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A DISCRETE MULTIVARIATE DISTRIBUTION
RESULTING FROM THE LAW OF SMALL NUMBERS
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Abstract

In the present article we derive a new discrete multivariate distribution using a limiting
argument that is essentially the same as the law of small numbers. The distribution derived
belongs to an exponential family, and randomly partitions positive integers. The facts
shown about the distribution are useful in many fields of application involved with count
data. The derivation parallels that of the Ewens distribution from the gamma distribution,
and the new distribution is produced from the inverse Gaussian distribution. The method
employed is regarded as the discretization of an infinitely divisible distribution over
nonnegative real numbers.
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1. Introduction

In the following, R+ denotes the set of nonnegative real numbers, and N0 and N are
respectively the sets of nonnegative integers and positive integers.

Let us denote the set of all unordered partitions of a positive integer n by

Sn :=
{
sn := (s1, s2, . . . , sn) : si ∈ N0, i = 1, 2, . . . , n,

n∑
i=1

isi = n

}
.

For a random vector Sn := (S1, S2, . . . , Sn), the Ewens distribution is defined for θ > 0 as

P(Sn = sn) = θu

θ [n]
n!∏n

i=1 isi si ! , sn ∈ Sn,

where u = ∑n
i=1 si and θ [n] = θ(θ + 1) . . . (θ + n − 1). This distribution constitutes random

partitioning of a positive integer and has applications in many fields: genetics (Ewens (1972)),
ecology (Aoki (2000)), linguistics (Sibuya (1991)), and statistical disclosure control (Hoshino
(2001)), to name a few. See Chapter 41 of Johnson et al. (1997) for a review of this distribution.

A derivation of the Ewens distribution can be made in the following way. Suppose that
random variables F1, F2, . . . , FJ are independently and identically distributed according to the
negative binomial distribution. Let

Si :=
J∑

j=1

1(Fj = i), i ∈ N0,
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A discrete multivariate distribution 853

where 1(·) denotes the indicator function, and write S := (S1, S2, . . . ). Then S is multinomially
distributed and P(S = s) is defined over

S∞(J ) :=
{
s := (s1, s2, . . . ) : si ∈ N0, i = 1, 2, . . . ,

∞∑
i=1

si ≤ J

}
.

The total sum F1 + F2 + · · · + FJ is denoted by

N :=
∞∑
i=1

iSi . (1)

Then the conditional distribution of S given N becomes the negative multivariate hypergeo-
metric distribution or Dirichlet–multinomial mixture. Given that N = n, we have Si = 0 for
i > n. Hence, we consider P(Sn = sn | N = n), which is defined over

Sn(J ) :=
{
sn : si ∈ N0, i = 1, 2, . . . , n,

n∑
i=1

isi = n,

n∑
i=1

si ≤ J

}
.

Taking J → ∞, while the distribution of N remains unchanged, the limiting distribution of
the Dirichlet–multinomial distribution is the Ewens distribution.

Hoshino and Takemura (1998) pointed out that in this derivation the order of the conditioning
on N and the taking of the limit as J → ∞ is exchangeable. In the same way, we start from
independent, identically distributed Fj . However, first taking J → ∞, while the distribution
of N remains unchanged, the limiting distribution of S is Anscombe’s (1950) logarithmic series
model, in which each Si is independently Poisson distributed. Then, conditioning S on N , we
obtain the Ewens distribution. See Figure 1.

The above construction of the Ewens distribution can be regarded as a discretization of
the gamma distribution, because the negative binomial distribution is the Poisson distribution
mixed with the gamma distribution. Actually, any infinitely divisible distribution over R+ can
be discretized in the same way.

Let us denote the Poisson distribution with mean λ by Po(λ). If λ is distributed according
to a distribution over R+, we say that λ is mixed with this distribution, and E(Po(λ)) is a
mixed Poisson distribution. Mixing λ of Po(λ) with an infinitely divisible distribution over R+
results in an infinitely divisible distribution over N0 (see Steutel and van Harn (2004, p. 368));
any infinitely divisible distribution over N0 produces a random partitioning distribution by
the method based on Hoshino (2005). Summarizing the argument, we have the following
discretization.

