
JFP 19 (6): 645–661, 2009. c© Cambridge University Press 2009

doi:10.1017/S0956796809990220 First published online 7 September 2009

645

FUNCTIONAL PEARL

A domain-specific language for experimental
game theory

ERIC WALKINGSHAW and MARTIN ERWIG

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis,

OR 97331, USA

(e-mail: {walkiner,erwig}@eecs.oregonstate.edu)

Abstract

Experimental game theory is increasingly important for research in many fields. Unfortunately,

it is poorly supported by computer tools. We have created Hagl, a domain-specific language

embedded in Haskell, to reduce the development time of game-theoretic experiments and

make the definition and exploration of games and strategies simple and fun.

1 Introduction

Experimental game theory is the use of game-theoretic models in simulations and

experiments to understand strategic behavior. It is an increasingly important research

tool in many fields, including economics, biology, and many social sciences (Camerer

2003), but computer support for such projects is primarily found only in custom

programs written in general-purpose languages.

Here we present Hagl,1 a domain-specific language embedded in Haskell, intended

to drastically reduce the development time of such experiments and make the

definition and exploration of games and strategies simple and fun.

In game theory, a game is a situation in which agents interact by playing moves,

with the goal of maximizing their own payoff. In Hagl, a game is a tree:

data GameTree mv = Decision PlayerIx [(mv, GameTree mv)]

| Chance [(Int, GameTree mv)]

| Payoff [Float]

The Payoff nodes form the leaves of a game tree. Payoffs represent outcomes, in

the form of scores, for each player at the end of a game. The tree Payoff [1,2]

indicates that the first player receives one point and the second player two points.

The type of awarded payoffs could be generalized to any instance of the standard Num

type class, but this would inflate type signatures throughout Hagl while providing

little benefit.

1 Short for “Haskell game language” and loosely intended to evoke the homophone “haggle.” Available
for download at http://web.engr.oregonstate.edu/∼walkiner/hagl/.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

646 E. Walkingshaw and M. Erwig

Internal nodes are either Decision nodes or Chance nodes and can be sequenced

arbitrarily with the tree. The Decision nodes represent locations in the game tree

at which a player must choose to make one of several moves. PlayerIx is a type

synonym for Int and indicates which player must make the decision. An association

list maps available moves to their resulting subtrees. In the following very simple

game, the first (and only) player is presented with a decision; if they choose move A,

they will receive zero points, but if they choose move B, they will receive five points:

easyChoice = Decision 1 [(A, Payoff [0]), (B, Payoff [5])]

Finally, the Chance nodes represent points at which an external random force

pushes the players down some path or another based on a distribution. Distributions

are given here by a list of subtrees prefixed with their relative likelihood; given

[(1,a),(3,b)], the subtree b is three times as likely to be chosen as a. A random die

roll, while not technically a game (since there are no decisions and thus no players),

is illustrative and potentially useful as a component in a larger game. It can be

represented as a single Chance node, where each outcome is equally likely and the

payoff of each is the number showing on the die:

die = Chance [(1, Payoff [n]) | n <- [1..6]]

This tree-oriented representation is known as extensive form in game theory and

provides a flexible and powerful representation upon which many different types of

games can be built. However, it also has sometimes undesirable side effects. Many

games require moves by each player to be played simultaneously, without knowledge

of the other players’ moves. This is not possible with the simple tree representation,

which forces decisions to be made in sequence as we traverse a path through the

tree. The reachable payoffs from a later player’s decision node are constrained by

the moves made by earlier players, essentially revealing the earlier players’ moves.

As a solution, game theory introduces information groups. An information group

is a set of decision nodes for the same player, from which a player knows only the

group she is in, not the specific node. A game with information groups of size one

is said to have perfect information, while a game with potentially larger groups has

imperfect information. In Hagl, information groups are represented straightforwardly:

data InfoGroup mv = Perfect (GameTree mv)

| Imperfect [GameTree mv]

Whenever players attempt to view their current position in the tree, Hagl returns

a value of type InfoGroup rather than a GameTree value directly, obfuscating the

exact position if necessary. Game definitions must therefore provide a way to get

the information group associated with any decision node in the game tree.

A complete game definition in Hagl is thus a game tree, a function to provide the

information group of nodes in the tree, and the number of players to play the game:

data Game mv = Game { numPlayers :: Int,

info :: GameTree mv -> InfoGroup mv,

tree :: GameTree mv }

In the next section we will look at a specific game in more detail, the iterated

prisoner’s dilemma, which will provide both motivation for Hagl and a vehicle for

introducing increasingly advanced functionality.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 647

Fig. 1. Normal-form representation of the prisoner’s dilemma.

2 The iterated prisoner’s dilemma

The prisoner’s dilemma is a game in which each player must choose to either

“cooperate” or “defect.” Defection yields the higher payoff regardless of the other

player’s choice, but if both players cooperate they will do better than if they both

defect. The game is typically represented as a matrix of payoffs indexed by each

player’s move, as shown in Figure 1, a notation known as normal form. In the iterated

form, the game is played repeatedly, with the payoffs of each iteration accumulating.

