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Abstract

Let K = Q(w) with  the root of a degree n monic irreducible polynomial f € Z[X]. We show that
the degree n polynomial N (Zl'.:lk x;w'~1) in n — k variables takes the expected asymptotic number
of prime values if n > 4k. In the special case K = Q(/0), we show that N (Z:’;lk x;~/0i-1) takes
infinitely many prime values, provided n > 22k /7.

Our proof relies on using suitable ‘“Type I and ‘Type II’ estimates in Harman’s sieve, which are
established in a similar overall manner to the previous work of Friedlander and Iwaniec on prime
values of X2 + Y* and of Heath-Brown on X?* + 2¥3. Our proof ultimately relies on employing
explicit elementary estimates from the geometry of numbers and algebraic geometry to control the
number of highly skewed lattices appearing in our final estimates.

2010 Mathematics Subject Classification: 11NO5 (primary); 11N35, 11N32 (secondary)

1. Introduction

It is believed that any integer polynomial satisfying some simple necessary
conditions should represent infinitely many primes. Specifically, we have the
following quantitative strengthening of Bunyakovsky’s conjecture, which is the
Bateman—Horn conjecture [1] in the special case of one polynomial.

CONIJECTURE. Let f € Z[X] be an irreducible polynomial of degree d with
positive leading coefficient and no fixed prime divisor. Then we have

. x x
#1 <a<x: fla)prime} = Gfdlogx +”f(logx)’
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cnf-2) ()

p
ve(p) =#1<a<p: f(a)=0(mod p)}.

where

It follows from a classical result of Kronecker (or the later Frobenius or
Chebotarev density theorems) that the infinite product & ; converges to a positive
constant.

Unfortunately, no case of the above conjecture is known other than when f
is linear, and the problem seems to be well beyond the current techniques. A
nonlinear polynomial f represents O (x!/?) integers less than x, and there are
essentially no examples of sets containing O (x'/?) integers less than x which
contain infinitely many primes (beyond artificial examples). (The seemingly
simpler problem of showing the existence of a prime in the short interval [x,
x + x'/?], for example, is not known even under the assumption of the Riemann
hypothesis.) Thus, the sparsity of the set of values of f presents a major obstacle.

As an approximation to the conjecture, one can look at polynomials f € Z[X,,
..., X,] in multiple variables, so the resulting sets are less sparse. If the number
of variables is sufficiently large (relative to other measures of the complexity
of f), then, in principle, the Hardy-Littlewood circle method can be used to
show that every integer satisfying necessary local conditions is represented
by f. It follows from the seminal work of Birch [2], for example, that any
homogeneous nonsingular f € Z[X}, ..., X,] of degree d with no fixed prime
divisor represents infinitely many prime values, provided n > (d — 1)24.

When the number of variables is not larger than the degree, only a few
polynomials are known to represent infinitely many primes, and these tend to
have extra algebraic structure. Iwaniec [17] has shown that any suitable binary
quadratic polynomial represents infinitely many primes. If K/Q is a number
field with an Z-basis {Bi, ..., B,} of Ok, then the norm form Nk, (X,B +
<o+ X, B, € Z[Xy, ..., X,] is a degree n polynomial in n variables, which
represents infinitely many primes, since every degree 1 principal prime ideal of
K gives rise to a prime value of Nk q.

The groundbreaking work of Friedlander—Iwaniec [8] shows that the
polynomial X7 + X; takes the expected number of prime values. Along
with the work of Heath-Brown [13] on X 13 +2X ; (and its generalizations due to
Heath-Brown and Moroz [16], [15] and the recent work of Heath-Brown-Li [14]
on X2 + p*), these are the only known examples of a set of polynomial values
containing O (x¢) elements less than x (for some constant ¢ < 1) which contain
infinitely many prime values. A key feature in the proofs are the fact that these
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polynomials are closely related to norm forms; Nggy,0(X1 + X3i) = X7 + X5
and Ny y3,0(X1 + X ,W/2) = X} 4+ 2X3. This allows the structure of the prime
factorization in the number field to be combined with bilinear techniques to
count primes in these cases.

The paper of Heath-Brown [13] suggested that one might hope to utilize
similar techniques when considering higher degree norm forms with appropriate
variables set equal to zero. We address this problem in this paper, thereby giving
further examples of thin polynomials which represent infinitely many primes.

THEOREM 1.1. Let n, k be positive integers. Let f € Z[X] be a monic
irreducible polynomial of degree n with root w € C. Let K = Q(w) be the
corresponding number field of degree n, and let Ny € Z[ X, ..., X,_;] be the
‘incomplete norm form’

n—k
NK(a) = NK(al’ .. ,an,k) = NK/Q(Zaiwi_]>.
i=1

Ifn > 4k, then as X — oo, we have
n—k

log X’

#{a e [1, X]"™ : Ng(a) prime} = (& + o(l))n

where

) (-5)

G = 1—=) .

H( p

v(ip) =#{1<a,...,a,_x < p: Ng(a =0 (mod p)}.

All implied constants depend only on w and are effectively computable.

