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Abstract

Discordant monozygotic (MZ) twin methodologies are considered one of the foremost statistical approaches for estimating the influence of
environmental factors on phenotypic variance. Limitations associated with the discordantMZ twin approach generates an inability to estimate
particular relationships and adjust estimates for the confounding influence of gene-nonshared environment interactions. Recent advance-
ments in molecular genetics, however, can provide the opportunity to address these limitations. The current study reviews an alternative
technique, genetically adjusted propensity scores (GAPS) matching, that integrates observed genetic and environmental information to adjust
for the confounding of these factors in nonkin individuals. Simulations and a real data example were used to compare the GAPS matching
approach to the discordant MZ twin method. Although the results of the simulated comparisons demonstrated that the discordant MZ twin
approach remains the more robust statistical technique to adjust for shared environmental and genetic factors, GAPS matching — under
certain conditions — could represent a viable alternative when MZ twin samples are unavailable. Overall, the findings suggest that
GAPS matching can potentially provide an alternative to the discordant MZ twin approach when limited variation exists between identical
twin pairs. Moreover, the ability to adjust for gene-nonshared environment interactions represents a potential advancement associated with
the GAPS approach. The limitations of the approach, as well as polygenic risk scores, are also discussed.
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Discordant monozygotic (MZ) twinmethods can produce estimates
unconfounded by genetic and shared environmental factors that is
unrivaled by many other statistical methodologies (Oskarsson et al.,
2017; Ross et al., 2020; Tiu et al., 2004; Vitaro et al., 2009). Since MZ
twins share 100% of their genetic material and 100% of their shared
environment, it can be assumed that any phenotypic differences
between MZ twins correspond to divergent environmental factors
(i.e., the nonshared environment; Knopik et al., 2016). As such, rela-
tive to standard social science models, the confidence in the esti-
mates is substantively increased through the use of discordant
MZ twinmethods because it can be assumed that genetic and shared
environmental factors are constant across MZ twins (Vitaro et al.,
2009). Unobserved heterogeneity in the genome, phenotypic char-
acteristics and shared environmental factors are adjusted for when
using discordantMZ twinmethods due to the co-twin establishing a
robust counterfactual condition with genetic and shared environ-
mental experiences identical to the target twin (Knopik et al., 2016).

Discordant MZ methods permit evaluation of the associations
between nonshared environmental factors and phenotypic variation
without the collection of molecular genetic information (e.g., single-
nucleotide polymorphisms [SNPs]), information pertaining to

shared phenotypes or information on the shared environment
(Knopik et al., 2016). Moreover, the estimates produced by
discordant MZ analyses can be adjusted for observed heterogeneity
in discordant nonshared environmental factors (i.e., factors that
differ between the twins; Knopik et al., 2016). Given the capacity
to estimate effects with limited biases, discordant MZ twin methods
are commonly used in the behavioral and social sciences and are
considered robust analytical tools for evaluating causal associations
at the individual level (e.g., Asbury et al., 2003; Motz et al., 2019;
Oskarsson et al., 2017; Silberg et al., 2016; Thornton et al., 2017).
Nevertheless, large cohorts of molecular genetic data, such as the
UK Biobank, and the advancement of polygenic risk scores
(PRSs) provide the ability to reduce observed genetic risk informa-
tion and environmental information to a single score, potentially
presenting an opportunity to match the estimates produced by
discordant MZ twin methodologies using singletons.

Given the availability of molecular genetic data and advanced
techniques, an alternative procedure intended to produce results
similar to discordant MZ twin methods is discussed in the current
study. This alternative procedure — termed genetically adjusted
propensity scores (GAPS) — integrates polygenic scores into the
calculation of a propensity score to adjust for the confounding effects
of genetic and environmental factors on an association of interest
through matching. The GAPS matching methodology and the
results from various simulated analyses are presented. These results
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are intended to provide an indication of the conditions necessary for
GAPS matching to estimate associations within the confidence
intervals of discordant MZ twin methods. Furthermore, a thorough
discussion of the benefits and challenges associated with GAPS
matching is provided to emphasize the validity of the methodology.
GAPS matching integrates both propensity scores (created from
observed environmental measures) and polygenic scores (created
fromobserved genetic SNPs) to adjust for the confounding influence
of genetic and environmental factors on associations of interest.1

Propensity Score Matching

Briefly, a propensity score is defined as the probability of being
exposed to a treatment given the phenotype of an individual
and their environmental circumstances (Guo & Fraser, 2015).2

A propensity score can be estimated using a variety of generalized
linear models, conditional upon the level of measurement of the
treatment, with a binary logistic regression model being the most
common (Guo & Fraser, 2015). As displayed in Eq. 1, a propensity
score (P) is the exponential value of a case’s weighted scores (β) on
the matrix of independent variables (Xi), divided by 1 plus the
exponential value of a case’s weighted scores (β) on the matrix
of independent variables (Xi). The weights (β) are derived from
regressing the logged odds of the treatment (vi; 0= not exposed
to treatment; 1= exposed to treatment) on the matrix of indepen-
dent variables (Xi):

logð vi
1� vi

Þ ¼ βXi þ " (1)

P ¼ expðβXiÞ
1þ expðβXiÞ

Propensity scores can be employed in various ways to reduce the
bias in the estimated effects of a treatment on an outcome of
interest. A frequently used method is propensity score matching,
which is a technique designed to emulate an experimental condi-
tion by matching treatment cases to control cases with a similar
probability of being exposed to the treatment (i.e., propensity
score; Guo & Fraser, 2015). Treatment cases and control cases
can be matched using various techniques, of which the most easily
understood are exact matching (Eq. 2) and caliper matching (Eq. 3;
ϵ represents the caliper):

Pðt¼ 1Þ ¼ Pðt¼ 0Þ (2)

Pðt¼ 1Þ � Pðt¼ 0Þ
�� ��< " (3)

Propensity score matching, as well as other propensity score tech-
niques, are beneficial under conditions where the phenotypic traits
and environmental circumstances that influence exposure to the
treatment can be directly measured (Guo & Fraser, 2015).
However, where some or all of the phenotypic traits and environ-
mental circumstances influencing exposure to the treatment
cannot be directly measured, the applicability of propensity score
techniques is limited (Guo & Fraser, 2015). Moreover, in addition
to the assumptions of a generalized linear regression model
(e.g., linearity, normality and heteroscedasticity; Fox, 2016),
propensity score matching requires the satisfaction of the
assumption of common support and covariate balance (Guo &
Fraser, 2015). Common support refers to the assumption that
the distribution of the covariates across the treatment and control

groups are similar enough to permit matching, while covariate
balance refers to the assumption that the similarity in the distribu-
tion of the covariates across the treatment and control groups is
improved through matching (Guo & Fraser, 2015). These assump-
tions are fundamental to conducting propensity score matching, as
limited common support generates difficulties matching and
limited covariate balance reduces the ability to emulate experi-
mental conditions (Guo & Fraser, 2015).

