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ABSTRACT

A claims reserving method is reviewed which was introduced by Gunnar
Benktander in 1976. It is a very intuitive credibility mixture of Bornhuetter/
Ferguson and Chain Ladder. In this paper, the mean squared errors of all
3 methods are calculated and compared on the basis of a very simple stochastic
model. The Benktander method is found to have almost always a smaller mean
squared error than the other two methods and to be almost as precise as an exact
Bayesian procedure.
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1. INTRODUCTION

This note on the occasion of the 8Ost anniversary of Gunnar Benktander focusses
on a claims reserving method which was published by him in 1976 in
"The Actuarial Review" of the Casualty Actuarial Society (CAS) under the
title "An Approach to Credibility in Calculating IBNR for Casualty Excess
Reinsurance". The Actuarial Review is the quarterly newsletter of the CAS and is
normally not subscribed outside of North America. This might be the reason why
Gunnar's article did not become known in Europe. Therefore, the method has
been proposed a second time by the Finnish actuary Esa Hovinen in his paper
"Additive and Continuous IBNR", submitted to the ASTIN Colloquium 1981 in
Loen/Norway. During that colloquium, Gunnar Benktander referred to his
former article and Hovinen's paper was not published further. Therefore it was
not unlikely that the method was invented a third time. Indeed, Walter Neuhaus
published it in 1992 in the Scandinavian Actuarial Journal under the title "Another
Pragmatic Loss Reserving Method or Bornhuetter/Ferguson Revisited". He
mentioned neither Benktander nor Horvinen because he did not know about
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their articles. In recent years, the method has been used occasionally in actuarial
reports under the name "Iterated Bornhuetter/Ferguson Method". The present
article gives a short review of the method and connects it with the name of its first
publisher. Furthermore, evidence is given that the method is very useful which
should already be clear from the fact that it has been invented so many times.
Using a simple stochastic model it is shown that the Benktander method
outperformes the Bornhuetter/Ferguson method and the chain ladder method in
many situations. Moreover, simple formulae for the mean squared error of all
three methods are derived. Finally, a numerical example is given and a
comparison with a credibility model and a Bayesian model is made.

2. REVIEW OF THE METHOD

To keep notation simple we concentrate on one single accident year and on paid
claims. Furthermore, we assume the payout pattern to be given, i.e. we denote
with pj, 0 < p\ < pi < ... < pn = 1, the proportion of the ultimate claims
amount which is expected to be paid after j years of development. After
n years of development, all claims are assumed to be paid. Let Uo be the
estimated ultimate claims amount, as it is expected prior to taking the own
claims experience into account. For instance, Uo can be taken from premium
calculation. Then, being at the end of a fixed development year k < n,

RBF = Ik Uo with qk - 1 - pk

is the well-known Bornhuetter/Ferguson (BF) reserve (Bornhuetter/Ferguson
1972). The claims amount Ck paid up to now does not enter the formula for RBF,
i.e. this reserving method ignores completely the current claims experience of the
portfolio under consideration. Note that the axiomatic relationship between any
reserve estimate R and the corresponding ultimate claims estimate 0 is always

U=Ck + R and R=U-Ck

because the same relationship also holds for the true reserve R = Cn - Ck and
the corresponding ultimate claims U = Cn, i.e. we have

U=Ck + R and R=U-Ck.

For the Bornhuetter/Ferguson method this implies that the final estimate of the
ultimate claims is the posterior estimate

UBF — Ck + RBF

whereas the prior estimate Uo is only used to arrive at an estimate of the reserve.
Note further that the payout pattern {pj} is defined by pj = E{Cj)/E{U).

Another well-known claims reserving method is the chain ladder (CL)
method. This method grosses up the current claims amount Ck, i.e. uses

UCL = Ck/pk
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as estimated ultimate claims amount and

RCL = UCL - Ck

as claims reserve. Note that there

holds. This reserving method considers the current claims amount Ck to be fully
credibly predictive for the future claims and ignores the prior expectation f/0
completely. One advantage of CL over BF is the fact that with CL different
actuaries come always to similar results which is not the case with BF because
there may be some dissent regarding UQ.