Robert Axelrod’s seminal book The Evolution of Cooperation (Axelrod 1984)

provides one of the best documented successes of experimental game theory. In

1980 Axelrod held an iterated prisoner’s dilemma tournament. Game theorists from

around the world submitted strategies to the competition. The winning strategy was

“Tit for Tat,” a much simpler strategy than many of its opponents; it cooperates in

the first game and thereafter plays the move last played by its opponent. Thus, if an

opponent always cooperates, Tit for Tat will always cooperate, but if an opponent

defects, Tit for Tat will retaliate by defecting on the next turn. The surprising success

of such a simple strategy turned out to be a breakthrough in the study of cooperative

behavior.

A 2004 attempt to recreate and extend Axelrod’s experiments highlights the need

for domain-specific language support for experimental game theory. Experimenters

wrote a custom Java library (IPDLX) to run the tournament (Kendall et al. 2005).

Excluding user interface and example packages, this library is thousands of lines of

code. This represents a huge amount of effort that, since the library is heavily tied

to the prisoner’s dilemma, cannot be easily reused in different experiments.

Hagl provides a general platform for creating and running experiments, enabling

the concise definition of the Axelrod tournament below. First we define the prisoner’s

dilemma and then a tournament in which each player faces every player (including

themselves) for a 1000-game match, printing the final score of each:

data Dilemma = Cooperate | Defect

pd :: Game Dilemma

pd = matrix [Cooperate, Defect] [[2,2],[0,3],

[3,0],[1,1]]

axelrod :: [Player Dilemma] -> IO ()

axelrod players = roundRobin pd players (times 1000 >> printScore)

A player who plays the Tit-for-Tat strategy can also be defined concisely:

tft :: Player Dilemma

tft = "Tit for Tat" ::: play Cooperate ‘atFirstThen‘ his (last game’s move)

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

648 E. Walkingshaw and M. Erwig

The ::: operator takes a name and a strategy and produces a Player value. The

combinators used to define strategies are named from a first-person perspective; that

is, his (last game’s move) (or her (last game’s move)) refers to the move played

by the opponent’s strategy in the previous game, whereas my (last game’s move)

refers to the move played by this strategy in the previous game. These combinators

will be explained in more detail in Section 5, but first let’s turn our attention to the

definition of normal-form games.

3 Normal-form games

The matrix function used in the definition of pd in the previous section is just one of

Hagl’s many smart constructors for defining different types of normal-form games.

These functions build on terminology and notation familiar to game theorists. The

type of the most general normal-form game constructor is given below:

normal :: Int -> [[mv]] -> [[Float]] -> Game mv

This function takes the following as arguments:

• the number of players, n, that play the game;

• a list of lists of available moves for each player, m1, m2, . . . , mn; and

• a list of |m1| × |m2| × . . .× |mn| payoffs, where each individual payoff has length

n (one value for each player).

It produces a game tree with depth n + 1, one level for each player’s decision, plus

one for the payoff nodes. The generated game tree for the prisoner’s dilemma is

shown below. Hagl includes pretty-printing functions for viewing game trees more

concisely, but the verbose rendering is used here for explicitness:

Decision 1 [(Cooperate, Decision 2 [(Cooperate, Payoff [2.0,2.0]),

(Defect, Payoff [0.0,3.0])]),

(Defect, Decision 2 [(Cooperate, Payoff [3.0,0.0]),

(Defect, Payoff [1.0,1.0])])]

Recall from Section 1 that in addition to a game tree, a Game value contains a

function info for returning the information group associated with each decision

node in the tree. Normal-form games have imperfect information, since all moves

are assumed to be made simultaneously. For any decision node, the associated

information group contains all other decision nodes at the same depth in the game

tree.

The matrix function used to define pd is a specialization of normal, which makes

the common assumptions of two players and a square matrix in which the same

moves are available to each player:

matrix :: [mv] -> [[Float]] -> Game mv

matrix ms = normal 2 [ms,ms]

An additional assumption that is made in a large subset of the so-called matrix

games is that for any outcome, the scores of both players sum to zero. These are

known as zero-sum games and can be defined in Hagl with the following smart

constructor:

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 649

zerosum :: [mv] -> [Float] -> Game mv

zerosum ms vs = matrix ms [[v, -v] | v <- vs]

These games represent situations in which one player wins and another loses. A

simple example is the traditional game rock–paper–scissors, defined below:

data RPS = Rock | Paper | Scissors

rps = zerosum [Rock, Paper, Scissors] [0,-1, 1,

1, 0,-1,

-1, 1, 0]

Here, only one value is given for each outcome and the payoff awarded to the first

player. The second player’s payoff can be automatically derived from this to produce

a zero-sum game.