Polygenic Risk Scores

A PRS is an estimate of the effects of multiple alleles on a pheno-
type, designed to approximate the cumulative genetic likelihood—
that is, risk — of an individual experiencing a phenotype.
The calculation of a PRS begins with subjecting an independent
dataset containing information about the participant’s SNPs to a
genomewide association study (GWAS; Dudbridge, 2013).3

A GWAS regresses the phenotype of interest on each SNP using
a generalized linear model. The estimated effects of each SNP
(βj) from the independent GWAS is then used to estimate the
genetic likelihood of experiencing the phenotype in the dataset
of interest. This estimate is created using Eq.4, where the raw poly-
genic score (PRSi) is equal to the aggregated value of the coefficient
of (βj) multiplied by the number of reference alleles that individual
(i) possesses (Gij). The PRSi can then be transformed to produce
the respondents’ standardized polygenic scores (zPRS i

). Impor-
tantly, PRSs are assumed to only represent the additive genetic risk
for a phenotype and cannot be used to provide an indication of
other genetic processes (e.g., dominant, epistasis and epigenetic
risk; Dudbridge, 2013; Euesden et al., 2015). Moreover, PRSs
can be calculated using only SNPs that reach a prespecified statis-
tical threshold (typically, 0.05 * 10–6), or using the whole genome
(Francisco & Bustamante, 2018):

PRSi ¼
Xm

j¼ 1

βjGij (4)

Given that the estimates from a GWAS are fundamental to the
calculation of a PRS, the estimated likelihood is subject to missing
heritability. Briefly, while labeled as missing heritability, the
concept refers to the difference in the variance explained by genetic
factors between ACE decomposition models and GWAS.
In general, a GWAS produces heritability estimates substantially
smaller than ACE decomposition models, suggesting that
GWAS cannot explain the variation in a phenotype as well as
twin-basedmodels. Themissing heritability concept has important
implications when discussing PRSs, as the variation in a PRS
cannot predict the variation in a phenotype as well as the difference
between MZ twins. For instance, a PRS predicts the variance in a
phenotype substantially worse than a MZ difference score under
conditions where the heritability estimate from a twin study indi-
cates that 60% of the variance in a phenotype is attributed to
genetics (h2 = .60), but a GWAS indicates that only 10% of the vari-
ance in the phenotype is attributed to genetics (r2= .10). While
suggested to be a function of the number of parameters compared
to the sample size, missing heritability has important implications
for the GAPS matching approach.

Genetically Adjusted Propensity Score (GAPS) Matching

Similar to propensity and PRS, GAPS matching was designed as a
data reduction technique intended to capture respondents’
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observed genetic and environmental risk for a phenotypic outcome
of interest. A GAPS can be calculated by combining respondents’
polygenic scores with respondents’ propensity scores and
removing any covariation between the terms. The combination
of the polygenic score and propensity score can be achieved by
introducing the polygenic score (as an independent variable) into
the regression analysis used to calculate the propensity score.
Although a variety of models can be used to estimate propensity
scores (Guo & Fraser, 2015), calculating GAPS for dichotomous
constructs provides a straightforward example of the estimation
procedure. After calculating and standardizing a PRS, a generalized
linear model can be estimated to create a GAPS (Guo & Fraser,
2015). For example, a logistic regression model could be estimated,
where the log-odds of a dichotomous variable (identified as v)
would be regressed on the polygenic score and measures of envi-
ronmental constructs. This process is captured in Eq. 5, where vi
represents a dichotomously measured outcome variable, ZPRSi
represents am × nmatrix of standardized PRSs (one or more poly-
genic scores can be included in the estimation procedure), and Xki

represents a m × n matrix of environmental constructs:

logð vi
1� vi

Þ ¼ βZPRSi þ βXi (5)

After calculating the slope coefficients (β), Eq. 3 is used to calculate
the GAPS. As demonstrated by Eq. 6, GAPS (#xi;i) is equal to the
exponential value (exp) of a participant’s weighted scores on the
independent variables (βZPRSi þ βXiÞ divided by 1þ the exponen-
tial value of a participant’s weighted scores on the independent
variables (βZPRSi þ βXi). The process of calculating GAPS would
be similar if the variable (v) was a categorical or continuous vari-
able (Guo and Fraser, 2015):

ζ i ¼
expðβZPRSi þ βXiÞ

1þ expðβZPRSi þ βXiÞ
(6)

The result of this estimation process is a single score capturing
the observed genetic and environmental risk for a phenotype. The
estimation process for calculating GAPS, nonetheless, relies on a
series of assumptions that are required to be satisfied. In addition
to model assumptions (e.g., linearity, normality and heteroscedas-
ticity; Fox, 2016) and the assumptions associated with PRSs, the
estimation of the GAPS requires that the level of measurement
for the phenotype remains consistent across all estimations. For
example, if the PRS was calculated using a dichotomous measure,
the estimation of the GAPS should employ the same dichotomous
measure. This requirement is a consequence of the differing
amount of variation in a phenotype explained by the PRS and envi-
ronmental constructs across levels of measurement. As such, if the
level of measurement for the dependent construct varies between
the models, the variation explained by observed genetic and envi-
ronmental factors could bias the resulting GAPS.

In addition to the statistical control method or GAPS weighting
(Guo & Fraser, 2015), GAPS can be used to match participants to
emulate the counterfactual condition created by the MZ twin
difference approach. Specifically, respondents with similar
observed genetic and observed environmental factors could be
matched using the GAPS to mimic the robust counterfactual
condition and high internal validity present in a discordant
MZ twin model. For instance, respondents with similar GAPS
but different educational attainment can be matched, and the

resulting matched sample can be used to evaluate the association
between educational attainment and future income, which could
potentially produce estimates similar to a discordant MZ twin
model. Indeed, GAPS can be employed using a variety of matching
procedures conventionally used in propensity score matching
analyses (see Guo & Fraser, 2015). For instance, GAPS can be used
in conjunction with exact matching (Eq. 7) or caliper matching
(Eq. 8; ϵ represents the caliper):

ζðt¼ 1Þ ¼ ζðt¼ 0Þ (7)

ζðt¼ 1Þ � ζðt¼ 0Þ
�� ��< " (8)

Against this backdrop, the current study assessed the validity of the
GAPS matching approach by addressing two research questions:
(RQ1) What is the degree to which GAPS matching can produce
estimates similar to the estimates produced by the MZ twin differ-
ence approach? and (RQ2)What is the added value of adjusting for
the confounding effects of G × E when estimating the effects of one
phenotype on another? To test these research questions, the
current study employed simulation analyses to assess how well
GAPS matching can approach the estimates produced by the
MZ twin difference approach. Nine of 240 simulated comparisons
(N= 10,000 for each simulation) will be discussed in the current
study to provide a comprehensive comparison between the
GAPS matching and discordant MZ twin methods when esti-
mating associations.4 The nine simulated examples were selected
due to their ability to provide the largest insight into the results
across all of the simulated comparisons. Moreover, the selected
examples emulate the variance common in complex phenotypes.
Specifically, when decomposing the variance in complex pheno-
types, a larger portion is attributed to genetic and nonshared
environmental factors, while a smaller portion is attributed to
the shared environment or unique G × E interactions. That said,
all the results for each of the 240 simulations are provided
in text files using https://github.com/ianasilver/Genetically-
adjusted-propensity-scores-A-comparison-to-discordant-MZ-
twin-models,5 and an R-script for a randomly specified looped
simulation is provided as supplemental materials to permit the
estimation and evaluation of GAPS matching across randomly
specified phenotypes.