BF and CL represent extreme positions. Therefore Benktander (1976)
proposed to replace the prior UQ with a credibility mixture

As the credibility factor c should increase similarly as the claims Ck develop, he
proposed to take c — pk and to estimate the claims reserve by

uPk

This is the method as proposed by Gunnar Benktander (GB). Observe that we
have

RGB - qk UPt

and

UPk = Pk UCL + qkU0 = Ck + RBF = UBF,

i.e.

This last equation means that the Benktander reserve RGB is obtained by
applying the BF procedure in an additional step to the posterior ultimate claims
amount UBF which was arrived at by the normal BF procedure. This way has
been taken in some recent actuarial reports and has there been called "iterated
Bornhuetter/Ferguson method".

Note again that the resulting posterior estimate

UGB = Ck + R G B = (l- ql)UCL + £U0 = Uy_q2

for the ultimate claims is different from UPk which was used as prior.
Esa Hovinen (1981) applied the credibility mixture directly to the reserves

instead of the ultimates, i.e. proposed the reserve estimate

REH = cRCL + (l -c)R
BF,
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again with c = pk- But the Hovinen reserve

REH = PkqkUcL + (1 ~Pk)qkUo = qkUPk = RGB

is identical to the Benktander reserve.
We have already seen that the functions R(U) = qkUand U(R) = C* + R are

not inverse to each other except for U = UCL- In addition, Table 1 shows that
the further iteration of the methods of BF and GB for an arbitrary starting
point Uo finally leads to the chain ladder method.

We want to state this as a theorem:

Theorem 1. For an arbitrary starting point t/W — Uo, the iteration rule

R(m) = qkjj(m)

gives credibility mixtures

between BF and CL which start at BF and lead via GB finally to CL for m = oo.

TABLE 1

ITERATION OF BORNHUETTER/FEROUSON

Ultimate U(R) = Ck + R Connection Reserve R(U) = qkU

(1 - qk)UCL

ii r A-T> ^ ={\—qk)RcL +

R(m) =qkU
lm)

= UCL " >- R{tx) = RCL
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Walter Neuhaus (1992) analyzed the situation in a full Biihlmann/Straub
credibility framework (see section 6 for details) and compared the size of the
mean squared error mse{Rc) — E(RC - R) of

and the true reserve R = U - Ck = Cn - Q especially for

c = 0 (BF)
c = pk (GB, called PC-predictor by Neuhaus)
c = c* (optimal credibility reserve),

where c* G [0; 1] can be denned to be that c which minimizes mse(Rc). Neuhaus
did not include c = 1 (CL) explicitely into his analysis.

Neuhaus showed that the mean squared error of the Benktander reserve RGB

is almost as small as of the optimal credibility reserve Rc* except if pu is small
and c* is large at the same time (cf. Figures 1 and 2 in Neuhaus (1992)).
Moreover, he showed that the Benktander reserve RGB has a smaller mean
squared error than RBF whenever c* > pkj2 holds. This result is very plausible
because then c* is closer to c = pk than to c = 0.

In the following we include the CL into the analysis and consider the case
where Uo is not necessarily equal to E(U), i.e. consider the estimation error, too.
This seems to be more realistic as in Neuhaus (1992) where UQ — E(U) was
assumed. Instead of the credibility model used by Neuhaus, we introduce a less
demanding stochastic model in order to compare the precision of RBF, RCL and
RGB. We derive a formula for the standard error of RBF and RGB (and RCL)
and show how the parameters required can be estimated. A numerical example
is given in section 4. Moreover, there is a close connection to a paper by
Gogol (1993) which will be dealt with in section 5. Finally, the connection to the
credibility model is analyzed in section 6.