Hagl strives to be concise and familiar to game theorists by utilizing existing

terminology and notations, allowing users to define the large class of normal-form

games easily. In the next section we introduce operators and constructors for easing

the definition of extensive-form games as well.

4 Extensive-form games

Recall from Section 1 that games in Hagl are internally represented as trees,

a representation known as extensive form. While the internal representation is

intentionally austere, a few conveniences are afforded for defining larger games

which are best represented in extensive form. To illustrate these, we will work

through the definition of an extensive-form representation of the Cuban Missile

Crisis, based on an example in Straffin (1993).

In this simplified representation of the crisis there are two players, the USSR and

the USA, represented as follows:

ussr = player 1

usa = player 2

The player function has type PlayerIx -> (mv, GameTree mv) -> GameTree mv; it

takes a player index and a single decision branch and creates a decision node. This

allows for flexible creation of decision trees when combined with the <|> operator

introduced below.

One reason the USSR sent nuclear weapons to Cuba was as a response to US

nuclear weapons in Turkey. Thus we have at least two factors which could contribute

to the payoff of each country. American missiles in Turkey are a strategic advantage

for the US and a disadvantage for the USSR, while Soviet missiles in Cuba are an

advantage for the USSR and a disadvantage for the US. We can represent these

outcomes with simple Payoff nodes:

nukesInTurkey = Payoff [-2, 1]

nukesInCuba = Payoff [1,-2]

Note that the penalty of having nuclear weapons near you outweighs the benefit

of having nuclear weapons near your opponent. Essentially, this means that both

countries would prefer to have nuclear weapons in neither country than in both

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

650 E. Walkingshaw and M. Erwig

countries. Additionally, if nuclear war breaks out, it would be devastating to both

countries, so we’ll assign big negative payoffs to that outcome:

nuclearWar = Payoff [-100,-100]

Alternatively, if we suspect that some nuclear wars are worse than others, we

might model this possibility with a Chance node, giving one-to-four odds of a truly

devastating war:

nuclearWar = Chance [(1, Payoff [-100,-100]), (4, Payoff [-20,-20])]

Finally, with a happy resolution, there won’t be nuclear weapons in either country:

noNukes = Payoff [0,0]

Let’s assume at the start of the game that the American missiles are already in

Turkey. The USSR has the first decision to make: they can choose to send nuclear

weapons to Cuba, or they can choose to do nothing. We represent this choice as

follows:

start = ussr ("Send Missiles to Cuba", usaResponse)

<|> ("Do Nothing", nukesInTurkey)

If the USSR chooses to send missiles to Cuba, the US must respond; if the USSR

chooses to do nothing, the game is over and the payoff is simply the result of having

nuclear weapons in Turkey. Here we introduce the decision-branching operator

<|>, which has type GameTree mv -> (mv, GameTree mv) -> GameTree mv but is only

defined for Decision nodes. Each option is represented by a tuple containing a move

and the corresponding branch to follow if the move is played. The player function

creates a decision node from a single branch (normally a decision node requires a

list of such tuples), and the branching operator appends additional branches to this

node.

The USA’s potential response to missiles in Cuba is modeled as follows:

usaResponse = usa ("Do Nothing", nukesInTurkey <+> nukesInCuba)

<|> ("Blockade", ussrBlockadeCounter)

<|> ("Air Strike", ussrStrikeCounter)

The US could choose to do nothing, in which case there are missiles in both Turkey

and Cuba. This introduces a second operator <+>, which combines two game trees.

For the Decision and Chance nodes this means concatenating all branches; for the

Payoff nodes, the payoffs are simply added together. If the US chooses action, by

either a naval blockade or an air strike, the USSR must counterrespond:

ussrBlockadeCounter = ussr ("Agree to Terms", noNukes)

<|> ("Escalate", nuclearWar)

ussrStrikeCounter = ussr ("Pull Out", nukesInTurkey)

<|> ("Escalate", nuclearWar)

Since every path through the decision tree terminates with a payoff node, the

game tree is complete. However, we still need to turn this Hagl GameTree value

into a Game value. For this, the smart constructor extensive is provided, which has

type GameTree mv -> Game mv. This function traverses the game tree (Hagl provides

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 651

helper functions for accessing game tree nodes in both breadth-first and depth-first

orders) and extracts the number of players from finite-sized trees. All nodes in an

extensive-form game defined in this way are assumed to have perfect information.

As an interesting aside that shows Hagl in action, we can use this game to

demonstrate a possible weakness of the traditional minimax strategy in non-zero-

sum games. Hagl provides a built-in implementation of this strategy named minimax,

which determines the “optimal” move from the current location in the game tree

(assuming perfect information and a finite depth). Let’s assume that the Americans

use this strategy:

kennedy = "Kennedy" ::: minimax

For the Soviets, we will define an approximation of what their strategy may have

been – send missiles to Cuba, but avoid nuclear war at all costs:

khrushchev = "Khrushchev" :::

play "Send Missiles to Cuba" ‘atFirstThen’

do m <- his move ‘inThe’ last turn

play $ case m of "Blockade" -> "Agree to Terms"

"Air Strike" -> "Pull Out"

Don’t worry about completely understanding this strategy now; the next section

covers the strategy combinator library in depth.