Construction 1. By mixing λ of Po(λ) with an infinitely divisible distribution over R+ we
obtain an infinitely divisible distribution, say F , over N0. Let F1, F2, . . . , FJ be independent
and identically distributed with distribution F . Then the conditional distribution of S given
N = n converges in distribution to a random partitioning distribution of n as J → ∞, while
the distribution of N remains unchanged.

It might be noteworthy that the order of the conditioning and the taking of the limit is
exchangeable in Construction 1. For an infinitely divisible distribution Q over R+, let us
denote a random partitioning distribution generated in this way by D(Q). Denoting the gamma
distribution by Ga, the Ewens distribution is expressed as D(Ga).
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Figure 1: Relationships among distributions derived from the gamma–Poisson mixture.

The present article introduces D(IG), where IG denotes the inverse Gaussian distribution,
which is infinitely divisible over R+. The random partitioning distribution D(IG) seems new
and tractable. In particular, it belongs to an exponential family. Hence, it affords us a practical
tool to describe count data in the aforementioned fields.

The organization of the present article is as follows. In Section 2 we provide notation and
definitions of relevant distributions. In Section 3 we derive D(IG) and clarify its properties.
The effect of the limiting argument will turn out to be the same as that of the law of small
numbers. In Section 4 we discuss the parameter estimation of D(IG). In Section 5 we apply
D(IG) to a typical data set to exemplify the usefulness of the distribution.

2. Preliminary results

In the statistical literature, (S0, S1, . . . ) are called size indices (Sibuya (1993)) or frequencies
of frequencies (Good (1953)). In the following we denote the number of positive Fj by

U :=
∞∑
i=1

Si. (2)

This variate is of practical importance. For example, in ecology each Fj represents the number
of individuals of a species and U corresponds to the total number of observable species. See
Bunge and Fitzpatrick (1993) for a survey on the estimation of U . When N = n is given, we
write, in particular, Un := ∑n

i=1 Si, since Si has to be 0 for i ≥ n + 1.
Recall that u := ∑∞

i=1 si . Using this, define s0 := J − u.

From now on, we follow Construction 1 for the IG distribution. Mixing λ of Po(λ) with
the IG distribution, we have the inverse Gaussian–Poisson (IGP) distribution, which is well
reviewed in Chapter 7.1 of Seshadri (1999).

Assume that random variables Fj , j = 1, . . . , J , are independent and identically distributed
with an IGP distribution. Then, for θ, 0 < θ ≤ 1, and α > 0,

P(S = s) = J !
∞∏
i=0

{√
2α

π
exp(α

√
1 − θ)

(αθ/2)i

i! Ki−1/2(α)

}si 1

si ! , s ∈ S∞(J ), (3)

where Ki−1/2(·) is the modified Bessel function of the third kind, of order i − 1
2 .

Equations (4) to (6) are taken directly from Watson (1944, pp. 79–80) for convenience. The
argument of the modified Bessel function is always real and positive in the present article. We
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have

K−1/2(α) = K1/2(α) =
√

π

2
α−1/2 exp(−α) (4)

and

Ky−1/2(α) =
√

π

2α
exp(−α)

y−1∑
i=0

(y − 1 + i)!
(y − 1 − i)! i! (2α)−i , y ∈ N, (5)

which can be shown by the recurrence formula

Kγ+1(α) = 2γ

α
Kγ (α) + Kγ−1(α). (6)

Equation (5) can be expressed in another way, using the C-number C(n, l, z) that is defined
for any real (or, more generally, complex) numbers z and t by

(zt)(n) =
n∑

l=0

C(n, l, z)t(l), n ∈ N0,

where t (l) = t (t − 1) · · · (t − l + 1). See Charalambides and Singh (1988) for a comprehensive
review of the C-number. As evaluated by, e.g. Yamato et al. (2001, p. 25),

C(y, l, 1
2 ) = (−1)l−y (2y − l − 1)!