3. CALCULATION OF THE OPTIMAL CREDIBILITY FACTOR C* AND
OF THE MEAN SQUARED ERROR OF RC

In order to compare RBF, RCL and RGB, we use the mean squared error

mse{Rc) = E{RC - R)2

as criterion for the precision of the reserve estimate Rc (for a discussion see
section 5). Because

Rc = cRCL + (1 - c)RBF = c{RCL - RBF) + RBF

is linear in c, the mean squared error mse(Rc) is a quadratic function of c and
will therefore have a minimum.

In the following, we consider Uo to be an estimation function which is
independent from Ck, R, U and has expectation E(U0) — E(U) and variance
Var(Uo). Then we have
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Theorem 2. The optimal credibility factor c* which minimizes the mean squared
error mse(Rc) = E(RC — R)2 is given by

* _Pk_ Cov(Ck,R) + pkqkVar(U0)

° ~ qk Var(Ck) + p2
kVar(U0)

Proof

E(RC - R)2 = E[c(RCL ~ RBF) + RBF - R?

= c2E(RCL ~ RBF)2 - 2cE[(RCL - RBF){R - RBF)} + E(RBF - R)2.

0 = -Q-CE{,RC ~ R) = 2cE{RCL - RBF) - 2E[{RCL - RBF){R - RBF)}

yields

c* -„ E^RCL - RBF)(R ~ RBF)} _Pk E[(Ck -PkU0)(R -

E(RCL ~ RBF)2 9k E(Ck - pk Uo)
2

pk Cov(Ck-pkU0, R-qkU0) pk Cov(Ck,R) + pkqkVar{Uo)

qk Var(Ck-PkU0) qk Var(Ck) + p2
kVar(U0)

Here, we have used that E(Ck) = pkE(Uo) according to the definition of the
payout pattern (and therefore E(R) = qkE(Uo)). Q.E.D.

In order to estimate c*, we need a model for Var(Ck) and Cov(Ck,R). The
following model is not more than a slightly refined definition of the payout
pattern:

E{Ck/U\V)=Pk, (2)

Var(Ck/U\U)=pkqkp
2(U). (3)

The factor qk in (3) is necessary in order to secure that Var(Ck\U) —> 0 as k
approaches n. A similar argument holds for pk in case of very small values.
A parametric example is obtained if the ratio Ck/U, given U, has a
Beta(a^,t,a^)-distribution with a > 0; in this case j32(U) = (a + I)"1. Thus, in
the simple cases, /32(£/) depends neither on f/nor on k. If the variability of Ck/U
for high values of U is higher, then /32(U) — (U/Uo) • 01 is a reasonable
assumption.

From assumptions (2) and (3) and with a2(U) := U1j31(U) we gather

E(Ck\U)=PkU,

Var(Ck\U)=pkqka
2(U),

E(Ck)=PkE(U),

Var(Ck) = pkqkE(a2{U)) + P
2
kVar(U)

= PkE(a2(U)) +p2(Var(U)-E{a2(U))), (4)
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Cov(Ck, U) = Cov(E(Ck\U), U)=PkVar(U),

Cov(Ck,R) = Cov(Ck, U) - Var{Ck) = Pkqk(Var(U) - E(a2(U))), (5)

E(R) = E(U)-E(Ck)=qkE(U),
Var(R) = Var{U) - 2Cov(Ck, U) + Var(Ck)

= Var{V){\ - 2pk + p\) + pkqkE(a2(U))

= q2
kVar(U)+PkqkE(a2(U))

= qkE(a2(U)) + q\{Var(U) - E(a2(U))).

By inserting (4) and (5) into (1), we immediately obtain

Theorem 3. Under the assumptions of model (2)-(3), the optimal credibility
factor c* which minimizes mse(Rc) is given by

.=_Pk_- th t = E { a 2 ( U ) )
C + t [>

Some further straightforward calculations lead to

Theorem 4. Under the assumptions of model (2)-(3), we have the following
formulae for the mean squared error:

mse(RBF) = E(a2(U))qk(l+qk/t),

cL) = E(a2(U))qk/pk,

mse(Rc) = E{o^(U))l- + - + ^-^-Wk.