Running the game once and printing its transcript produces the following output:

> runGame crisis [khrushchev, kennedy] (once >> printTranscript)

Game 1:

Khrushchev’s move: "Send Missiles to Cuba"

Kennedy’s move: "Do Nothing"

Payoff: [-1.0,-1.0]

At first glance, Kennedy’s decision, as determined by the minimax strategy, seems

reasonable. The risk of nuclear war is so terrible that the best move is to play

passively, ensuring that it won’t occur. However, if we assume that Khrushchev is

rational, then even without knowing his strategy beforehand we can be sure that he

won’t choose to pursue nuclear war, since it would result in a huge negative payoff

for the USSR as well.

The minimax algorithm assumes that the opposing player is trying to minimize

the current player’s score. But this assumption doesn’t hold in non-zero-sum games.

In game theory a player’s only goal is to maximize his or her own score – minimizing

an opponent’s score is only a side effect when payoffs sum to zero.

The best response from Kennedy would seem to be an air strike, since it would

allow the US to keep their nuclear weapons in Turkey. That history did not follow

this course could mean that Kennedy played this game suboptimally. Much more

likely, our model could be incomplete. The payoffs do not account for international

reputation, national pride, economic impact, and many other factors that certainly

played a role in the actual crisis. Fortunately, the <+> and <|> operators make

adding these additional payoff modifiers, and additional decisions that may result,

very straightforward.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

652 E. Walkingshaw and M. Erwig

Now that we can define many types of games, we would like to play them. In

the next section we introduce Hagl’s suite of smart constructors for defining simple

strategies and in the subsequent subsections a library of combinators for defining

more complex ones.

5 Defining strategies

Strategies in Hagl are computations executed within the outermost of two layers

of state monad transformers. Fortunately, Hagl is designed to make strategies easy

to define without understanding the intricacies of the representation. Many of the

types in this section will be left undefined until Sections 6 and 7, on game execution

and player and strategy representation. In this section we focus on the concrete

syntax of strategy definition.

The simplest strategies in game theory just return the same move every time.

Game theorists call these pure strategies. Hagl provides a function pure which takes

a move and produces a pure strategy.

Also common in game theory are mixed strategies, which play a move based on

some distribution. The following strategy cooperates with a probability of 5/6 and

defects with a probability of 1/6:

rr = "Russian Roulette" ::: mixed [(5,Cooperate), (1,Defect)]

Other strategy functions include randomly, which randomly selects one of the

available moves (based on a linear distribution), and periodic, which cyclically

plays a sequence of moves. There is also the built-in minimax strategy introduced in

Section 4.

More complex strategies, like Tit for Tat defined in Section 2 and Khrushchev

in Section 4, can be built from a suite of functions designed for the task. These

functions primarily fall into two categories: data accessors and list selectors.

5.1 Data accessors

Strategies have access to a wealth of information about the current state of a

game’s execution. In Section 6 we define this state explicitly, while in this section

we describe the interface presented to strategies for accessing it. The data accessor

functions extract data from the execution state and transform it into some convenient

form.

Before we get to the accessors themselves, we must introduce a set of types

which are central to strategy definition in Hagl. These types simply wrap a list of

data, indicating whether each element in the list corresponds to a particular game

iteration, turn, or player:

newtype ByGame a = ByGame [a]

newtype ByTurn a = ByTurn [a]

newtype ByPlayer a = ByPlayer [a]

These act as type-level annotations of the contents of a list and provide many

advantages. Firstly, they help programmers understand the structure of values

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 653

returned by accessors functions. More importantly, they enforce through the Haskell

type system a proper ordering of the list selectors described in the next subsection.

For the rare case in which one wishes to handle all types of dimensioned lists

generically, a type class ByX is provided, which unifies the the three types and

provides generic toList and fromList functions which convert dimensioned lists into

standard Haskell lists and vice versa.

Below we list a useful subset of the data accessors provided by Hagl, along with

their types and a brief description. The GameMonad type class present in each of the

types will be explained in Section 7:

• location :: GameMonad m mv => m (InfoGroup mv)

The information group of the current node in the game tree.

• numMoves :: GameMonad m mv => m (ByPlayer Int)

The total number of moves played by each player so far.

• moves :: GameMonad m mv => m (ByGame (ByPlayer (ByTurn mv)))

A triply nested list of all moves played so far, indexed first by game, then by

player, and then by the order in which they were performed.

• payoff :: GameMonad m mv => m (ByGame (ByPlayer Float))

A doubly nested list of the payoff received by each player in each game.

• score :: GameMonad m mv => m (ByPlayer Float)

The current cumulative scores, indexed by player.