Simulation Analyses: Comparing GAPS Matching to the
MZ Difference Approach6

Assumptions of Simulation Analyses

The simulation analyses discussed below and the corresponding
results compare the GAPS matching approach to the discordant
MZ twin approach under the optimal conditions for PRSs.
These optimal conditions can be highlighted by discussing the
three foundational assumptions of the simulation analyses. First,
the simulation analyses assume that PRSs can adjust estimates
for the heritability of a phenotype in a manner identical to that
of the discordant MZ twin approach. Due to the missing herit-
ability associated with PRSs (Manolio et al., 2009), this assumption
would likely not hold when employing the GAPS matching
approach in a real data example (illustrated below). Moreover,
the effects of the missing heritability on the GAPS matching
approach are evaluated and discussed below.

Second, the simulation analyses assume that the discordant MZ
twin approach does not adjust for variation associated with the
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nonshared environment. In a bivariate assessment, this
assumption holds true, as the discordance between MZ twins on
nonshared environmental conditions will not be adjusted for when
estimating the effects of interest (Knopik et al., 2016). Nevertheless,
observable or latent measures of the discordance between MZ
twins on nonshared environmental conditions can be introduced
into multivariate analyses, adjusting for variation in the nonshared
environment. While this assumption might not accurately charac-
terize the extent to which the discordant MZ twin approach
can generate robust estimates, the simulation analyses provide a
comparison to the baseline discordant MZ twin approach.
Supplementary material Appendix C, however, provides a replica-
tion of the simulation analyses assuming that observable measures
of the discordance betweenMZ twins on nonshared environmental
conditions are introduced into a multivariate analysis. As demon-
strated, the results suggest that the discordant MZ twin approach
possesses an enhanced ability to estimate the true association when
observable or latent measures of the discordance between MZ
twins on nonshared environmental conditions are introduced into
a multivariate analysis.

Finally, due to the difficulties associated with comparing two
techniques reliant on different data structures, the simulation
analyses assume that the matching error rate will be identical when
conducting GAPS matching and difference score analyses using
MZ twins. This assumption primarily exists due to the inability
to simulate a single dataset that can be representative of both
singletons and MZ twin pairs, as well as the difficulties associated
with ensuring that the effects and error structures are identical
across multiple datasets with different simulation specifications
(Knopik et al., 2016). The matching error rate of the simulation
analyses equally influenced the slope coefficients produced by
the MZ difference score evaluation and the GAPS matching
approach, which is a limitation of the simulation as MZ twin pairs
inherently possess a low matching error rate (i.e., the rate of misi-
dentifying MZ twin pairs; Knopik et al., 2016). Nevertheless,
Supplementary Appendix F is provided to demonstrate that the
matching procedure itself has limited effects on the observed
difference between the discordant MZ twin approach and the
GAPS matching approach.

Specification of the Dichotomous Independent Variable (X)

To assess the validity of the GAPS matching approach, 240 unique
conditions were simulated to emulate potential phenotypic varia-
tion in an independent variable of interest. As demonstrated in
Figure 1, the variation in the dichotomous independent variable
(X) was specified to be equal to a predetermined proportion (p)
of the genetic (A), shared environment (C), nonshared environ-
ment (E) and residual variation (e; see mathematical equations
in Supplementary Appendix A and available R-scripts).7 Across
240 simulations, three methods were employed to differ the
amount of variation contributed toX by A, C and E. First, variation
inXwas equal to .05 incremental increases— from 0 to .95— in A,
while the amount of variation in X contributed by C and E were
equal. The independent variable (X) was dichotomized to permit
a more intuitive analytical strategy for comparing the GAPS
matching approach to the discordant MZ twin approach.
To ensure that the estimated scores did not perfectly predict X,
the amount of residual variation (rv) in X always equaled .04.
For example, the first specification was X ¼ .000A þ .480E þ
.480C þ .040rv, the midpoint of the distribution of incremental
specifications was X ¼ .450A þ .255E þ .255C þ .040rv and the

final specification was X ¼ .950A þ .005E þ .005C þ .040rv
(Figure 2).

Second, the variation in X followed the same procedure above
(i.e., .05 incremental increases from 0 to .95 for A), but the varia-
tion in X contributed by C was three times that contributed by E.
For example, the first specification was X ¼ .000A þ .240Eþ
.720C þ .040rv, the middle of the distribution of incremental
specifications was X ¼ .450A þ .1275E þ .3825C þ .040rv and
the final specification was X ¼ .950A þ .0025E þ .0075C
þ.040rv. The third condition of variation in Xmaintained the same
incremental increases in A as the prior conditions, whereas the
variation in X contributed by E was three times that contributed
by C (i.e., the reverse of the second condition). For example, the
first specification was X ¼ .000A þ .720E þ .240C þ .040rv, the
middle of the distribution of incremental specifications was
X ¼ .450A þ .3825E þ .1275C þ .040rv and the final specification
was X ¼ .950A þ .0075E þ .0025C þ .040rv.

Subsequently, a series of specifications for X included a G × E
between A and C, A and E, or both. The specifications are illus-
trated in Figure 3. For each of the specifications including a
G × E, 20% of the amount of variation contributed by each compo-
nent was redirected to the interaction specification (Figure 3). For
example, using Panel A of Figure 3, the first specification was
X ¼ .000A þ .384E þ .480C þ .0960ðA�EÞ þ .040rv, the middle of
the distribution of incremental specifications was X ¼ .360Aþ
.204E þ .255C þ .141ðA�EÞ þ .040rv and the final specification
was X ¼ .760A þ .004E þ .005C þ .191ðA�EÞ þ .040rv. Using Panel
C of Figure 3, the first specification was X ¼ .000A þ .384Eþ
.384C þ .096ðA�EÞ þ .096ðA�CÞ þ .040rv, the middle of the distribu-
tion of incremental specifications was X ¼ .270A þ .204Eþ
.204C þ .141ðA�EÞ þ .141ðA�CÞ þ .040rv and the final specification
was X ¼ .570A þ .004E þ .004C þ .191ðA�EÞ þ .191ða�cÞ þ .040rv.
Following these examples, 240 specifications of X were created
wherein 60 specifications only included direct effects and 180
specifications included direct and interactive effects. The dichoto-
mous indicator of X was then used to specify the variation in Y.

Fig. 1. Visual depiction of specified variation in the simulated treatment variable (X)
without interactions.
Note: A represents the genetic effect, pa represents the proportion of variation in X
predicted by A, C represents the shared environment, pc represents the proportion
of variation in X predicted by C, E represents the nonshared environment, pe represents
the proportion of variation in X predicted by E, X represents a dichotomous treatment
construct. The double-headed arrow represents the residual variation in the specifica-
tion of X, where prv represents the proportion of residual variation.

Twin Research and Human Genetics 27

https://doi.org/10.1017/thg.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2022.2


Specification of the Dependent Variable (Y)

The simulations were specified in a manner to provide a complete
comparison between the estimates produced using GAPS
matching to the estimates produced from a discordant MZ twin
model. The dependent variable (Y) was consistently specified
across all the noninteractive conditions of the dichotomous inde-
pendent variable (X). As illustrated by Figure 4, variation in Y was
specified to be the product of the association (i.e., the slope coef-
ficient) between X and Y (b= 1.00), as well as A (representing the
genetic effects), C (representing the shared environment), E (repre-
senting the nonshared environment) and residual variation. The
influence of A, C and E on Y was specified as 1.25 to ensure that
a substantive amount of variation inYwas predicted by A, C and E.
The specification above generates a substantial amount of
confounding in the analytical model and assumes that only a

limited amount of error in Y exists after accounting for the genetic,
shared environment and nonshared environment effects.8

In addition to the conditions illustrated above, three specifica-
tions of the dependent variable with interaction terms were created
(see Figure 5) corresponding to the specifications of X that
included the respective interaction. First, an interaction between
A and E was specified to predict variation in Y. Second, an inter-
action between A and C was specified to predict variation in Y.
Finally, interactions betweenA and E as well as A and Cwere speci-
fied to predict variation in Y. Overall, the specifications of the IV
and DV provide for a comparison between the GAPS matching
and MZ difference score approaches in three conditions: (1) in
the absence of interactions, (2) in the presence of a gene-shared
environment interaction and (3) in the presence of gene-
nonshared environment interactions.