Proof

mse{RBF) = E{RBF ~ R? = Var{RBF - R) = Var{RBF) + Var(R)

= q2Var(U0) + q2
k(Var(U) - E(a2(U))) + qkE(a2(U))

= E(a2(U))(qk+q2/t),

mse{RCL) = E(RCL - R)2 = Var(RCL - R)

= Var(RCL) - 2Cov{RCL, R) + Var(R)

= q\ Var{Ck)/p
2
k - 2qkCov(Ck, R)/pk + Var(R)

= E(a2(U))qk/Pk,

mse(Rc) = E(cRCL + (1 - c)RBF - R)2

= E[c{RCL - R) + (1 - c)(RBF - R)}2

= c2mse(RCL) + 2c(l - c)E[{RCL - R)(RBF -R)] + (l- c)2mse(RBF),
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E[(RCL - R)(RBF - R)] = Cov{RCL - R, RBF - R)
= -Cov(RCL, R) + Var(R)
= Var(R)-qkCov(Ck,R)/pk

= qkE{a2(U)).

and putting all pieces together leads to the formula stated. Q.E.D.

An actuary who is able to assess pk — E(Ck/U\U) and UQ (i.e. E(UQ)) should
also be able to estimate Var(U0) and Var{Ck/U\U) or E(Var(Ck\U)) as well as
Var(U). Therefrom, he can deduce E(a2{U)) = E{Var{Ck\U))/(pkqk) - or
E(a2(U)) = Var{Ck/U\U)E(U2)/(j)kqk) if Var(Ck/U\U) does not depend on U
- and finally the parameter t. Then he has now a formula for the mean squared
error of the BF method and a very simple formula for the CL method (where / is
not needed) and can calculate the best estimate Rc* including its mean squared
error as well as the one of RGB.

Regarding the very simple formula for mse(RcL) we should note that this
formula deviates from the corresponding one (i.e. for the unconditional mean
squared error with known payout pattern) of the distribution-free chain ladder
model of Mack (1993). The reason is that the models underlying are slightly
different: Here we have

and the model of Mack (1993) can be written as

Ck J Pk

Using theorem 4, we now compare the mean squared errors of the different
methods in terms of pk and t. First, we have

mse{RBF) < mse(RcL) «=>• Pk < t,

i.e. we should use BF for the green years (pk < t) and CL for the rather mature
years (pk > t). This is very plausible and the author is aware that some
companies use this rule with / — 0.5. But the volatility measure t varies from one
business to the other and therefore the actuary should try to estimate t in every
single case as is shown in the next section.

Furthermore, we have

mse(RGB) < mse(RBF) <=> t < 2 -pk,
mse(RGB) < mse(RcL) <̂ => t > pkqk/{\ +pk),

i.e. GB is better than BF except t is very large and is better than CL except t is
very small, see Figure 1 where for each of the three areas it is indicated which of
BF, GB, CL is best. In the numerical example below, it will become clear that t is
almost always in the GB area.
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FIGURE 1: Areas of smallest mean squared error.

4. NUMERICAL EXAMPLE

Assume that the a priori expected ultimate claims ratio is 90% of the premium,
i.e. Uo = 90%. Assuming further pk = 0.50 for k = 3, we have RBF = 45% (all
% ages relate to the premium). Let the paid claims ratio be Ck = 55%, then
UCL = 110% and RCL = 55%. Taken together, we have RGB - 50%.

In order to calculate the standard errors, we have to assess Var(U), Var(Uo)
and E(a2(U)). For Var(U), we can use a consideration of the following type:
We assume that the ultimate claims ratio will never be below 60% and only once
every 20 years above 150%. Then, assuming a shifted lognormal distribution
with expectation 90%, we get Var(U) — (35%)2. This rather high variance is
typical for a reinsurance business or a small direct portfolio.

