EXTREMAL POINT AND EDGE SETS IN »-GRAPHS
N. SAUER

1. Introduction. A set of points (edges) of a graph is independent if no
two distinct members of the set are adjacent. Gallai (1) observed that, if
Ay (By) is the minimum number of points (edges) of a finite graph covering
all the edges (points) and A4; (B;) is the maximum number of independent
points (edges), then:

Ao+ A41=By+ Bi=m
holds, where m is the number of points of the graph.

The concepts of independence and covering are generalized in various ways
for n-graphs. In this paper we establish certain connections between the
corresponding extreme numbers analogous to the above result of Gallai.

Ray-Chaudhuri considered (2) independence and covering problems in
n-graphs and determined algorithms for finding the minimal cover and some
associated numbers. In the terminology of (2), this paper deals with relations
between (1,1,...,1)-covers and (1,1,...,1)-matchings of complexes by
taking also smaller faces of the simplices into account.

2. Definitions. The cardinal number of a set X is denoted by |X|. If X is
a set of sets, then, as usual, \UX denotes the set union of all the members of X.

An n-graph (n = 2) is an ordered pair of finite sets G = (V3, T,), with
T, C{X|X C V;|X| = n}. Elements of V are the points of G and elements
of T, are the n-edges of G.

We assume throughout that: m = |V| 2 %, and also that G has no isolated
points, i.e.: V C UT,.

If XCY€T,and | X| =k = 2, we call X a k-edge of G. The set of all
k-edges is denoted by T (2 < k = ). An edge of G is a k-edge for some &
2=k =n).

A set of edges E is independent if whenever X;, ¥V € E, X # V, then
X MY = 0. A set of points is independent if it contains no 2-edge of G.

We write X € & ?if X is an independent set of edges and

XCTr, VT, JU...UT, (2=1=n).
Thus

(2.1) ErDED...DEn

and we simply write X € &2 if X is an independent set of edges without
restriction.
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The value of an independent set of edges E € &% is defined as:

v(B) = [UE| — |E] = 3, (& = D,

k=2

where #; is the number of k-edges in E.
We observe that if Es N E, =@, E;\U E, = E € &2, then

V(E) = v(Ey) + v(E,).
Furthermore, if e1,¢, € E € &2, e, e, and e = e, U ey € X € T, then
(2.2) v(E") =v(E) + 1,

where E' = (E — {ey, e2}) \U {e}. This follows from the fact that UE" = UE
and |E'| = |E| — 1.
IfE € &2, we define:
w(E) = max{s(X)| X NE =0; X UE ¢ &.

In particular, w(E) = 0 if and only if E is a maximal independent set of
edges. We define:

a; = max{v(E)| E € &} 2 1 £ n).

It follows from (1) that a2 = @3 = ... = a,. Note, in particular, that if
v(E) = as, then w(E) = 0.
HECT,UT3U...UT,and U C T,, we write:
E<U or U>E

if EC {x|x Cy € Ul.
The set of edges E is said to cover the set of points V' C Vif 17 C UE.
The least number of #-edges which covers all the points V is denoted by a, i.e.:

a=min{|U||UET,; V=UU}.

If UCT, V=UU, and |U| = a, we call U a minimal cover.

If E € &% 9(E) = a;, and if there is a minimal cover U > E, we say that
1 is G-admissible and E is an admissible set of edges. We will show (Theorem 1)
that if 4 is G-admissible and E € & is any admissible set of edges, then

wE) =m—a — a; = B

Also (Theorem 1) we show that 2 is G-admissible and, of course 8: = 0.
Consequently, we may define the number:

z = max{i| 2 £ 7 £ n; {is G-admissible; 3; = 0}

which we call the covering number of G.
Let g;=|T/]Q@=j=mn). If 1=r=n2=kh<k<...<k=mn
0<h =g,and 0=f, =k, (1 =2 =r), then we will write:

(2.3) (ko Biflo
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to denote the smallest integer p for which the following statement is true:
S,: Thereis P C Vsuch that |P| = p and therearesets Ny, C T3 (1 S i <7)
such that |N;| = &, and

(2.4) lx Y P| = f, (xeNylZisy).
Similarly, we denote by
(2.5) (ks Bif a7

the largest integer p such that S,’ is true, where the statement S,/ is the same
as S, except that (2.4) is replaced by

(2.6) lx\P|=f; (x€Nj;1=Z9=27).