(l − 1)! (y − l)!
(

1

2

)2y−l

, l = 1, 2, . . . , y,

and, thus,

Ky−1/2(α) =
√

π

2α
exp(−α)

y∑
l=1

C(y, l, 1
2 )2y

(−1

α

)y−l

, y ∈ N. (7)

When the order of the function is large, Ismail (1977) showed an asymptotic formula using
which the computations become easy:

Kγ (α) ∼ 2γ γ γ exp(−γ )α−γ

√
π

2γ
as γ → ∞. (8)

As noted in Hoshino (2003), under (3) N is distributed as

P(N = n) =
√

2Jα

π
exp(Jα

√
1 − θ)

(Jαθ/2)n

n! Kn−1/2(Jα), n ∈ N0. (9)

Hence, the conditional distribution of S given N = n is, for α > 0,

P(Sn = sn | N = n)

=
(

2α

π

)(J−1)/2
J ! n!

J n+1/2Kn−1/2(Jα)

n∏
i=0

{
Ki−1/2(α)

i!
}si 1

si ! , sn ∈ Sn(J ), (10)

which is the conditional inverse Gaussian–Poisson (CIGP) distribution (Hoshino (2003)).
From (9) we note that the distribution of N remains unchanged as

J → ∞ and α → 0 such that Jα = µ > 0. (11)

This property is the key for the exchangeability between the conditioning and the taking of the
limit in the derivation of D(IG) in the next section.
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3. Main results

This section derives D(IG) and investigates its properties. The proofs of the theorems in
this section are all provided in Appendix A.

Theorem 1. By applying (11), the CIGP distribution (10) converges in distribution to

P(Sn = sn | N = n) =
√

π

2µ

n! exp(−µ)

µn−uKn−1/2(µ)

n∏
i=1

{
(2i − 3)!!

i!
}si 1

si ! , sn ∈ Sn, (12)

where (−1)!! = 1 and (2i − 3)!! = (2i − 3)(2i − 5) · · · 1.

The distribution (12) is referred to as D(IG) or the limiting CIGP (LCIGP) distribution. To
understand the meaning of the limiting argument (11), the following result is useful.

Theorem 2. By applying (11), the IGP model (3) converges in distribution to

P(S = s) =
∞∏
i=1

exp(−τ(i; µ, θ))τ (i; µ, θ)si

si ! , s ∈ N
∞
0 , (13)

where 0 < θ ≤ 1 and

τ(i; µ, θ) = µ

(
θ

2

)i
(2i − 3)!!

i! = µθi

2
√

π

�(i − 1/2)

�(i + 1)
, i ∈ N.

That is, each Si is independently distributed according to Po(τ (i; µ, θ)), i = 1, 2, . . . .
The conditional distribution of (13) given N = n is (12) and, conversely, the mixture of (12)

with the distribution of N , (9), results in (13).

Theorem 2 indicates that the effect of (11) is essentially that of the law of small numbers. In
(3), S is multinomially distributed and each marginal Si , except for S0, becomes independent
and Poisson distributed as J → ∞. In this limit, almost every Fj is 0 and the rare event of
having a positive Fj is described by the limiting distribution.

In (13), τ(i; µ, θ) is proportional to the following special case of the extended truncated
negative binomial distribution (Engen (1974)):

P(X = i) = 1

1 − √
1 − θ

θi(2i − 3)!!
2i i! , i ∈ N, 0 < θ ≤ 1. (14)

This is so because the IGP distribution is the compound Poisson distribution defined by (14).
A distribution over N is used to define the compound Poisson distribution, and the class of
compound Poisson distributions coincides with the class of infinitely divisible distributions
over N0; see Steutel and van Harn (2004, Theorem 3.2). Therefore, an infinitely divisible
distribution over N0 can be expressed as a compound Poisson distribution whose defining
distribution over N determines the limiting distribution of S in Construction 1; see Hoshino
(2005, Theorem 2.1).

Construction 1 for the IG distribution has been completed by Theorem 1 and Theorem 2. The
relationships derived are illustrated in Figure 2, which parallels Figure 1. Because Hoshino’s
(2005) discussion of Engen’s extended negative binomial model deals with (13) as a special
case, our attention henceforth centers upon (12), that is, D(IG).