Regarding E(a2(U)), we consider here the special case where
(12(U) = (32 does not depend on U (e.g. using a Beta distribution), i.e.
E(a2(U))=E{U2)(32 = E(U2)Var{Ck/U\U)/(pkqk). Therefore, we have to
assess Var{Ck/U\U), i.e. the variability of the payment ratio Ck/U around its
mean pk. If we assume - e.g. by looking at the ratios Ck/U of past accident
years - that Ck/U will be almost always between 0.30 and 0.70, then -
using the two-sigma rule from the normal distribution - we have a
standard deviation of 0.10, i.e. Var(Ck/U\U) = 0.102, which leads to
01 = Var{Ck/U\V)/{pkqk) = 0.202 and E(a2{U)) = E(U2)(32 = 0.1932.

Finally, the most difficult task is to assess Var(Uo) but this has much less
influence on t than Var(U) (which is always larger) and E(a2(U)). Moreover, an
actuary who is able to establish a point estimate UQ should also be able to
estimate the uncertainty Var(Uo) of his point estimate. Thus, there will be a
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certain interval or range of values where the actuary takes his choice of t/0 from.
Then he can take this interval and use the two-sigma rule to produce the
standard deviation ^Var(Uo). Let us assume that in our example
Var(Uo) = (15%)2.

Now we can calculate t = 0.346 and all standard errors (= square root of the
estimated mean squared error) as well as the optimal credibility reserve Rc-:

= 45%±21.3%
RCL = 55% ± 19.3%
RGB = 50% ±17.3%
Rc, = 50.9% ± 17.2% with c* = 0.591.

Note that these standard errors are based on the wnconditional mean squared
error (cf. discussion in the next section) and on a known pattern {pj}- Including
the uncertainty of the pj will increase the standard error.

For the purpose of comparison, we look at a more stable business, too:
Assume that Var(U) = (10%)2, Var(U0) = (5%)2 and Var{Ck/U\U) = (O.O3)2.
Then, everything else being equal, we obtain (32 — 0.062, E(a2(U)) — 0.0542,
t = 0.309 and

RBF = 45% ± 6.2%
RCL = 55% ± 5.4%
RGB = 50% ± 4.9%
Rc, = 51.2% ± 4.9% with c* = 0.618.

In both cases, GB has a smaller mean squared error than BF and CL, and the
size of t has not changed much, because the relative sizes of the three variances
Var(U), Var(Uo), Var(Ck/U\U) are similar. A closer look at formula (6) shows
that the size of tis changed more if E(a2{U)) (i.e. Var(Ck/U\U)) is changed than
if Var(U) or Var(Uo) are changed. In the first example, for instance, we had
Var(Ck/U\U) = 0.102 and GB was better than CL and BF, If we change the
variability of the paid ratio to Var(Ck/U\U) > 0.1532, then t > 1.51 and BF is
better than GB and CL. If we change it to Var(Ck/U\U) < 0.0742, then
f < 0.164 and CL is better than GB and BF, see Figure 1. But in the large range
of normal values of Var{Ck/U\U), GB is better than CL and BF. Because
Var(Uo) is always smaller than Var(U), the size of t is essentially determined by
the ratio Var(Ck/U\U)/Var(U).
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5. APPLICATION OF AN EXACT BAYESIAN MODEL TO THE NUMERICAL EXAMPLE

If we make distributional assumptions for U and Ck\U, we can determine the
exact distribution of U\Ck according to Bayes' theorem. This was done by
Gogol (1993) who assumed that U and Ck\U have lognormal distributions
because then U\Ck has a lognormal distribution, too.