Note that the above definitions of (2.3) and (2.5) are meaningful since S,
holds trivially (with P = V) and S, is true (put ¢ = @).

In the special case when r = 1, k1 = &, by = g, f1 = f, we write [kif], and
[k1f]: instead of (2.3) and (2.5).

We observe that if G is a 2-graph, then A4y = [2, 1], and 4, = [2, 1];,
where A, and A4, are defined in the introduction in order to state Gallai's
theorem.

3. Results.

THEOREM 1. (i) If2 i £ n, E € &4 v(E) = a, then
w(E) Sm—a — a; = B

(ii) If 4 is G-admissible and E € & is admisssble, then
w(E) =m —a — a; = B,

(iii) 2 2s G-admissible and B, = 0.
(iv) If 1 is G-admisstble and ¢ < 2, then 8, = 0.

Note in particular from (ii) and (iv) that ¢ + o, = m. This corresponds
to Gallai's theorem for 2-graphs. (Bo + B; = m; mentioned in the intro-
duction.)

THEOREM 2. If 2 S b1 < ke < ... <k, En; 02 f, S k;and

0éhi§ITk,.|(1§i§f),
then

[%4, hhfi]OT + [k, by, By —ft]1' = m.

Note in particular that [2,1]o+ [2,1]; = m. This corresponds to
Ao+ 4, = m, Gallai’s theorem for 2-graphs.

THEOREM 3. If 2 S k' Sk <nand 0 S f < F, then
[k, k — flo = [F', k" — flo, (&, fla = [¥, fl
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4, Proofs. In order to prove Theorem 1 we require two lemmas.

LemMMa 1. Let W C T,,2 £ 1 = n, and let E be a set of maximal value so
that E < W, E € & Also let M be a set of maximal value so that EN M = @,
EUME &2and M < W. Then there are sets F, N C W such that:

() |F| = |E|, [N| = [M|, FO\N = 0;

(b) UF = UE, UM C UN C UM U UE.

Proof. We first show that, if e, es € E\U M, e; # e, then
4.1) e=e\Jes T wc W.
Suppose that this is false and e C w € W. If e;, e2 € E, then
E' = (E — {ey,ex}) U fe} < W

and E' € &*and v(E’) = v(E) + 1 by (2.2). This contradicts the maximality
of v(E).
If €1, €2 € M, then

M = (M —{ene) J{e) <W, ENM =8, EUME &,

and again v(M’) = v(M) + 1 by (2.2). This contradicts the maximality of
v(M). Finally, if we assume that ¢; € E and es € M, then
E'=(E—{e))Ufe} <W, E"¢ &% (since E\UM € &2)

and clearly v(E"”) > v(E) which again contradicts the maximality of v(E).
This proves (4.1).

It follows from (4.1) and the fact that E\U M < W, that there is an injec-
tion g: E\J M — W so that:

4.2) gw)=w=>uCw uCglu) W (uw € E\UM).

Put g(E) = F, g(M) = N; then (a) holds.

It follows from (4.2) that UE C UFand UM C UN.

If there is a point x € UF — UE, then there is some e € E so that
x € gle) —e.ThenE = (E — {e}) Uf{e\U {x}} < W,E € &% and
v(E’) > v(E), which is impossible. This proves that

UF = UE.

Similarly, if there is a point x € UN — UM U UE, then there is e’ € M
so that x € g(E’) and by putting M’ = (M — {€'}) U {¢' U {x}}, we contra-
dict the maximality of (M). This shows that

UN C UMVU UE.

This completes the proof of (b) and Lemma 1.

LEMMA 2. If E € &' and v(E) = oy, then there is a set U’ C T, which covers
V such that

U =m — w(E) — a,
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Proof. Let M be a set of maximum valuesothat M NE =@, M UE € &2
Then v(M) = w(E). It follows from the maximal property of v(E) that if
e € M,thene € T, U T5\U...\UT, . Hence, if u; is the number of k-edges
in M U E, then

UM\ E| =2 ku,.
k=2

By Lemma 1 there are F, N C T, such that Lemma 1(a) and (b) hold.
PutP=V—-UEUM=V— UFUN. Then

|P| =m — D ku.
%=2
P is an independent set of points for, if e C P and e € T, then
EUMWU {e} € &

and this contradicts the maximality of v(E) or v(M).
Therefore, there is an injection ¢: P — T, so that x € ¢(x) for x € P. Let
L = y(P) and put U’ = F\U NU L. Then U’ covers V and

01 = 12+ 4171 = (= 35 ) 435

=m—o(M) —v(E) =m— wE) — a,
This proves Lemma 2.