To begin with, we point out that D(IG) does not belong to an existing class of random
partitioning distributions. Pitman (2003) discussed the discretization of an infinitely divisible
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Figure 2: Relationships among distributions derived from the IGP mixture.

distribution over R+. This method produces a random partitioning distribution called the
exchangeable partition probability function (EPPF). The Ewens distribution is the EPPF gen-
erated from the gamma distribution. However, the EPPF generated from the inverse Gaussian
distribution differs from D(IG). Hence, Construction 1 is a different discretization than
Pitman’s.

To confirm the difference, we note the partition structure (Kingman (1978)), where a given
partition of n elements results from the deletion of one element uniformly at random from
a partition of n + 1 elements. More precisely, a distribution that has the partition structure
satisfies, for n = 1, 2, . . . ,

P(S1 = s1, S2 = s2, . . . | N = n)

= P(S1 = s1 + 1, S2 = s2, . . . | N = n + 1)
s1 + 1

n + 1

+
n+1∑
r=2

P(S1 = s1, . . . , Sr−1 = sr−1 − 1, Sr = sr + 1, . . . | N = n + 1)
r(sr + 1)

n + 1
.

Every EPPF has this partition structure, and the Ewens distribution is an example of this
type. However, D(IG) contradicts this rule: for example, it is easy to verify that

P(S1 = 2, S2 = 0 | N = 2)

	= P(S1 = 3, S2 = 0, S3 = 0 | N = 3) + 2
3 P(S1 = 1, S2 = 1, S3 = 0 | N = 3)

under (12). Hence, Remark 1 is justified, and D(IG) is not the EPPF generated from the IG
distribution. The conditional distribution P(Sn = sn | N = n, Un = u) of (12) does coincide
with that of an EPPF, however.

Remark 1. The LCIGP distribution does not possess Kingman’s partition structure.

Although we have shown the difference in the partition structure, D(IG) is an analogue of
the Ewens distribution. Hence, it is natural to expect that the LCIGP distribution has properties
similar to those of the Ewens distribution. The following investigation will first show results
closely similar to Proposition 2.2 of Sibuya (1993), who considered the same limit of the Ewens
distribution as in Theorem 3.

Theorem 3. Let m be a finite, fixed positive integer. Suppose that Sn is distributed as in (12).
Then, as n → ∞, the limiting distribution of the first m components (S1, S2, . . . , Sm) is the
joint distribution of independent Po(τ (i; µ, 1)), i = 1, 2, . . . , m.
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In the limit as n → ∞, the difference between (12) and (13) is diminished in the lower tail
(i.e. S1, S2, . . . , Sm). Moreover, θ of (13) has to be unity in the limit, because a heavy upper
tail is required to describe an infinite number of individuals.

Next, using (5) we rewrite (12) as

P(Sn = sn | N = n)

= exp

(
u log µ − log

(
µn

n−1∑
i=0

(n − 1 + i)!
(n − 1 − i)! i! (2µ)−i

))
n!

n∏
i=1

{
(2i − 3)!!

i!
}si 1

si ! ,

which illustrates the following fact.

Remark 2. The LCIGP distribution belongs to an exponential family, and Un is its sufficient
statistic.

The Ewens distribution also belongs to an exponential family and has Un as its sufficient
statistic; see Sibuya (1991). It should be remembered that Un is an important variate in
applications. Therefore, a natural goal is to find the distribution of Un.

Theorem 4. Suppose that the size indices are distributed as in (12). Then

P(Un = v) =
√

π

2µ

exp(−µ)

Kn−1/2(µ)

(
1

2µ

)n−v
(2n − v − 1)!

(v − 1)! (n − v)! (15)

= 1∑n
l=1(−1/µ)n−lC(n, l, 1

2 )

(−1

µ

)n−v

C(n, v, 1
2 ), v = 1, 2, . . . , n. (16)

Let us regard Un as the number of urns and n as the number of balls. Considering the
process of increasing the number of balls, Sibuya (1993) noted that the Ewens distribution has
the following urn model implication:

PEwens(Un+1 = v) = PEwens(Un+1 = v | Un = v) PEwens(Un = v)

+ PEwens(Un+1 = v | Un = v − 1) PEwens(Un = v − 1).