Comparing Discordant MZ twin Approach to GAPS Matching
Approach

Although various modeling strategies can be used to compare the
discordant MZ twin approach to the GAPS matching approach,
the most intuitive procedure is postmatching comparisons.
Figure 6 provides visual depictions of the analytical approach.
Thematching was conducted by regressingX on all or a proportion
of the variation in A, C and E using a binary logistic regression
model. The results of the model were then used to calculate a
predicted probability— creating a GAPS or a score approximating
an MZ difference approach — which determined how cases that
experienced the condition (X= 1) were matched to cases that
did not experience the condition (X= 0). When approximating
an MZ difference approach, the binary logistic regression model

Fig. 2. Visual depiction of specified variation in the simulated treatment variable (X) without interactions

Fig. 3. Visual depiction of specified variation in the simulated treatment variable (X) with interactions

Fig. 4. Visual depiction of specified variation in the simulated independent variable
(Y) without interactions
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regressed X on all the variation in A and C to emulate the ability to
adjust for all of the genetic and shared environmental factors
cofounding an association of interest. When estimating the
GAPS, X was regressed on all of the variation in A and a portion
of the variation in C and E to emulate the postulated ability to
adjust for all of the genetic factors and some of the shared environ-
mental and nonshared environmental factors cofounding an asso-
ciation of interest. Importantly, although the GAPS and score
approximating an MZ difference approach were calculated identi-
cally, it was assumed that the predicted probability created using all
of the variation in A and C would best emulate the MZ difference
approach.

Simulated cases that scored a 0 on Xwere matched to simulated
cases that scored a 1 on X using nearest neighbor matching

(caliper = .05) at varying amounts of A, C and E predicting scores
on X. To emulate the discordant MZ twin approach (Panel A of
Figure 6), the amount of information that simulated cases were
matched on equaled all of the variation in X that can be attributed
to genetic and shared environmental factors. For instance,
if the specification of X ¼ .450A þ .1275E þ .3825C þ .040rv, the
MZ matching procedure used all the variation in X contributed
by A (.45) and by C (.3825) to match the participants.

While the approach outlined above emulates the discordantMZ
twin approach, it is not exact because identical twins
would share identical genetic material. The matching technique
employed — nearest neighbor matching with a caliper of .05 —

only produces pairs with very similar scores on A rather than pairs
with identical scores on A (Guo & Fraser, 2015). However, given

Fig. 5. Visual depiction of specified variation in the simulated independent variable (Y) with interactions

Fig. 6. Visual examples of the analytical matching approach.
Note: Percentage values represent the amount of variation in X predicted by A, C and E used to predict values on X. For example, .25 of Ewhen E predicted 38.2% of the variation in
X indicates that 9.56% of the variation of X (contributed by the nonshared environment) is adjusted for in the matching process. A represents the genetic effect, C represents the
shared environment, E represents the nonshared environment and X represents a dichotomous independent variable. Y represents the dependent variable, andΔ or b represents
the difference in the outcomes between the treatment (X= 1) and control cases (X= 0). The matching procedure described does not fully emulate the discordant MZ twin
approach as identical twins would share the same genetic materials. A predicted probability was calculated using a logistic regression with all of or subcomponents of
A (x1-x4), C (x5-x8) or E (x9-x12; see Appendix A and R-scripts) serving as the independent variables and X serving as the dependent variable. The resulting predicted probability
was then used to match participants.
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that both theMZ twin approach and the GAPSmatching approach
employed the same seed and a caliper of .05, the differences
observed in the slope coefficients using a caliper= .01, .001 or exact
matching when comparing the MZ twin approach to the GAPS
matching approach were extremely similar to the differences
observed when nearest neighbor matching with a caliper of .05
was employed. Nearest neighbor matching was favored in the
current simulation due to the substantial amount of time added
to the simulation analysis when exact matching was employed,
as well as concerns related to the sample size for the postmatching
analyses emulating the discordant MZ twin approach. Two R-
scripts used to conduct the analyses, however, are provided for
replication and alteration purposes. After matching the partici-
pants, a linear regression model was estimated, where Y was
regressed on X for only the matched subsample (where A and C
were held constant across values of X). The resulting estimate,
similar to a discordant MZ twin model, therefore adjusted for
the confounding influence of A and C, since shared genetic factors
and shared environmental factors were both held constant within
the matched subsample.

A similar matching procedure was also employed and cases
were matched on their associated GAPS score, rather than on A
and C (Panel B of Figure 6). Thismatching procedure assumed that
the all genetic confounding between X and Ywould be captured by
the PRS used to create the GAPS score.9 In addition to matching
participants on all the genetic confounding between X and Y, the
simulated cases were matched to each other using fluctuating
amounts of variation contributed to X by C and E. For example,
if the specification of X ¼ .450A þ .1275E þ .3825C þ .040rv,
one matching procedure would use all the variation contributed
by A (.45), 25% of the variation contributed by C (.096) and
25% of the variation from E (.032) to match the simulated cases
(Panel B of Figure 6).

Furthermore, interactions between A and E, and/or A and C
were included in the matching procedures when the respective
specifications of X and Y were the focus of the postmatching
analysis. In total, for each specification of X approximately
20 matching procedures were completed, which was designed
to provide a comprehensive illustration of how much variation
in X needs to be captured by GAPS to produce estimates similar
to estimates produced by the discordant MZ twin approach.
All simulated comparisons were completed using the Ohio
Supercomputer (Ohio Supercomputer Center, 1987). Below, we
highlight specifications ofX and the respective association between
X andY, to illustrate the information needed for GAPSmatching to
produce slope coefficients that approach the estimates produced by
the discordant MZ twin approach in nine distinct circumstances.

Example 1: No Interactions

Example 1 illustrates the conditions needed for postmatching
GAPS slope coefficients to be close to or improve upon the
slope coefficients produced by discordant MZ twin methods.
In this example, the specification of the variation in X was set
based on a twin-based meta-analysis of common complex traits
(Polderman et al., 2015). Specifically, corresponding with complex
traits, 45% of the variation in X was attributed to genetic effects,
38.25% of the variation in X was attributed to the nonshared envi-
ronment and 12.75% of the variation in X was attributed to the
shared environment. Therefore, the formula to specify X was
X ¼ .450A þ .3825E þ .1275C þ .040rv. The dependent variable
(Y) was specified following the depiction in Figure 4. Succeeding

the matching procedure, the association between Y and X was esti-
mated using the matched subsamples and an Ordinary Least
Squares (OLS) regression model. The derived estimates and 95%
confidence intervals for each postmatching subsample were then
plotted to allow for comparison between the MZ and GAPS
matching procedures.