Applied to our first numerical example, this model is:

(/-Lognormal (n,a2) with E(U) = 90%, Var{U) = (35%)2,

Ck\U~ Lognormal (J/,T2) with E(Ck\U) = pkU, Var(Ck\U) = pkqkp
2U2

where 01 = 0.202 is as before, i.e. such that Var(Ck/U\U) = 0.102.
This yields

a2 = ln(l + Var(U)/(E(U))2) = 0.3752,

H = ln(E(U)) - a1 J2 = -0.176,

Then (see Gogol (1993)),

U\Ck ~ Lognormal (/j,\,a2)

with

Hi = Z(T2 + ]n(Ck/pk)) + (1 - z)/x = 0.067,

a\ = ZT2 = 0.1752,

z = a2/(a2+r2) = 0.782.

This yields (at Ck = 55%)

E{U\Ck) = exp(/i, +<72/2) = 108.6%,

E(R\Ck) = E(U\Ck) -Ck = 53.6%,

Var{R\Ck) = Var(U\Ck) = (£([/|Q))2(exp(<72) - l) -

If we compare this last result with the mean squared errors obtained in section 4,
we should recall that E{R\Ck) minimizes the conditional mean squared error

E({R - Rf\Ck) = Var{R\Ck) + (R- E(R\Ck)f

among all estimators R which are a square integrable function of Ck as well as it
minimizes the wnconditional mean squared error

E(R - R)2= E(Var(R\Ck)) + E(R - E(R\Ck)f

because the first term of the r.h.s. does not depend on R. But the resulting
minimum values Var(R\Ck) and E(Var(R\Ck)) are different.
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Basically, in claims reserving we should minimize the conditional mean
squared error, given Q , because we are only interested in the future
variability and because Ct remains a fixed part of the ultimate claims U.
But if E(R\Ck) is a linear function of Q (like Rc), this function can be
found by minimizing the unconditional (average) mean squared error. More-
over, the latter can often be calculated easier than the conditional mean
squared error as it is the case in model (2)-(3). The unconditional mean
squared error is the appropriate measure to compare the precision of different
reserving methods.

Altogether, it is clear that the mean squared errors calculated in section 4
are average (unconditional) mean squared errors, averaged over all possible
values of Q . Therefore, in order to make a fair comparison of the various
methods in our numerical example, we must calculate the unconditional mean
squared error E(Var(R\Ck)) in the Bayesian model, too.

For this purpose, we have to integrate Var(R\Ck) over Q and therefore
need the distribution of Q which we obtain by mixing the distributions of
QIC/and U:

Ck/pk ~ Lognormal (/x - T 2 /2 , a2 + T2),

exp(2z \n(Ck/pk)) ~ Lognormal (2z/x — ZT2, 4z2(a2 + r2)).

This yields

E(Var(R\Ck)) = £(exp(2/i1 + o?)(exp(<j?) - l))

= £(exp(2z \n{Ck/pk))) exp(3zr2 + 2(1 - z)/x) (exp(zr2) - l)

= exp(2/x + 2a1) (exp(zr2) - l)

This shows finally, that the exact Bayesian model on average has only a slightly
smaller mean squared error than the optimal credibility reserve R? and the
Benktander reserve RGB. But if we recall that, with the exact Bayesian
procedure, we assume to exactly know the distributional laws without any
estimation error, then the slight improvement in the mean squared error does
not pay for the strong assumptions made.

6. CONNECTION TO THE CREDIBILITY MODEL

Finally, we establish an interesting connection between the model (2)-(3) and the
credibility model used in Neuhaus (1992). There, the Buhlmann/Straub
credibility model was applied to the incremental losses and payouts: For
7 = 1 , ..., n (where n is such that pn — 1) let

mJ=pj-ph\
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be the incremental payout pattern and

Sj = Cj — Cj-\

be the incremental claims (with the convention p0 = 0 and Co = 0). Then the
Buhlmann/Straub credibility model makes the following assumptions:

S\\Q, ..., Sn\Q are independent, (7)

E(Sj/mj\G) = »(e), 1 <;<«, (8)