Here the number of urns is increased by adding a new urn that contains one ball. If a ball is put
into an existing urn then the number of urns is unchanged. As regards the LCIGP distribution,
(6) leads to the recurrence formula:

P(Un+1 = v) = Kn−1/2(µ)

Kn+1−1/2(µ)

2n − 1

µ
P(Un = v) + Kn−1−1/2(µ)

Kn+1−1/2(µ)
P(Un−1 = v − 2),

which can be interpreted as

P(Un+1 = v) = P(Un+1 = v | Un = v) P(Un = v)

+ P(Un+1 = v | Un−1 = v − 2) P(Un−1 = v − 2). (17)

Equation (17) implies that the number of urns is increased by adding new two urns and two
balls. If one new ball added, it is put into an existing urn. Hence, it seems that the LCIGP
distribution is not constructed by a sequence of one-by-one addition of balls. This view is
consistent with Remark 1.

The moments of Un are functions of the moments of the size indices, since Un = ∑n
i=1 Si .

The joint factorial moments of size indices, which are vital in practice, are given in the next
theorem.
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Table 1: Expectations of size indices, for N = 1000 (see Theorem 5).

µ E(S1) E(S2) E(S3) E(S4) E(S5)

0.1 0.05 0.01 0.01 0.00 0.00
1.0 0.50 0.13 0.06 0.04 0.03

10.0 5.01 1.25 0.63 0.39 0.28
100.0 49.95 12.47 6.23 3.89 2.72
300.0 146.98 85.93 17.64 10.80 7.41
500.0 236.37 55.87 26.41 15.60 10.32
700.0 315.59 71.13 32.05 18.05 11.39
900.0 384.13 81.95 34.96 18.64 11.12

10 000.0 905.08 40.92 3.70 0.42 0.05

Theorem 5. Suppose that the size indices are distributed as in (12). Then, for all r1, . . . , rn ∈
N0 such that R := ∑n

i=1 iri ≤ n, the factorial moments are

E

( n∏
i=1

S
(ri )
i

)
= Kn−R−1/2(µ)µr−Rn!

Kn−1/2(µ)(n − R)!
n∏

i=1

(
(2i − 3)!!

i!
)ri

, (18)

where r = ∑n
i=1 ri .

In particular,

E(Si) = Kn−i−1/2(µ)µ1−i (2i − 3)!! n!
Kn−1/2(µ)i! (n − i)! , i = 1, 2, . . . , n. (19)

Table 1 summarizes values of E(Si) for i = 1, 2, . . . , 5 and various parameter values, given
that N = 1000. Because E(Un) = ∑n

i=1 E(Si), the following proposition follows from (19).
Higher moments of Un can be obtained in an analogous way.

Proposition 1. Suppose that a random variable Un is distributed as in (15). Then its expecta-
tion is

E(Un) = n!
Kn−1/2(µ)

n∑
i=1

Kn−i−1/2(µ)µ1−i (2i − 3)!!
i! (n − i)! .

The moments shown become simple as n → ∞, because the limiting distribution of a size
index is Poisson, by Theorem 3. Also, the limiting distribution of Un can be shown to be shifted
Poisson, as follows.

Theorem 6. Suppose that Un is subject to (15). Then, as n → ∞, Un converges in distribution
to 1 + X, where X is Poisson distributed with mean µ.

4. Parameter estimation

This section deals with the parameter estimation of the LCIGP distribution. After construct-
ing the maximum likelihood estimation, we consider an approximate moment estimator.

The loglikelihood of (12) is denoted by

L(µ) = −µ − (n − u + 1
2 ) log µ − log Kn−1/2(µ) + const.
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In the following we will use the notation Rγ (α) = Kγ+1(α)/Kγ (α). As given by Seshadri
(1999, p. 125) for instance, we have

∂ log Kγ (α)

∂α
= −Rγ (α) + γ

α
.

The first derivative of L,

dL

dµ
= −1 − (2n − u)

1

µ
+ Rn−1/2(µ),

is hence easy to calculate. The maximum likelihood estimator is the unique solution to dL/dµ =
0; Remark 1 justifies the claim of uniqueness, based on the property of the exponential family
discussed, for example, by Lehmann (1991, p. 417).