Results. Figure 7 provides the estimates and 95% confidence
intervals for the association between X and Y derived from the
matched subsamples. As a reminder, the specified slope coefficient
for the association is 1.00 and is represented by the solid vertical
line in the figure. The specifications on the y-axis provide the
proportion of the variation in X attributed to the specified compo-
nent used to match participants. For example, 1 * A indicates that
all the genetic variation in X (.45) was used to match the partici-
pants, and .25 * E indicates that 25% of the variation inX attributed
to the nonshared environment (E; .3825(.25) = .0955) was used to
match the participants. The estimate at the top of Figure 7 (1 *A;
1 * C) provides an approximation for the estimate produced by a
discordant MZ twin model. The estimates derived from the
matched subsamples, using the indicated matching specifications,
in between the upper and lower dashed lines were further from the
specified slope coefficient (1.00) than the estimate derived from the
approximated MZ twin subsample (b= 1.253). The estimates
derived from the matched subsamples below the lower dashed line
were equal distance or closer to the specified slope coefficient
(1.00) than the estimate derived from the approximated MZ twin
subsample (b= 1.253). Overall, the results suggest that the MZ
difference score approached the specified slope coefficient (1.00)
more closely than GAPS matching when less environmental infor-
mation (E and C) is used to create the GAPS. Nevertheless, GAPS
matching generally approached the specified slope coefficient
(1.00) more closely than discordant MZ twin models when more
environmental information (>50% of the variation in E and C) is
used to create the GAPS. Overall, the GAPS matching slope coef-
ficient remained substantively different from the specified slope
coefficient (1.00) on average (b ≈ 1.25) across the estimated
comparisons. Importantly, these estimates assumed that the poly-
genic score would capture all the genetic variation in X (.45).

Examining the effects of missing heritability. To illustrate the
effects of missing heritability on estimates derived from GAPS
matching, nine additional matching subsamples were created.
The specified proportion of the variation in X attributed to the
genetic and environmental components were used to match simu-
lated cases. The results overwhelmingly demonstrated that esti-
mates produced by GAPS matching were further from the
specified slope coefficient (1.00) than the discordant MZ twin esti-
mate. This finding suggests that the missing heritability could
substantively diminish the ability of GAPS matching to produce
estimates equal to the estimates produced by discordant MZ twin
methods. Generally, we recognize that GAPS matching will not
perfectly emulate the discordant MZ twin approach, because it
is unlikely that PRSs will predict the same amount of genetic varia-
tion as the discordant MZ twin approach (Table 1; Slatkin, 2009).
However, we expect the performance of GAPS matching will be
enhanced as larger GWAS are conducted and PRSs are improved.

Results from low and high genetic contribution
comparisons. To provide additional comparisons between the
GAPS matching approach and discordant MZ twin methods,
simulations with low (X ¼ .100A þ .645E þ .215C þ .040rv) and
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high (X ¼ .800A þ .120E þ .040C þ .040rv) genetic contribution
to Xwere plotted in Figure 8. As demonstrated, the pattern of find-
ings associated with the low and high genetic contribution toXwas
similar to the pattern of findings in Figure 7.

Example 2: Interaction Between a and E

Example 2 builds upon the condition presented in Example 1
through the inclusion of a GxE between the genetic effects and
the nonshared environment. Distinct from the discordantMZ twin
approach, GAPS matching provides the ability to adjust estimates
for the confounding effects of genetic-nonshared environment
interactions. As such, Example 2 is intended to evaluate if, and
how well, the ability to obtain the specified slope coefficient
(1.00) is enhanced through the inclusion of a G × E in a GAPS
compared to the discordant MZ twin approach. In Example 2,
a proportion (∼20%) of the variation in X initially attributed to
genetic factors and the nonshared environment was reclassified

to be attributed to an interaction between genetic factors and
the nonshared environment. As such, the variation in X was speci-
fied as X ¼ .360A þ .306E þ .128C þ .167ðA�EÞ þ .040rv. Addi-
tionally, the independent variable (Y) for the current example
was specified following Figure 5.

Results. Figure 9 provides the estimated slope coefficients of the
association between X and Y, derived from the various matching
procedures, for the A * E specification. As demonstrated, the
confounding influence of the G × E generates estimates further
from the true association (1.00) than the estimates observed in
Example 1. Furthermore, distinct from Example 1, only four esti-
mates using the GAPS matching approach were more biased
than the estimates derived from theMZ twin approach (b= 1.405).
The slope coefficients from the discordant MZ twin approach
were likely more biased than the majority of the GAPS matching
estimates as a result of the inability to capture any variation

Fig. 7. (Example 1). Slope coefficients of Y regressed on X differentially adjusting for the confounding influence of genetic, shared environmental and nonshared environmental
effects.
Note: A = genetics, E= nonshared environment, C = shared environment. The true association between Y and X is 1.00 (Starting N = 10,000). For the current example, variation
in Xwas specified as 45 % genetic, 38.2% nonshared environment, 12.8% shared environment and 4% error. Genetic, shared environmental and nonshared environmental factors
equally contributed to the variation in Y. All estimates were derived from a postmatching OLS model. Matching was completed using nearest neighbor matching with a caliper
of .05. The orange area provides the specifications that performed further away from the true point estimate (1.00) than the approximation of discordant MZ twinmethods, and the
green area provides the specifications that were closer to the true point estimate (1.00) than the approximation of discordant MZ twin methods. The proportions on the y-axis
represent the proportion of the variation in X contributed by the specified component (A, C or E) that is adjusted for by the model. For example, .25 * E indicates that 9.56% of the
variation of X (contributed by the nonshared environment) is adjusted for in the model.
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associated with the nonshared environment or the G × E.
Moreover, accounting for the knowledge that missing heritability
likely upwardly biases the estimates derived from GAPS matching,
the findings suggest GAPS matching can produce estimates close
to discordant MZ twin methods if a genetic nonshared environ-
ment interaction (G × E) confounds the association between
X and Y.

Results from low and high genetic contribution
comparisons. Like Example 1, comparisons with low (X ¼ .
080A þ .516E þ .215C þ .149ðA�EÞ þ .040rv) and high (X ¼ .640A
þ.096E þ .040C þ .184ðA�EÞ þ .040rv) genetic contribution to X
were also plotted. The findings presented in Figure 10 illustrated that
GAPS matching can generally produce slope coefficients that are
equivalent or closer to the specified slope coefficient than the
discordant MZ twin approach when a G× E confounds the associ-
ation between X and Y. At the extreme, Panel B in Figure 10 illus-
trates that at high genetic contribution to X, GAPS matching can
produce estimates similar to or outperform the estimates from the
discordant MZ twin approach when any combination of genetic
and nonshared environmental information is used to create GAPS.
This finding suggests that the ability to adjust estimates for G× E
interactions in GAPS matching could be a substantive advancement
when compared to the discordant MZ twin approach.

Example 3: Interactions Between a and E, and a and C

The final example, Example 3, demonstrates how estimates
using GAPS matching compare the estimates derived from
discordant MZ twin methods with two confounding GxE
interactions. A proportion of the variation in X was specified to
be attributed to the interactions between genetic factors and the
nonshared environment, and genetic factors and the shared
environment. The variation in X for Example 3 was specified
as X ¼ .270A þ .306E þ .102C þ .167ðA�EÞ þ .116ðA�CÞ þ .040rv.