THEOREM 1.2. Let n, k be positive integers. Let f(X) = X" —0 € Z[X] be
irreducible, K = Q(«/0) and Ng (a) = Nko(Qoi, a,V@i—‘), as in Theorem 1.1
in the case f(X) = X" — 0.

Ifn > 22k /7 and X is sufficiently large, then

n—k

log X~

#Ha e [1, X]"™ : Nx(a) prime} > &

All implied constants depend only on 6 and are effectively computable, and S is
the constant defined in Theorem 1.1.
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A sieve upper bound shows #{a € [1, X]"7* : Ng(a) prime} < GX"*/log X,
and so the lower bound in Theorem 1.2 is of the correct order of magnitude. We
note 22/7 =3.14... < 4.

Theorems 1.1 and 1.2 give examples of sets of polynomial values containing
roughly x!7*/" elements less than x which contain many primes. We obtain an
asymptotic for the number of primes in the sets of Theorem 1.1 which contain
>>x*/* values less than x, and a lower bound of the correct order of magnitude for
the sets of Theorem 1.2 which contain >>x'%/?? elements. By way of comparison,
the Friedlander-Iwaniec polynomial X7 + X3 takes roughly x*/* values less than
x, which is at the limit of the range for asymptotic estimates in Theorem 1.1,
whilst Heath-Brown’s polynomial X; + 2X; takes roughly x> values less than
x, which is thinner than the sets considered in Theorem 1.1 or Theorem 1.2.

By virtue of being homogeneous, the algebraic structure of the polynomials
considered in Theorems 1.1 and 1.2 are simpler in some key aspects to the
Friedlander—Iwaniec polynomial X? + X3; much of the paper [8] is spent
employing sophisticated techniques to handle sums twisted by a quadratic
character caused by the nonhomogeneity. In our situation, the key multiplicative
machinery is instead just a Siegel-Walfisz-type estimate for Hecke L-functions.
(The fact that n > 3k means that characters of large conductor do not play a
role, and so we do not even require a large sieve type estimate as in [13].) On
the other hand, the fact that we consider polynomials in an arbitrary number of
variables and with multiple coordinates of the norm form set to O introduces
different complications of a geometric nature. It is handling such issues, which
is the key innovation of this paper. In particular, if just one coefficient were set
equal to zero, then the result would follow from an adaption of the paper of
Heath-Brown. Thus, the fact that we are able to take a moderately large positive
proportion of the coefficients to be equal to zero should be viewed as the key
feature of Theorem 1.1.

Unlike the previous estimates, the implied constants in Theorems 1.1 and 1.2
are effectively computable. This is a by-product of the fact that we explicitly treat
the contribution of a possible exceptional quadratic character in order to be able
to utilize a Siegel-Walfisz-type estimate in a slightly wider range of uniformity
of conductor. This extra range of uniformity enables us to restrict ourselves to
simpler algebraic estimates.

In view of the results of Friedlander—Iwaniec and Heath-Brown, the
restrictions of n > 4k and n > 22k/7 in Theorems 1.1 and 1.2 might seem
unnatural at first sight, but it turns out that these are natural barriers to any
simple argument used to establish ‘Type I’ and ‘Type II’ estimates. If one simply
bounds the naturally occurring error terms by their absolute values without
showing genuine cancellations, then one can only hope to obtain ‘Type I’ and
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“Type II’ estimates in certain restricted ranges depending on the density of
the sequence. Heath-Brown [13] obtains an asymptotic in a sparser sequence
precisely because he is able to treat the error terms arising in a nontrivial manner.
We discuss this further in Section 11.

With more care, one could give a quantitative bound to the o(1) error term
appearing in Theorem 1.1.

2. OQutline of the proof

In the interest of clarity, we prove Theorems 1.1 and 1.2 together in the case
of K = Q(/6) in Sections 5-11, and then in Section 12, we sketch the few
modifications to the argument required to obtain Theorem 1.1 in the general
case of K = Q(w).

We now give a broad outline of the key steps in the proof; what we say here
should be thought of as a heuristic motivation and not interpreted precisely.

Given a small quantity ; > 0 and large quantities X; of size about X, we let

o ={aeZ"": a €[X:, Xi + mXi1}.

We establish a suitable estimate for the number of times Ng(a) is prime for
a € o for each of these smaller sets individually. For each a € <7, there is a
principal ideal (Z::lk a;~/0'=") with the same norm. Provided all elements of .o/
have norm of size > X" (as will be the case for typical choices of the X;) and
provided 7, is sufficiently small, this ideal is unique (since units are a discrete
group in K). Thus, we wish to count the number of degree 1 prime ideals in
A = {(Z;’;lk a;~/0'-1) . a € &/}, and so we can use the unique factorization of
ideals in K.

In Section 6, we apply a combinatorial decomposition to 2l based on
Buchstab’s identity and Harman’s sieve [11]. In the case when n > 4k, this
takes the simple form

#{prime ideals in 2} = #{a € 2 with no prime factor of norm < X" %%}

— Z #{a € 2 with p the factor of smallest normj}.