A numerical method is required to solve the likelihood equation. The second derivative,

d2L

dµ2 = R2
n−1/2(µ) − 2n

µ
Rn−1/2(µ) + (2n − u)

1

µ2 − 1,

enables us to employ the fast convergent iteration of the Newton–Raphson method.
A moment estimator is also useful, to obtain the starting value of the iteration procedure, but

an exact one is inconvenient to compute because of the modified Bessel function. Therefore,
we use an approximate estimator. Under distribution (13), E(U) = µ(1 − √

1 − θ) and
θ = 4 E(S2)/ E(S1). By substituting the latter equation into the former, we have

µ = E(U)

1 − √
1 − 4 E(S2)/ E(S1)

,

which leads to the following approximate moment estimator:

µ̃ = U

1 − √
1 − 4S2/S1

. (20)

However, 1 − 4s2/s1 can be negative. In such a situation, it may be possible to use u as an
estimate of µ.

Asymptotically, as n → ∞, the parameter estimation becomes easy according to Theorem 6:
the estimate of µ should be u − 1 when n is sufficiently large.

5. An application result

In this section we demonstrate the applicability of the LCIGP distribution by fitting it to the
frequency data of South and Edelsten (1939). The same data were analyzed by Engen (1978,
p. 109).

The data describe frequencies of genera with different numbers of species in British macro-
lepidoptera, excluding butterflies. The total number of genera, u, is 357, and the total number of
species, n, is 756. The parameter µ of the LCIGP distribution is estimated, using the maximum
likelihood estimator, to be µ̂ = 514.982 and, using the approximate estimator (20), to be
µ̃ = 578.306. Under the maximum likelihood estimate, the expectations of size indices are
tabulated in the fourth column of Table 2. The first column corresponds to ‘i’ of E(Si), and
the second column contains the observed size indices. For comparison, the Ewens distribution
is also fitted using maximum likelihood estimation and summarized in the third column; see,
e.g. Hoshino and Takemura (1998) for details of the fitting of the Ewens distribution.

In this example, the fit of the Ewens distribution is not satisfactory, but the LCIGP distribution
is a reasonable fit, and thus broadens the scope of count data modeling.
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Table 2: Frequencies of genera with different number of species.

Species per Observed Ewens’ LCIGP
genus size indices distribution distribution

1 239 195.69 233.39
2 51 72.59 52.87
3 25 35.89 23.95
4 12 19.96 13.56
5 8 11.83 8.59
6 3 7.30 5.84
7 4 4.64 4.15
8 3 3.00 3.05
9 2 1.98 2.30

10+ 10 4.13 9.30

Appendix A.

Theorem 1 and 2 are actually special cases of Hoshino (2005, Propositions 2.2 and 2.1).
However, analytical proofs are provided here to support the general argument in Hoshino
(2005).

Proof of Theorem 1. In the following, the probability function (10) is shown to converge to
(12). Let us rewrite the right-hand side of (10) as C1 × C2 × C3, where

C1 = J !
(J − u)! Ju

, C2 = n!
Kn−1/2(µ)

n∏
i=1

(
1

i!
)si 1

si ! ,

C3 =
(

1

J

)n−u+1/2(√
π

2α

)1−u

exp(−µ + αu)

n∏
i=1

Ki−1/2(α)si .

Because C1 → 1 as J → ∞, it suffices to show that C2 × C3 converges to the desired limit.

As stated in Jørgensen (1982, p. 171), for γ > 0 we have

Kγ (α) ∼ �(γ )2γ−1α−γ (21)

as α → 0. Using this result, as α → 0 we have

n∏
i=1

Ki−1/2(α)si ∼ 2n−3u/2αu/2−n
n∏

i=1

�

(
i − 1

2

)si

= 2n−3u/2αu/2−n
n∏

i=1

(21−i
√

π(2i − 3)!!)si

= 2−u/2(
√

π)uαu/2−n
n∏

i=1

{(2i − 3)!!}si
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by (1) and (2). Therefore, by (11),

C3 ∼
√

π

2

(
1

J

)n−u+1/2

αu−n−1/2 exp(−µ + αu)

n∏
i=1

{(2i − 3)!!}si

→
√

π

2

(
1

µ

)n−u+1/2

exp(−µ)

n∏
i=1

{(2i − 3)!!}si .