Results. Figure 11 provides the results of the postmatching esti-
mates. Consistent with Example 1, the estimates derived from
the approximation of discordant MZ twin approach were closer
to the specified slope coefficient than approximately half of the
estimates produced with the GAPS matching approach. The diver-
gent findings between Example 2 and Example 3 highlight that
discordant MZ twin methods capture (as specified) more variation
in X associated with the shared environment than the nonshared
environment. Importantly, the results of Example 3 further
demonstrate that the likelihood of producing estimates similar
to discordant MZ twin methods increases as more variation in
X is captured within the GAPS. Additionally, capturing variation
in X attributed to G × E can potentially enhance the likelihood of
GAPS matching producing slope coefficients similar to discordant
MZ twin methods or being closer to the specified slope coefficient
than discordant MZ twin methods.

Results from low and high genetic contribution
comparisons. In addition to the primary findings of Example 3,
comparisons with low (X ¼ .060A þ .516E þ .172C þ .149ðA�EÞþ
.063ðA�CÞ þ .040rv) and high (X ¼ .480A þ .0096E þ .032Cþ
.184ðA�EÞ þ .168ðA�CÞ þ .040rv) genetic contributions to X are
provided in Figure 12. The results illustrated that GAPS matching
can produce estimates similar to discordant MZ twin methods
when more than 50% of the variation in genetic, shared environ-
mental and nonshared environmental factors is used to create the
GAPS. Nevertheless, at high genetic contributions, when G × E
exist for both the shared and nonshared environment, the likeli-
hood of GAPS matching producing estimates similar to the
discordant MZ twin estimates is diminished. The divergence is
likely a function of the increased ability of the discordant MZ twin
approach to adjust for interactions between genetic and shared
environmental factors.

Real Data Example

Sample

To demonstrate the GAPS matching technique using a real data
example, a simple analytical evaluation of the association between
completing 4 years of college (Wave 3; 0= did not complete 4 years
of college; 1= did complete 4 years of college) and personal earn-
ings at Wave 4 (higher values represent higher earnings) was
conducted. To conduct this demonstration, the current study
relied on the restricted version of the National Longitudinal
Survey of Adolescent to Adult Health (Add Health). Briefly, the
Add Health is a nationally representative sample of individuals
from the USA who were in 7th–12th grade during the 1994–
1995 school year. Thus far, there have been five waves of data
collection between 1994 and 2019. The Add Health is ideal for
the current demonstration as it includes (1) oversampled MZ twin
pairs (Npairs= 307; N = 614), (2) molecular genetic information
from a large portion of the initial sample and (3) a comprehensive
survey asking a variety of questions about the shared and
nonshared environments. From the initial sample, three subsam-
ples were created. First, a full analytical sample was created using
listwise deletion across the two variables of interest (N= 11,587).
Second, a GAPS matched subsample was created using listwise
deletion, as well as 10 environmental covariates and 11 PRSs, to
match participants that did complete 4 years of college to individ-
uals who did not complete 4 years of college byWave 3 (N = 3,045).
Finally, an MZ twin subsample was created using listwise deletion

Table 1. Demonstration of the effects of missing heritability on Example 1
(simulation starting N= 10,000)

Variation in X= A: 45%; E: 38.2%; C: 12.8% Slope coefficient

Specified slope coefficient 1.00

Discordant MZ twin slope coefficient 1.25

Proportion of variation in X

.25 * A; .25 * E; .25 * C 1.36

.25 * A; .50 * E; .50 * C 1.32

.25 * A; .75 * E; .75 * C 1.29

.50 * A; .25 * E; .25 * C 1.34

.50 * A; .50 * E; .50 * C 1.30

.50 * A; .75 * E; .75 * C 1.25

.75 * A; .25 * E; .25 * C 1.32

.75 * A; .50 * E; .50 * C 1.26

.75 * A; .75 * E; .75 * C 1.21

Note: A= genetics, E= nonshared environment, C= shared environment. For the current
example, variation in X was specified as 45 % genetic, 38.2% nonshared environment, 12.8%
shared environment and 4% error. Genetic, shared environmental and nonshared
environmental factors equally contributed to the variation in Y. All estimates were derived
from a postmatching OLS model. Matching was completed using nearest neighbor matching
with a caliper of .05. The proportions represent the proportion of the variation in X
contributed by the specified component (A, C or E) that is adjusted for by the model. For
example, .25 * E indicates that 9.56% of the variation of X (contributed by the nonshared
environment) is adjusted for in the model.
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(Npairs= 189; N= 378). The data cleaning process for all of the
measures and the analytical syntax for the current demonstration
is provided as a text file titled ‘Real data example_GAPS R&R.txt’.

Analytical Strategy

After creating the subsamples, three linear regression models were
estimated to evaluate the differential effects of completing 4 years
of college (Wave 3) on the log of personal earnings (Wave 4) across
the full analytical sample, the GAPS matched subsample and the
MZ twin subsample. For the GAPS matched subsample, the
matching procedure was conducted by regressing college 4 years
on 10 environmental covariates and 11 PRSs to estimate a
GAPS, after which, the GAPS was used in conjunction with nearest
neighbor matching (caliper = .05) to generate a subsample of
participants that completed 4 years of college and participants that
did not complete 4 years of college with matching GAPS.
Regarding the MZ discordance analysis, a sibling comparison
model (using only MZ twins) was estimated permitting the obser-
vation of the between-family effects of college 4 years on the log of
personal income and the within-family effects (the genetically
sensitive effects) of college 4 years on the log of personal income
(Knopik et al., 2016).

Results

Table 2 provides the associations between college 4 years by Wave
3 and the log of personal income atWave 4 estimated using the full
analytical sample, the GAPS matched subsample and the sibling
comparison model. As illustrated, completing 4 years of college
was positively associated with the log of personal earnings
(Wave 4) in the full analytical sample (b= .539, p< .05).
However, the slope coefficient was attenuated to b= .465
(p< .05) after conducting the GAPS matching procedure. This
suggests that adjusting for environmental and genetic factors
almost halved the magnitude of the association. In the sibling
comparison model, however, the within-family effect was reduced
to b= .459 and rendered statistically nonsignificant (p> .05).
Overall, these findings reconfirm the results of the simulation
analysis that MZ discordance models will generate more
conservative estimates than GAPS matching. Such differences
are most likely due to the limitations currently associated
with PRSs.

Discussion

Discordant MZ twin methods currently represent one of the fore-
most statistical tools for producing nongenetically confounded

Fig. 8. (Example 1). Slope coefficients of Y regressed on X with low and high genetic contribution to the variation in X.
Note: A = genetics, E = nonshared environment, C= shared environment. The true association between Y and X is 1.00 (Starting N= 10,000). For the current example, low genetic
contribution: 10 % genetic, 64.5% nonshared environment, 21.5% shared environment and 4% error. High genetic contribution: 80 % genetic, 12% nonshared environment, 4%
shared environment and 4% error. Genetic, shared environmental and nonshared environmental factors equally contributed to the variation in Y. All estimates were derived from
a postmatching OLS model. Matching was completed using nearest neighbor matching with a caliper of .05. The orange area provides the specifications that performed further
away from the true point estimate (1.00) than the approximation of discordant MZ twin methods, and the green area provides the specifications that were closer to the true point
estimate (1.00) than the approximation of discordant MZ twin methods. The proportions on the y-axis represent the proportion of the variation in X contributed by the specified
component (A, C or E) that is adjusted for by the model.
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estimates in the behavioral sciences (Vitaro et al., 2009). As such,
the current study discussed an alternative approach that could
potentially produce estimates similar to those of the discordant
MZ twin methods. The alternative approach, GAPS matching,
integrates variation attributable to environmental risk with varia-
tion attributed to genetic risk to adjust estimates for the potential
confounding influence of genetic, shared environmental and
nonshared environmental factors. The ability of GAPS matching
to produce estimates comparable to discordant MZ twin methods
was evaluated using 240 simulation analyses. The results from nine
of these simulation analyses were reviewed to assess if GAPS
matching could approach the estimates produced by discordant
MZ twin methods when examining the association between a
complex trait (X) and an outcome (Y). Overall, two findings from
the simulated analyses and real data demonstration should be
highlighted.