Working directly with the values returned by these functions would be cumber-

some. Different indexing conventions are used for each type of list, and although

the types help to prevent mixing them up, there are still many details to keep

track of. Although we know, for example, that the score accessor returns a list of

scores indexed by player, if we are writing a strategy, how do we know which score

corresponds to our own? The list selectors presented in the next subsection manage

these minutiae for us.

5.2 List selectors

Two features distinguish Hagl selectors from generic list operators. First, they provide

increased type safety by only operating on lists of the appropriate type. Second, they

may use information from the execution state to make different selections depending

on the context in which they are run. Below are the list selectors for ByPlayer lists:

• my :: GameMonad m mv => m (ByPlayer a) -> m a

Select the element corresponding to the current player.

• her :: GameMonad m mv => m (ByPlayer a) -> m a

his :: GameMonad m mv => m (ByPlayer a) -> m a

Select the element corresponding to the other player in a two-player game.

• our :: GameMonad m mv => m (ByPlayer a) -> m [a]

Select the elements corresponding to all players (i.e., all elements).

• their :: GameMonad m mv => m (ByPlayer a) -> m [a]

Select the elements corresponding to every player except the current player.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

654 E. Walkingshaw and M. Erwig

These selectors have names corresponding to possessive pronouns from the first-

person perspective of the current player. For example, the expression my score

returns the current player’s score. Because selectors are context sensitive, two different

strategies can refer to my score and get the two different scores corresponding to

their respective players.

The selectors for ByGame and ByTurn lists share a set of adjectivally named functions

through the use of a type class named ByGameOrTurn. An example of one such selector

is the function last which returns the element corresponding to either the last game

iteration or the last turn in this iteration, depending on the types of its arguments:

last :: (ByGameOrTurn d, GameMonad m mv) => d a -> m (d a) -> m a

The first argument to last is used only for its type and to increase readability. For

example, the function last game’s payoff, where game’s is declared as undefined

:: ByGame a, would select the payoff corresponding to the previous game iteration.

A similar undefined value turn’s has type ByTurn a for specifying ByTurn selectors.

The variations games’, turns’, and turn are all included to maximize readability in

different situations.

Other ByGame and ByTurn selectors include the following:

• first :: (ByGameOrTurn d, GameMonad m mv) => d a -> m (d a) -> m a

Select the element corresponding to the first game iteration or turn.

• every :: (ByGameOrTurn d, GameMonad m mv) => d a -> m (d a) -> m [a]

Select the elements corresponding to all iterations or turns (i.e., all elements).

• this :: GameMonad m mv => ByGame a -> m (ByGame a) -> m a

Select the elements corresponding to the current game iteration.

Note that ByTurn lists do not have an element corresponding to the current turn,

so the this selector applies to ByGame lists only. This is enforced by the type of the

function.

One might suspect that the first argument of a ByGameOrTurn selector is superfluous,

since the type of a list can be determined from the list itself. However, there is one

accessor function whose return type varies depending on the types of the selectors

applied to it. The move data accessor was not introduced in Section 5.1 but has

been used in the strategies of both Tit for Tat and Khrushchev; it is defined in the

following type class:

class (ByX d, ByX e) => MoveList d e where

move :: GameMonad m mv => m (d (e mv))

This is a multi-parameter type class, requiring an extension to Haskell 98 available

in the Glasgow Haskell Compiler (GHC; GHC 2004).

There are two instances of the class MoveList. The first defines a move function

which returns lists of type ByGame (ByPlayer mv), a doubly nested list of the last

move played by each player in each game. This is most useful for games in which

each player makes only a single move, as in most normal-form games. The expression

his (last game’s move) in Tit for Tat’s strategy relies on this implementation.

The second instance of MoveList defines a move function that returns a list of

type ByPlayer (ByTurn mv), a list of each move played by each player in this game.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 655

Khrushchev uses this version of move in the expression his move ‘inThe‘ last turn.

The inThe function is defined as flip ($) and is used to reorder selectors to improve

readability.

Most of the selectors above can be easily composed. For example, my (last game’s

payoff) applies a ByGame selector followed by a ByPlayer selector to an accessor of

the appropriate type. Unfortunately, this composability breaks down after selectors,

which return a list of elements. For example, we cannot write my (every games’

payoff) because every returns a value of type m [ByPlayer Float] rather than the

m (ByPlayer Float) that ByPlayer selectors accept. That the list is the result of

a monadic computation complicates things further, making it cumbersome to use

standard list operations like map.

As a solution, Hagl introduces the eachAnd operator which composes two selectors

by mapping the first over the list returned by the second. Using eachAnd we can get

a list of our payoffs for every game by writing my ‘eachAnd’ every game’s payoff.

We can build some pretty sophisticated strategies using only the tools we have

seen so far. For example, consider another important iterated prisoner’s dilemma

strategy called the “Grim Trigger” that cooperates until the opponent defects once,

after which it defects forever:

grim = "Grim Trigger" :::

do ms <- her ‘eachAnd‘ every games’ move

if Defect ‘elem‘ ms then play Defect else play Cooperate

The only unknown function in this strategy is play which is just a synonym for

the monadic return. The expression her ‘eachAnd’ every games’ move returns a list

of all previous moves played by the opponent. If any of these moves represent

defection, Grim Trigger will defect; otherwise it will cooperate.