Proof of Theorem 1. (i) If E € &% and v(E) = «a;, then by Lemma 2 there
is a set U’ C T, such that |U'| = m — w(E) — a;. The result follows since
|U'| =z a.

(ii) Since E is admissible by hypothesis, then there is a minimal cover U
such that E < U. Let M be a set of maximal value such that

M<U MNE=6 MVUEEc¢Z&
Then v(M) < w(E) by definition of w(E). If P=V — UM \JE, then
there is no 2-edge e C P such that {¢} < U. Otherwise,
U>EUMU (e € &2

and we contradict the maximality of v(M). Therefore, since U covers V, it
follows that there is an injection y: P — U so that x € ¢(x) for x € P. Put
L = ¢(P). Then each element of P corresponds to a unique member of L.
By Lemma 1, there are F, N C U such that Lemma 1(a) and (b) hold. Clearly,
L has no member in common with F\U N and thus
a=|Ul zI|Ll +|F|+ [Nl =m—|UEVU M| + |E| + |M]

=m—o(M) —v(E) =m— w(E) — a,
By Lemma 2, there is U’ C T, such that a = |U'| £ m — w(E) — a;. It
follows that ¢ = m — w(E) — a; and this proves (ii).
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(iii) Let E’ € &2, 9(E') = as. As we already observed, this implies that
w(E") = 0. Hence, by Lemma 2, there isa set U’ C T, which covers V so that
IZJ”| = m — 2.

Let U be any minimal cover of 7 and let E be a set of edges of maximal
value so that E < U and E € &2 By Lemma 1 (with M = N = @), there
isa set F C U so that |F| = |E| and UF = UE. The maximal condition on
v(E) ensures that the set P = V — UE contains no 2-edge » with {n} < U.
Therefore, since U covers V, there is a set of 2-edges L C U so that |L| = |P)|
and each element of P is a member of exactly one edge in L. Thus, the set of
2-edges F\J L covers V and, since U is minimal, U = F\U L. Therefore,

|U| = |F| + |L| = |[E| + (m — |[UE|]) =m — v(E) 2 m — ay = |U"].

Since U is a minimal cover, it follows that v(E) = a3, and hence E is an
admissible set and 2 is G-admissible.

(iv) If 7is G-admissible and 7 =< 2, then a; = a,and by (ii) and the definition
of z,

0sB;i=m—a—a;Em—a—a,=0,
i.e. Bi = 0.

Proof of Theorem 2. Let P be a set of p = [k, by, f:]17 points so that S, is
true, i.e. there are sets N; C Ty, (1 £ 7 < r) so that |N; = k; and (2.4)
holds. Let P’ = V — P, then

x \P'| < ki —fs x€Nyl=i=r),
and therefore, by the definition of (2.5),
(4-3) m — [kiy hiyfi]()r = IP'[ < [ki, by By —'fi]lr =4q.

Now let g be a set of ¢ points so that S, is true, i.e. there are sets
N, CTy (1 =7 =r)so that |[N/| = k; and

lxNgl=ki—fi (@eN/;1=isr).
Thenif g =V —g |[«Ng| =fi (x € N/;1 <17 =7r), and hence
(4.4) m — g =|g'| Z [ky by filo"
The theorem follows from |4| and |B|.

Proof of Theorem 3. Let P be a set of p = [k, B — f], points so that every
k-edge of G contains at least k& — f elements of P. Let x’ be any #’-edge of G.
Since k' < k, there is a k-edge x D «x’. Then

i.e.
W NPz ¥ —f

It now follows from the definition that

(%, & — flo = |P| = p.
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Now let Py be a set of p; = [k/, ' — f]o points such that every k’-edge con-
tains at least ¥’ — f points of P;. Suppose that there is x € T} so that
|x Y Py <k —f. Then there is y Cx — P so that |y| =f+ 1. Since
k' = f + 1, by hypothesis, it follows that thereisx’ € Ty, so thaty C x’ C x.
Then |’ N\ P| £ |x' — 9| < k' — f, a contradiction. This shows that
kNP zk—f (x€ T,
and hence p =< |Py| = pi1. This proves the first relation in Theorem 3.
By specializing Theorem 2 we obtain:
[k, B — flo = m — [k, fl1, &,k — flo =m — [F, fli,
and by inspecting the first relation in Theorem 3, we have:

[kyfll = [k,vfll'
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