirectly where 
Bx = A/Jx, Jx = (Lx)i. By the preceeding theorem Bx = j ^ . . Let 
x ^ AT. Now the elements of s/x are also elements of A ; let _y belong to 
s/x, y ¥= 0, and suppose JF has infinite order. Since s/x is linearly ordered 
this implies ny ^ y for all /?. But y = y-e where e is the idempotent in [x] 
guaranteed by Theorem 39. Thus ny ^ y for all n in A. As in the proof of 
Theorem 39 this implies y = 0 which is impossible. Hence stfx is locally 
finite and therefore Bx is locally finite. It now follows that A is 
semisimple. 

Our final theorem is 

THEOREM 42. If A is tf0-complete and atomic then A has a subdirect 
product representation of finite linearly ordered MV-algebras of the type 
A(m). Moreover this representation is irreducible. 

Proof. From Theorem 30 we know [A \y> is atomic with Sf = &. Hence by 
the preceeding theorem A is semisimple. The result now follows from 
Theorems 30 and 34. 

5. Throughout this paper several questions concerning MV-algebras 
presented themselves. Theorem 41 raises the question of whether it's 
necessary to assume A is atomic, i.e., is any complete MV-algebra 
semisimple? I haven't been able to show this without some additional 
assumptions, e.g. something that would imply 2 nx is idempotent. My 
suspicion is that not every complete MV-algebra is semisimple. Another 
question of interest is whether or not, in Theorem 42, A is the direct 
product of the algebras A(m). It is easy to show that A is "dense" in the 
direct product in the sense that given any y e I I m A(m) and any finite set 
of indices i7, there is an x e A with xt = yt for each i ^ FA suspect that A 
is in fact isomorphic to the direct product of the algebras A(m). 

https://doi.org/10.4153/CJM-1986-069-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-069-0


SEMISIMPLE A L G E B R A S 1379 

R E F E R E N C E S 

1. C. C. Chang, Algebraic analysis of many valued logics, Trans . Amer. Math . Soc. 88 (1958), 

467-490. 

2. A new proof of the completeness of the Lukasiewicz axioms, Trans . Amer. Math . Soc. 

95(1959) , 74-80. 
3. D . Dubois and H. Prade, Fuzzy sets and systems: theory and applications (Academic Press, 

1980). 

4. R. Giles, Lukasiewicz logic and fuzzy set theory, Proc. of the 1975 Internat ional Symposium 

on Multiple-valued Logic ( Indiana Univ., Bloomington, Ind., 1975), 197-211. ( IEEE 

Comp. S o c , Long Beach, Calif., 1975). 
5. H. J. Skala, On many-valued logics, fuzzy sets, fuzzy logics and their applications, Fuzzy sets 

and systems 1 (1978), 141-148. 

6. D . Schwartz, Arithmetishe theory der MV-algebren endlicher ordnung, Math . Nachr . 77 

(1977), 65-73. 

7. Das homomorphietheorem fur MV-algebren endlicher ordnung, Z. Ma th Logik 

Grundlagen Math . 22 (1976), 141-148. 

University of British Columbia, 
Vancouver, British Columbia 

https://doi.org/10.4153/CJM-1986-069-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-069-0