Notice that the implementation of Grim Trigger above is robust in that it will do

the correct thing even when the move history is empty (i.e., in the first game). In

general, this is not always possible. For these other cases, a small suite of strategy

composition functions are provided for the initialization of strategies.

5.3 Initializing strategies

Many strategies rely on information from previous iterations and require one or

more temporary initial strategies until that information is available. Since this is very

common, it is essential to have concise idioms for expressing these strategies. The

definition of Tit for Tat in Section 2 demonstrates the simplest such case, where a

single move must be played before the primary strategy is applicable. This situation

is captured by Hagl’s atFirstThen function which takes two strategies, a strategy to

play for the first move and one to play thereafter, combining them to form a single

strategy:

atFirstThen :: Strategy mv s -> Strategy mv s -> Strategy mv s

The strategy of the following player, named after Pavlov’s dogs, utilizes atFirstThen

and the built-in randomly function to play a random move in the first game, before

moving on to the main body of the strategy:

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

656 E. Walkingshaw and M. Erwig

pavlov = "Pavlov" :::

randomly ‘atFirstThen’

do p <- my (last game’s payoff)

m <- my (last game’s move)

if p > 0 then return m else randomly

This player is intended for use in zero-sum games such as the rock–paper–scissors

game defined in Section 3. The strategy plays randomly in the first game and then

plays its own previous move if that move earned a positive payoff. Otherwise, it

continues to play randomly.

The atFirstThen function is defined in terms of the more general function

thereafter, which takes a list of initial strategies and a primary strategy to play

when that list is exhausted:

thereafter :: [Strategy mv s] -> Strategy mv s -> Strategy mv s

thereafter ss s = my numMoves >>= \n -> if n < length ss then ss !! n else s

For example, the following strategy would play rock in the first game, paper in the

second game, and scissors thereafter:

plan = [play Rock, play Paper] ‘thereafter’ play Scissors

Throughout this section we have referred to the game execution state, but we have

only defined it indirectly by the type of data that can be extracted from it. In the

next section we are much more explicit, defining the monadic structure underlying

Hagl and how it is used in game execution.

6 Game execution

In Hagl, game execution occurs within the game execution monad. Execution is

performed in steps, where each step corresponds to processing one node in the game

tree. When a payoff node is reached, information about the completed game is saved

to a history of past iterations and state corresponding to the current execution is

reset. The game execution monad is defined by the following type:

newtype GameExec mv a = GameExec (StateT (ExecState mv) IO a)

This type wraps a state monad transformer and is itself an instance of Monad,

MonadState, and MonadIO, simply deferring to the StateT monad it wraps in all cases.

The innermost monad is the IO monad, which is needed for printing output and

obtaining random numbers.

The state maintained by the GameExec monad is a value of type ExecState, which

contains all of the information needed for game execution and to write strategies

for an iterated game:

data ExecState mv = ExecState (Game mv) [Player mv] (ByPlayer Int)

(GameTree mv) (Transcript mv) (History mv)

The arguments to the ExecState constructor represent, in order,

• the game being played,

• the players currently playing the game,

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 657

• the total number of moves made by each player,

• the current location in the traversal of the game tree,

• a transcript of events in this iteration, and

• a history of past iterations.

The definitions of Game and GameTree were given in Section 1. The definition of

the Player type will be given in Section 7. Here, let’s examine the Transcript and

History types, the values of which are generated by game execution.

A Transcript is a list of Event values, where each event corresponds to an

already-processed node in the game tree:

type Transcript mv = [Event mv]

data Event mv = DecisionEvent PlayerIx mv

| ChanceEvent Int

| PayoffEvent [Float]

As nodes are traversed, their corresponding events are generated and appended

to the transcript. A DecisionEvent records a decision made at a Decision node,

capturing the index of the player involved and the move they played; a ChanceEvent

records the branch taken at a Chance node; and a PayoffEvent records the payoffs

awarded at a Payoff node.

History values are essentially just lists of past transcripts, combined with a Summary

value which redundantly stores only the moves made by each player and the final

payoffs for a particular iteration, for performance reasons:

type History mv = ByGame (Transcript mv, Summary mv)

type Summary mv = (ByPlayer (ByTurn mv), ByPlayer Float)

Many of the data accessors in Section 5.1 extract their information from History

value in the game execution state.

Games are executed by running computations within the GameExec monad. The

most fundamental of these is the step function, which has type GameExec m (); that

is, it is a computation within the GameExec monad with no return value. Each time

step is run, it processes one node in the game tree, updating the location, transcript,

game summaries, and payoffs, all stored in the ExecState value, accordingly. For

example, if the current location in the game tree is a Decision node, step will request

a move from the player indicated by the Decision node, update the location based

on that move, and add an event to the transcript.