First, when more variation inXwas captured by GAPS, the esti-
mates derived from the postmatching regression models generally
appeared to be close to or better than the slope coefficients
produced by discordant MZ twin methods. The GAPS matching
slope coefficients commonly had 95% confidence intervals that
overlapped with the 95% confidence intervals of the slope coeffi-
cients produced by discordant MZ twin methods. Moreover, the
results also illustrated conditions in which GAPS matching could
produce a slope coefficient closer to the specified slope coefficient
than the discordant MZ twin approach. This finding suggests that
GAPS matching can potentially be a useful technique when
discordant MZ twin methodologies cannot be employed to
examine the research question of interest (e.g., when genomic data
are available, but MZ twins are not).

Second, it appears that the confounding influence of an inter-
action between genetic and nonshared environmental factors was

Fig. 9. (Example 2). Slope coefficients of Y regressed on X differentially adjusting for the confounding influence of genetic, shared environmental and nonshared environmental
effects.
Note: A= genetics, E = nonshared environment, C = shared environment. The true association between Y and X is 1.00 (Starting N= 10,000). For the current example, variation in
Xwas specified as 36% genetic, 30.6% nonshared environment, 12.8% shared environment, 16.7% genetic* nonshared environment and 4% error. Genetic, shared environmental
and nonshared environmental factors equally contributed to the variation in Y. All estimates were derived from a postmatching OLS model. Matching was completed using
nearest neighbor matching with a caliper of .05. The orange area provides the specifications that performed further away from the true point estimate (1.00) than the approxi-
mation of discordant MZ twin methods, and the green area provides the specifications that were closer to the true point estimate (1.00) than the approximation of discordant MZ
twinmethods. The proportions on the y-axis represent the proportion of the variation in X contributed by the specified component (A, C or E) that is adjusted for by themodel. For
example, .25 * E indicates that 7.7% of the variation of X (attributed to the nonshared environment) is adjusted for in the model.
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better adjusted for by GAPS matching than discordant MZ twin
methods. Given that genetic and nonshared environment inter-
actions contribute to between-individual differences on complex
traits in the population (e.g., Purcell, 2002; Knopik et al., 2016),
the ability to adjust for G × E represents an important and poten-
tially substantive advancement of GAPS matching when esti-
mating associations between human phenotypes. Through the
reliance on PRSs, GAPS matching can provide the opportunity
to statistically adjust for confounding variation associated with
interactions between genetic and environmental factors in a way
that is not possible using the discordant MZ twin approach
(e.g., Schmitz & Conley 2017).

Overall, these two key findings demonstrate that the GAPS
matching approach can be a promising analytical tool to approxi-
mate the estimates produced by discordant MZ twin methodolo-
gies. Furthermore, GAPS matching provides the opportunity to
test research questions that cannot be assessed using discordant
MZ twinmethodologies. For instance, GAPSmatching can be used
to examine the effects of biological sex on psychological outcomes.
Additionally, the ability to adjust estimates for G × E is one poten-
tial advancement that cannot be achieved when employing
discordant MZ twin methodologies. As such, GAPS matching

appears to be an analytical strategy that can potentially enhance
our understanding of estimated associations.

Limitations of GAPS Matching

Limitations accompanying polygenic scores can diminish the
ability to estimate a true GAPS (i.e., their genetic and environ-
mental likelihood). The most influential limitation is the missing
heritability problem (Slatkin, 2009). As evident by heritability esti-
mates derived from GWAS and the real data evaluation conducted
in the current study, polygenic scores rarely explain the amount of
variation in a phenotype projected by twin-based heritability
studies (Manolio et al., 2009). While various factors likely
contribute to missing heritability (e.g., Zuk et al., 2012; Zuk et al.,
2014), scholars often suggest that themissing heritability is equated
to the inability to achieve enough statistical power (Bloom et al.,
2013; van der Sluis et al., 2010). As demonstrated in Example 1,
the missing heritability in polygenic scores limits the capacity of
GAPS to capture genetic confounding as well as the MZ difference
approach.

In addition to missing heritability, PRSs only capture the effects
of common variants on a phenotype and do not capture variation

Fig. 10. (Example 2). Slope coefficients of Y regressed on X with low and high genetic contribution to the variation in X.
Note: A = genetics, E = nonshared environment, C= shared environment. The true association between Y and X is 1.00 (Starting N= 10,000). For the current example, Low Genetic
Contribution: 8 % genetic, 51.6% nonshared environment, 21.5% shared environment, 14.9% genetic* nonshared environment, and 4% error. High Genetic Contribution: 64 %
genetic, 9.6% nonshared environment, 4% shared environment, 18.4% genetic* nonshared environment, and 4% error. Genetic, shared environmental, and nonshared envi-
ronmental factors equally contributed to the variation in Y. All estimates were derived from a postmatching OLS model. Matching was completed using nearest neighbor
matching with a caliper of .05. The orange area provides the specifications that performed further away from the true point estimate (1.00) than the approximation of discordant
MZ twin methods, and the green area provides the specifications that were closer to the true point estimate (1.00) than the approximation of discordant MZ twin methods. The
proportions on the y-axis represent the proportion of the variation in X contributed by the specified component (A, C, or E) that is adjusted for by the model.
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related to the mechanisms influencing specific genetic effects
(Purcell et al., 2009). As such, the inclusion of a PRS does not
permit GAPS matching to adjust estimates for the influence of rare
variants, structural variation and epigenetics on the association
between a phenotype and an outcome (Dudbridge, 2013; Wray
et al., 2014). Although the effects of missing heritability and other
limitations of PRSs on GAPS matching appears to diminish the
value of the technique, other research teams have begun to produce
scores with heritability estimates approaching estimates produced
from twin-based heritability studies (Young, 2019). Moreover,
scholars are currently developing strategies to capture variation
pertaining to the mechanisms causing specific genetic effects when
calculating PRSs, including the identification of rare variants
(Crouch & Bodmer, 2020) and biologically informed polygenic
scores (Hari Dass et al., 2019). As such, if the analytical sample

and techniques for GWAS and polygenic scores continue to
advance, the effects of missing heritability and the inability to
quantify the mechanisms causing specific genetic effects on the
estimates produced by GAPS matching should be diminished
(Young, 2019).