Var(Sj/mj\Q) = a2(Q)/mJ 1 <j < n, (9)

where 9 is the unknown distribution quality of the accident year. Assumption (7)
can be crucial in practise. Model (7)-(9) can be set up without refering to pj by
just requiring nij > 0 and m\ + ... + mn = 1. Then the following formulae still
hold using p^ :— m\ + ... + nik-

From (7)-(9) we obtain

Var{Ck\&) =

The latter formula shows, that the credibility model is different from
model (2)-(3) where we have Var{Ck\U) = PkQkO?{U), i.e. we do not have
Q=U.

In the credibility model (7)-(9) we obtain further

E{Ck) =PkE(ti(G)) =PkE{Cn) =PkE(U),

Var(Ck)=PkE(o2(e)) + p2
kVar(ii(G)), (10)

Cov(Ck, U) = E(Cov{Ck, Cfc|6)) + Cov(pkn{O),

Cov(Ck,R)=PkqkVar(v(Q)),

Var(R) = qkE(a2(Q))+q2
kVar(n(Q)).

If we compare these formulae with the corresponding formulae of model (2)-(3)
and take into account that here

Var(n(e)) = Var(U) - E(a2(Q))

holds (from (10) with k — n), then we see that these formulae are completely
identical if E(u2{U)) — E(a2(9)). This leads immediately to

Theorem 5. The formulae of theorems 3 and 4 hold for model (7)-(9), too, after
having replaced E(a2(U)) with £(o-2(9)).
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In the credibility model, a natural estimate of £(cr2(6)) can be established:
From

Var{Sj/mj\Q) =

and

_ . _ =UCL
j=\ mJ/ j=\

it follows that

is an unbiased estimator of E(a2 (6)). We can write

o2 =pks
2/(k- 1)

where

can be calculated easily as the my-weighted average of the squared deviations of
the observed ratios Sj/mj from their weighted mean UCL- Note that each 5,/w, is
an unbiased estimate of the expected ultimate claims E(U).

If in our numerical example in addition to p^ = 0.50 and C3 = 55% we have
/M=0.10, />2 = 0.30, Cx = 15%, C2 = 27%, then m,=0.10, m2 = 0.20,
w3 = 0.20, Si = 15%, S2 = 12%, S3 = 28%, and the ratios Si/AM, = 1.5,
S2/W2 = 0.6, S3/W3 = 1.4 have a variance s2 = 0.412. Then the estimate for
^ ( ^ ( e ) ) is a1 = 0.2052. With C\ = 10% and C2 = 30% we would get
a2 = 0.0612 indicating a more stable case.

Note that for the estimation of E{a2{U)) the observation of several accident
years is necessary. Anyhow, model (2)-(3) is less demanding than model (7)-(9).

7. CONCLUSION

In claims reserving, the actuary has usually two independent estimators RBF and
RCL, at his disposal: One is based on prior knowledge (I/o), the other is based on
the claims already paid (Q). It is a well-known lemma of Statistics that from
several independent and unbiased estimators one can form a better estimator
(i.e. with smaller variance) by putting them together via a linear combination.
From this general perspective, too, it is clear that the GB reserve should be
superior to BF or CL.

More precisely, the foregoing analysis has shown that GB has a smaller mean
squared error than BF and CL if the payout pattern is neither extremely volatile
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nor extremely stable. This conclusion is derived within a model whose
assumptions are nothing more than a precise definition of the term 'payout
pattern'. Therefore, actuaries should include the Benktander method in their
standard reserving methods.

Finally, we want to emphasize that all formulae derived rely on the
assumption that the prior estimate UQ and the observed claims C\ are
independent. This means that these formulae probably will not hold any more
for a 'prior' UQ which has been adjusted during the development period as it is
often done in practise. Such an adjustment is like choosing an Uc with an
unknown c and gives a procedure which is much less objective than the
Benktander method.
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