Since step is a monadic computation, multiple invocations of step can be

sequenced using the monad bind operation (>>). The function step >> step >>

step could be used to run one iteration of the prisoner’s dilemma; since the depth

of the prisoner’s dilemma is three, it takes three executions of step to fully evaluate

a single game. Fortunately, Hagl provides a function once which recursively executes

step, running a game to completion a single time, obviating the need to know the

depth of a game to run it. Additionally, the function times takes an integer and

runs the game that many times. For example, times 100 runs a game 100 times

consecutively.

The runGame function, whose type is given below, is used to execute computations

like once on combinations of players and games:

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

658 E. Walkingshaw and M. Erwig

runGame :: Game m -> [Player m] -> GameExec m a -> IO (ExecState m)

This function takes a game, a list of players, and a computation in the GameExec

monad; it generates an initial ExecState and then runs the given computation on

that state. The following, run from an interactive prompt (e.g., GHCi), would play 10

iterations of the prisoner’s dilemma between players a and b:

> runGame pd [a,b] (times 10)

Unfortunately, running 10 iterations of the prisoner’s dilemma isn’t very useful if we

don’t know anything about the results of those games. In addition to step, once, and

times, Hagl provides a suite of functions for printing information about the current

state of game execution. The most generally useful of these are printTranscript,

which prints the transcript of all completed games, and printScore, which prints

the current score of each player. In order to see these in action, let us first define a

couple of simple players, one that always cooperates and one that always defects:

mum = "Mum" ::: pure Cooperate

fink = "Fink" ::: pure Defect

From an interactive prompt we can now instruct Hagl to run one game of the

prisoner’s dilemma between Mum and Fink, print the transcript of that game, run

99 more games, and print the final score:

> runGame pd [mum, fink] (once >> printTranscript >> times 99 >> printScore)

Game 1:

Mum’s move: Cooperate

Fink’s move: Defect

Payoff: [0.0,3.0]

Score:

Mum: 0.0

Fink: 300.0

Clearly, pure cooperation is not a good strategy against pure defection.

Often we want to run a game between not just one set of opponents but a series

of opponents, as in the Axelrod tournament described in Section 2. The function

runGames provides a general means of doing so:

runGames :: Game m -> [[Player m]] -> GameExec m a -> IO ()

The type of runGames is similar to that of runGame, except that in place of a list of

players, there is a list of lists of players. In runGames, the provided computation is

executed once for each list of players. The scores of all players are accumulated, and

the final scores printed.

The definition of the axelrod function in Section 2 uses the function roundRobin,

one of a few functions for producing standard types of tournaments. This function

takes a single list of players and runs every unique combination (including each

player against itself). Below we run axelrod with the two players defined above and

Tit for Tat from Section 2. Only the final score is shown below; scores of individual

matchups are omitted for space:

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 659

> axelrod [mum, fink, tft]

Final Scores:

Tit for Tat: 6999.0

Fink: 6002.0

Mum: 6000.0

Although still finishing last, here Mum performs much better relative to Fink, since

it has both Tit for Tat and itself to cooperate with. Tit for Tat outperforms both by

being willing to cooperate and by being flexible enough to avoid being exploited by

Fink.

In the next section we finally give a formal definition of player and strategy

representations in Hagl. For strategies, we introduce another monadic layer that

allow each strategy to maintain its own independent state.

7 Player and strategy representation

A player in Hagl is represented by the Player data type defined below. Values of

this type contain the player’s name (e.g., “Tit for Tat”), an arbitrary state value, and

a strategy which may utilize that state:

data Player mv = forall s. Player Name s (Strategy mv s)

The Name type is just a synonym for String. A player’s name is used both to

distinguish among different players within Hagl and for labelling output like player

scores. Also notice that Player is a locally quantified data constructor (Läufer &

Odersky 1994), another extension to Haskell 98 available in the GHC. This allows

players to maintain their own different state types while still being stored and

manipulated generically.

The definition of the Strategy type requires introducing the outermost monadic

layer in Hagl. The StratExec monad, defined below, wraps the GameExec monad

introduced in Section 6, providing an additional layer of state management available

to strategies through the standard get and put functions:

newtype StratExec mv s a = StratExec (StateT s (GameExec mv) a)

Like GameExec, StratExec instantiates Monad, MonadState, and MonadIO. Additionally,

both GameExec and StratExec instantiate the GameMonad type class first mentioned in

Section 5.1. This allows many combinators, including all of the accessor and selector

functions, to be used identically (without lifting) from within either monad.