Limitations of the Simulation Analyses

In addition to the limitations associated with GAPS matching, the
current simulation was tasked with comparing a twin-based
statistical methodology to a methodology designed for singletons.
As such, while matching represented the foremost strategy to
potentially compare the discordant MZ twin approach to the
GAPS matching approach, the simulation analysis was limited
in developing matched ‘twin’ pairs — pairs matched using

Fig. 11. (Example 3). Slope coefficients of Y regressed on X differentially adjusting for the confounding influence of genetic, shared environmental and nonshared environmental
effects.
Note: A= genetics, E = nonshared environment, C = shared environment. The true association between Y and X is 1.00 (Starting N = 10,000). For the current example, variation in
X was specified as 27 % genetic, 30.6% nonshared environment, 10.2% shared environment, 16.7% genetic* nonshared environment, 11.6% genetic*shared environment and 4%
error. Genetic, shared environmental and nonshared environmental factors equally contributed to the variation in Y. All estimates were derived from a postmatching OLS model.
Matching was completed using nearest neighbor matching with a caliper of .05. The orange area provides the specifications that performed further away from the true point
estimate (1.00) than the approximation of discordant MZ twin methods, and the green area provides the specifications that were closer to the true point estimate (1.00) than the
approximation of discordant MZ twin methods. The proportions on the y-axis represent the proportion of the variation in X contributed by the specified component (A, C or E) that
is adjusted for by the model. For example, .25 * E indicates that 7.7% of the variation of X (attributed to the nonshared environment) is adjusted for in the model.
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A and C— that were identical. As such, future scholarship should
employ real twin data with genomic data to compare the method-
ologies and provide an approximation of the bias present in the
GAPS approach due to the limitations associated with polygenic
scores. Moreover, the comparisons on the simulated datasets
conducted using the 95% confidence intervals are subject to the
limitations associated with frequentist probability theory (Fox,
2016; Law, 2015). As such, we believe it would be unwise to
compare these approaches using the 95% confidence intervals
when applying the approach to real data given that twin samples
and samples of singletons with molecular genetic information can
be structurally different. Additionally, due to difficulties specifying
a simulation where the resulting dataset is representative of both
twins and singletons, the current study relied on the assumption
that the matching error rate would be identical when conducting
GAPS matching and difference score analyses using MZ twins.
Due to this assumption, the estimates resulting from the discordant
MZ twin approach are likely upwardly biased because of the rela-
tively low rate of misidentification associated with MZ twin pairs
(Knopik et al., 2016). As such, future research should consider this
limitation when implementing the GAPSmatching approach in an
effort to more closely emulate discordant MZ twin models.

Conclusion

Long considered the foremost statistical approach to producing
nongenetically confounded estimates, discordant MZ twin meth-
odologies provide a unique opportunity to adjust estimates for
the confounding influence of genetic and shared environmental
factors. The simulation analyses conducted in the current study
illustrated the robust nature and validity of discordant MZ twin
methodologies. Challenges associated with the discordantMZ twin
approach, however, remain. Considering these challenges, the
GAPS matching approach was discussed, and simulation and real
data analyses were conducted to compare the estimates produced
using the GAPS matching approach to the estimates produced
using the discordant MZ twin approach. While the simulations
illustrated favorable findings, current challenges associated with
GAPS matching — illustrated in the real data example — hinder
the ability for users to estimate slope coefficients similar to the
slope coefficients produced using discordant MZ twin methodol-
ogies in all conditions. Nevertheless, as missing heritability dimin-
ishes and rich survey data is collected alongside whole genome
data, GAPS matching could present a unique opportunity to
approximate or advance upon discordant MZ twin methodologies.

Fig. 12. (Example 3). Slope coefficients of Y regressed on X with low and high genetic contribution to the variation in X.
Note: A= genetics, E = nonshared environment, C= shared environment. The true association between Y and X is 1.00 (Starting N= 10,000). For the current example, Low genetic
contribution: 6% genetic, 51.6% nonshared environment, 17.2% shared environment, 14.9% genetic* nonshared environment, 6.3% genetic*shared environment and 4% error.
High genetic contribution: 48% genetic, .96% nonshared environment, 3.2% shared environment, 18.4% genetic* nonshared environment, 16.8% genetic*shared environment
and 4% error. Genetic, shared environmental and nonshared environmental factors equally contributed to the variation in Y. All estimates were derived from a postmatching OLS
model. Matching was completed using nearest neighbor matching with a caliper of .05. The orange area provides the specifications that performed further away from the true
point estimate (1.00) than the approximation of discordant MZ twinmethods, and the green area provides the specifications that were closer to the true point estimate (1.00) than
the approximation of discordant MZ twin methods. The proportions on the y-axis represent the proportion of the variation in X contributed by the specified component (A, C or E)
that is adjusted for by the model.
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Notes

1 A similar method was employed by Schmitz and Conley (2016) to assess the
impact of job loss on BMI.
2 In the context of propensity score matching, ‘treatment’ identifies the cases
exposed to the condition of interest, while ‘control’ identifies cases that
represent an appropriate counterfactual condition (Guo & Fraser, 2015).
3 The employment of an independent dataset is required to reduce the influ-
ence of sample bias on the estimated polygenic risk scores (Dudbridge, 2013).
4 The mathematical formulas for the data specifications are provided in
Appendix A. All the code for the current study is provided as supplemental

material. Due to the employment of simulation analysis, the current study was
exempt from acquiring IRB approval.
5 Brief directions: copy link into web browser and download the zip folder
titled ‘Complete Results.zip’, which contains all the text files (.txt) corre-
sponding to the 240 simulations labeled by the amount of variation in each
treatment (X) caused by A, C and E.
6 Appendix B and Appendices C−G provide a description and the results
(respectively) of various supplemental and sensitivity analyses conducted to
further evaluate the GAPS matching approach.
7 Residual variation ‘rv’ was included in the model to ensure that the
subsequent regression models did not perfectly predict X or Y. X was initially
simulated as a continuous construct ranging in values between 0 and 1. After
simulating X as a continuous construct that ranged between 0 and 1, X was
dichotomized where scores above .50 received a value of 1 and scores equal
to or below .50 received a value of 0.

Table 2. Estimating the association between completing 4 years of college and personal earnings using the full Add Health sample, the GAPS matched sample
and a sibling comparison model

DV: Log personal earnings (Wave 4)

Full analytical sample GAPS matched sample Sibling comparison model

b se b se b se

College 4 years 0.539* 0.026 0.465* 0.046 0.606* 0.131

College 4 years (within-family effects) – – – – −0.459 0.323

N 11,587 3,045 378

GAPS matching DV: college 4 years

b se

Environmental covariates (Wave 1)

Parental separation −0.152 0.576

Parents worked 0.173 0.100

Cognitive abilities 0.081* 0.006

Household income 0.002* 0.001

Maternal education 0.120* 0.058

Paternal education 0.335* 0.058

Biological sex −0.424* 0.153

Ancestry 0.140* 0.053

Smoked cigarettes −0.124 0.097

Major injury −0.363 0.268

Polygenic risk scores

Body mass index −0.127* 0.051

Height −0.089 0.053

Cigarettes smoked per day −0.074 0.049

Extraversion 0.073 0.049

Attention-deficit hyperactivity disorder −0.099* 0.050

Bipolar disorder −0.121* 0.060

Major depressive disorder −0.073 0.058

Schizophrenia 0.087 0.086

Mental health cross disorder 0.009 0.066

Alzheimer 0.069 0.051

Educational attainment 0.155* 0.053

N 3,621

Note: GAPSmatching was completed by using a logistic regressionmodel of college 4 years regressed on the specified covariates to estimate a GAPS (predicted probability). After estimating the
predicted probability, nearest neighbor matching with a caliper of .05 was completed to create the GAPS matched subsample of 3,315 participants. Listwise deletion was used to create the
analytical samples for the current example.
*p< .05.
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8 Considering the sources of error, after accounting for the genetic, shared
environment and nonshared environment effects (E) effects, only measurement
error and random error can exist in Y.
9 To demonstrate the effects of missing heritability in the polygenic score,
study 1 (introduced below) was re-estimated to illustrate the effects on
GAPS when the polygenic scores only captured a limited amount of the varia-
tion in X contributed by A.
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