Multiplying this limit by C2 completes the proof.

Proof of Theorem 2. We will obtain the required convergence in distribution by showing
that the probability generating function (PGF) of size indices converges to the PGF of the joint
distribution of independent Poisson variables.

First we derive the PGF, G(z1, z2, . . . , zl), of the joint distribution of (S1, S2, . . . , Sl) under
(3). Let us denote the PGF for J = 1 by

G1(z1, z2, . . . , zl) = E

( l∏
i=1

z
Si

i

)

=
l∑

i=1

(zi − 1) P(F1 = i) + 1

=
l∑

i=1

(zi − 1)

√
2α

π
exp(α

√
1 − α)

(αθ/2)i

i! Ki−1/2(α) + 1.

By the independence of the Fj , the PGF for a general J is expressed as G(z1, z2, . . . , zl) =
G1(z1, z2, . . . , zl)

J . Now we consider the limit as J → ∞, for Jα = µ. Using (21) we obtain

[ l∑
i=1

(zi − 1)

√
2α

π
exp(α

√
1 − α)

(αθ/2)i

i! Ki−1/2(α) + 1

]J

→
[

1 + 1

J
J

l∑
i=1

(zi − 1)

√
2α

π

(αθ/2)i

i! �(i − 1
2 )2i−3/2α−i+1/2

]J

→ exp

( l∑
i=1

(zi − 1)µ

(
θ

2

)i
(2i − 3)!!

i!
)

= exp

( l∑
i=1

(zi − 1)τ (i; µ, θ)

)
. (22)

Equation (22) coincides with the PGF of the joint distribution of independent Poisson variables
Si, i = 1, 2, . . . , l, with mean E(Si) = τ(i; µ, θ). This argument holds for any l ∈ N, and the
sequence of the joint distribution of (S1, S2, . . . , Sl) determines the limiting distribution of S

as l → ∞.
The distribution of N under (13) is that of the IGP model. Hence, the conditional distribution

of (13) given N is the result of dividing (13) by (9), which equals (12) using (1) and (2).
Conversely, (12) multiplied by (9) is (13).
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Proof of Theorem 3. Following Sibuya (1993), we adopt the method of moments to show
the required convergence in distribution; this proof depends on the joint factorial moments in
(18), which equation will be proved below. Assuming that (18) is correct, the components have
the joint factorial moments

M(r1, r2, . . . , rm) = Kn−R−1/2(µ)µr−Rn!
Kn−1/2(µ)(N − R)!

m∏
i=1

(
(2i − 3)!!

i!
)ri

.

From (8), as n → ∞ we have

M(r1, r2, . . . , rm) → 2−R

(
1 − R

n − 1/2

)n−R−1/2 1

(n − 1/2)R
exp(R)

×
√

2n − 1

2n − R − 1
µr n!

(n − R)!
m∏

i=1

(
(2i − 3)!!

i!
)ri

→
m∏

i=1

{τ(i; µ, 1)}ri

< ∞.

The rth factorial moment of Po(τ (i; µ, 1)) is τ(i; µ, 1)r . Hence, it is observable that
M(r1, r2, . . . , rm) converges to the joint factorial moments of Po(τ (i; µ, 1)), i = 1, 2, . . . , m,

for any (r1, r2, . . . , rm). Consequently, we have proved the theorem.

Proof of Theorem 4. From definition (12),

Kn−1/2(µ) P(Un = v) =
∑

s1+···+sn=v

√
π

2µ

n! exp(−µ)

µn−v

n∏
i=1

{
(2i − 3)!!

i!
}si 1

si ! .

Thus, using (5), we obtain

(n−1∑
i=0

(n − 1 + i)!
(n − 1 − i)! i! (2µ)−i

)
P(Un = v) =

∑
s1+···+sn=v

n!
µn−v

n∏
i=1

{
(2i − 3)!!

i!
}si 1

si ! .

Because
∑n

v=1 P(Un = v) = 1, we have

n−1∑
i=0

(n − 1 + i)!
(n − 1 − i)! i! (2µ)−i =

n∑
v=1

∑
s1+···+sn=v

n!
µn−v

n∏
i=1

{
(2i − 3)!!

i!
}si 1

si ! .