Finally, a Strategy is a computation within the StratExec monad which returns

the next move to be played:

type Strategy mv s = StratExec mv s mv

Since many strategies in Hagl do not require the use of state, an additional data

constructor is provided for defining players with stateless strategies:

(:::) :: Name -> Strategy mv () -> Player mv

This constructor has been used throughout the paper to define players with stateless

strategies. Since we have made it this far without state in strategies, one may wonder

whether this extra complexity is justified. In the next section we make a case for

stateful strategies and provide an example of their use.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

660 E. Walkingshaw and M. Erwig

8 Stateful strategies

We have mostly ignored the role of state in strategy definitions thus far. This is

partly because stateless strategies simply look nicer than their stateful counterparts

but also because the examples have all been small enough that the benefits of

maintaining state are minimal.

Since the entire game execution history is available to every strategy at any time,

state is not strictly necessary for the definition of any strategy. Any stateful strategy

could be transformed to a stateless strategy by regenerating the state from scratch

at every iteration. However, since experimental game theorists will often want to run

thousands of iterations of each game with many different strategies, state becomes

a necessity for any strategies which consider all past iterations, especially as the

amount of work at each iteration increases. The construction of Markov models,

which have particular relevance in iterated games, are one such example of state

which would be prohibitively expensive to regenerate from scratch at every iteration.

On a smaller scale, consider the definition of Grim Trigger from Section 5.2. This

implementation runs in linear time with respect to the number of iterations played,

since it must search the list of previous moves each time it is called. By utilizing

state, we can define a constant-time Grim Trigger as follows2:

grim’ = Player "Stately Grim Trigger" False $

play Cooperate ‘atFirstThen’

do m <- her (last game’s move)

triggered <- update (|| m == Defect)

if triggered then play Defect else play Cooperate

The function update used here applies a function to the state within a state monad

and then stores and returns the resulting state. Instead of scanning the entire

history of past games, Stately Grim Trigger considers only the most recent game

and updates its state accordingly. Even with this simple example, 10,000 iterations

involving grim’ complete in a few seconds, while the same experiment with grim

takes over 30 minutes on our hardware.

9 Conclusion

Although originally intended as analytical tools, game theoretic models have proven

extremely conducive to research through simulation and experimentation. Despite

the utility of experimental game theory, however, there does not seem to be much

in the way of language support. Hagl attempts to lower the barriers to entry for

researchers using experimental game theory. By utilizing existing formalisms and

notations, Hagl provides a familiar interface to domain experts, and by embedding

the language in Haskell, users can extend and supplement the language with arbitrary

Haskell code as needed. Additionally, Hagl makes heavy use of the Haskell type

system to statically ensure that list selectors and other language elements are ordered

correctly.

2 This example actually has a clever, stateless, constant-time algorithm as well – defect if either you or
your opponent defected on the previous move – but this will not always be the case.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

Functional pearl 661

In addition to the types of games presented here, Hagl can be used to define games

which are more naturally described by transitions between states. For example, in

the paper and pencil game of tic-tac-toe, a state of nine squares is maintained,

each of which may be empty or contain an “X” or an “O”; players’ moves are

defined by transforming the state by marking empty squares. Similarly, board games

like chess are defined by the state of their board, and moves alter that state by

moving pieces around. Hagl provides smart constructors which transform state-

based game definitions into standard Hagl game trees. Thanks to the laziness of the

host language, these trees are generated on demand, making even large state-based

games tractable.

This project is part of a larger effort to apply language design concepts to game

theory. In our previous work we have designed a visual language for defining

strategies for normal-form games, which focused on the explainability of strategies

and on the traceability of game executions (Erwig & Walkingshaw 2008). In future

work we plan to extend Hagl by allowing for multiple internal game representations.

This would facilitate the use of existing algorithms for computing equilibria in

normal-form games and ease the writing of strategies for state-based games and

auctions, which are of particular interest in experimental game theory.

Acknowledgements

We would like to thank Richard Bird and an anonymous reviewer for their thorough

and insightful reviews. This paper is significantly improved by their efforts.

References

Axelrod, R. M. (1984) The Evolution of Cooperation. Basic Books.

Camerer, C. (2003) Behavioral Game Theory: Experiments in Strategic Interaction. Princeton

University Press.

Erwig, M. & Walkingshaw, E. (2008) A Visual Language for Representing and Explaining

Strategies in Game Theory. Pages 101–108 of: Bottoni et al. (ed), IEEE Int. Symp. on Visual

Language and Human-Centric Computing, Herrsching am Ammersee, Germany. Washington,

DC: IEEE Computer Society.

Glasgow Haskell Compiler. (2004) The Glasgow Haskell compiler [online]. Available at:

http://haskell.org/ghc (Accessed 23 August 2009).

Kendall, G., Darwen, P. & Yao, X. (2005) The Prisoner’s Dilemma competition [online].

Available at: http://www.prisoners-dilemma.com (Accessed 23 August 2009).

Läufer, K. & Odersky, M. (1994) Polymorphic type inference and abstract data types, ACM

Trans. Program. Lang. Syst., 16 (5): 1411–1430.

Straffin, P. D. (1993) Game Theory and Strategy. The Mathematical Association of America.

https://doi.org/10.1017/S0956796809990220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990220