By comparing the coefficients of µ on the left- and right-hand sides of this equation, we have

∑
s1+···+sn=v

n!
{

(2i − 3)!!
i!

}si 1

si ! = (n − 1 + n − v)!
(n − 1 − n + v)! (n − v)!2v−n,

which leads to (15).
The above proof depends on the fact that the sum of probabilities is unity, but Professor

H. Yamato has suggested a direct derivation of P(Un). The following proof implies that (12)
has the same probability of partitioning n given Un as does a special case of Pitman’s (1995)
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sampling formula; see Hoshino (2005) for further discussion. Equation (7) results in another
expression for (12):

P(Sn = sn | N = n) = n! µu−n∑n
l=1 C(n, l, 1

2 )2n(−1/µ)n−l

n∏
i=1

{
(2i − 3)!!

i!
}si 1

si ! .

Because

(2i − 3)!! = 2i (−1)i−1
( 1

2
i

)
i!,

the distribution can be further rewritten as

P(Sn = sn | N = n) = n!∑n
l=1 C(n, l, 1

2 )(−1/µ)n−l

(−1

µ

)n−u n∏
i=1

{( 1
2
i

)}si 1

si ! .

Charalambides and Singh (1988, Equation 3.24) noted that

∑
s1+s2+···+sn=u

n!
n∏

i=1

( 1
2
i

)si 1

si ! = C(n, u, 1
2 ).

Substituting this into the previous equation leads to (16).

Proof of Theorem 5. We can prove (18) using the fact that
∑

sn∈Sn
P(Sn = sn) = 1, as

follows:

E

( N∏
i=1

S
(ri )
i

)
=

∑
sn∈Sn

√
π

2µ

n! exp(−µ)

µn−uKn−1/2(µ)

n∏
i=1

{
(2i − 3)!!

i!
}si−ri 1

(si − ri)!
{

(2i − 3)!!
i!

}ri

= n! µr−RKn−R−1/2(µ)

(n − R)! Kn−1/2(µ)

∑
sn∈Sn

√
π

2µ

(n − R)! exp(−µ)

µn−R−(u−r)Kn−R−1/2(µ)

×
n∏

i=1

{
(2i − 3)!!

i!
}si−ri 1

(si − ri)!
{

(2i − 3)!!
i!

}ri

= n! µr−RKn−R−1/2(µ)

(n − R)! Kn−1/2(µ)

n∏
i=1

{
(2i − 3)!!

i!
}ri

×
∑

sn−R∈Sn−R

√
π

2µ

(n − R)! exp(−µ)

µn−R−uKn−R−1/2(µ)

n∏
i=1

{
(2i − 3)!!

i!
}si 1

si !

= n! µr−RKn−R−1/2(µ)

(n − R)! Kn−1/2(µ)

n∏
i=1

{
(2i − 3)!!

i!
}ri

.

Remark 3. Given the result in (19), the relation
∑n

i=1 i E(Si) = n is tantamount to the
following recurrence formula:

Kn−1/2(µ) =
n∑

i=1

Kn−i−1/2(µ)µ1−i (2i − 3)!! (n − 1)!
(i − 1)! (n − i)! .
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Proof of Theorem 6. We show that the PGF of Un converges to that of 1 + Po(µ). Since the
distribution of Un is given by (15), its PGF is evaluated as

E(zUn) = zn

√
π

2µ

exp(−µ)

Kn−1/2(µ)

n∑
v=1

(
1

2µz

)n−v
(2n − v − 1)!

(v − 1)! (n − v)!

= zn

√
π

2µ

exp(−µ)

Kn−1/2(µ)

√
2µz

π

Kn−1/2(µz)

exp(−µz)

= zn+1/2 exp(µ(z − 1))
Kn−1/2(µz)

Kn−1/2(µ)
,

using the fact that
∑n

v=1 P(Un = v) = 1. Then, from (8), Kn−1/2(µz)/Kn−1/2(µ) ∼ z−n+1/2

as n → ∞. Hence the limit of the PGF is z exp(µ(z − 1)).
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