Xxn—3k—4e <N(p) < Xn/2+2€

The point of this decomposition is that we will be able to appropriately
estimate terms when every ideal counted has a factor whose norm is in the
interval [X**+¢, X"=2~<]  This is clearly the case with the second term on the
right-hand side above. The first term can be repeatedly decomposed by further
Buchstab iterations so that all terms count ideals with a prime factor of norm in

https://doi.org/10.1017/fmp.2019.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2019.8

J. Maynard 6

the interval [R, RX"~3*~%] (for any suitable choice of R) or simply count the
number of ideals in 7 which are a multiple of some divisor .

Thus, it suffices to obtain suitable asymptotic estimates (at least on average)
for the number of ideals in 2 which are a multiple of some ideal ? or the number
of ideals in 2l with a particular type of prime factorization whenever this prime
factorization ensures the existence of a conveniently sized factor. These estimates
are the so-called “Type I’ (linear) and ‘Type II’ (bilinear) estimates which provide
the key arithmetic content.

Our Type I estimate of Section 7 states that

2

N(@@)€[D,2D]

0)#2A
p(0) <

Xn—k—lDl/(n—kH-e + D
N() ’

#{laeA: 0la} —

where p is the function defined by

_#x e [LN@I" o xiV/0i )
- N@y+! :

p(0)

This allows us to accurately count the number of ideals in 2 which are a multiple
of an ideal of norm O(X"~*¢) on average. Since #A ~ X"~*, we see that this
range is essentially best possible.

Ifo = (3_/_, d;/6i-1) is a principal ideal in Z[/8] and if Z[/8] = Ok, then
we see that the number of ideals a = ¢d in 2 which are a multiple of 0 is given
by

n—k n
#:e /iR Zei\/" 9i-1 x Zd,-\/" 9i-1 e JZ/}
i=1 i=1
={ecZ" :d" -ec[X;, X; +mX;1fori <n—k,d?-e=0fori >n—kj,

where d is the ith row in the multiplication-by-Y__, d;~/0~" matrix with
respect to the basis {~/0'~'},<;<,. But this is counting vectors in the lattice
defined by d”-e = 0 for i > n—k in the bounded region defined by d-e € [X;,
X;+n1X;] fori < n—k. By estimates from the geometry of numbers, the number
of such points is approximately the volume of the bounded region divided by
the lattice discriminant, provided the lattice and the bounded region are not
too skewed. Our Type I estimate then follows from showing that the number
of skewed lattices is rare. (Small technical modifications are made to deal with 0
in other ideal classes and if Z[</6] # Ok.)

The argument then relies on establishing a suitable Type II estimate, which is
the main part of the paper. Given integers £’ < £ and a polytope R < R’ such
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that any e € R has e; > € for all i and k + € < Zf;lei <n-—2k—e¢€,our
Type II estimate obtains an asymptotic for the sum

> 1r (),

aeA

where

1, a=9Pp...P, N(pi):Xei,(E],...,EK)GR,

1z(a) =
®(@) 0, otherwise.

This sum counts ideals in 2 with a given number of prime factors each of a given
size, and the condition that k + ¢ < Zf: e < n— 2k — e implies that a has a
‘conveniently sized’ ideal factor. By performing a decomposition to R, we may
assume that R = R x R, for two polytopes R, R, with R, corresponding to
the conveniently sized factor. We are left to estimate the bilinear sum

> 1g, (@)1g, (b).

abeA

We estimate this sum using a combination of L' and L? bounds. We introduce
an approximation iRz(b) to 1z, (b), which is a sieve weight designed to have
the same distributional properties as 1%,(b). The sums ) . o 1%, (a)iRQ(b)
can then be estimated using our Type I estimates, and they give the expected
asymptotic.

To show that the error in this approximation is small, we use Linnik’s
dispersion method to exploit the bilinear structure. By Cauchy—Schwarz and
using 1z, (a) < 1, we are left to bound

2

a

2
> (g, (b) — 1x, (b)) .

biabeA

Writing g, = 1%, (b) — iRz(b), expanding the square and swapping the order of
summation, we are left to estimate

> gegn Y. L

a
b1.b2 bia,brae

If by, b, are both principal and a = (}_/_, a;v/0'~") for some a = (ay, ..., a,) €
7", then each condition ab; € 2l and ab, € 2 imposes k linear constraints on
a (with coefficients of these linear constraints depending on the coefficients of
the b;). For generic b, b,, these constraints are linearly independent, and so a
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will be constrained to lie in a bounded region in a rank n — 2k lattice. Using the
geometry of numbers again, the number of such a is roughly the volume of the
region divided by the lattice discriminant, provided neither are too skewed. An
iterative argument shows that the number of skewed lattices here is acceptably
small.

To finish the estimate, we have to show suitable cancellation in the sum

’

Z 86,80, VOI(%bl,bz)
b1.b det(Abl,bz)

where %y, 5, and Ag, p, are the bounded region and lattice which a was
constrained to. The volume of the bounded region is continuous and so plays
a minor role. More significant complications occur in showing that those b, b,
for which det(Ayp, p,) is small make a negligible contribution.

The determinant can be small if a certain vector of polynomials in the
coefficients of by, b, is small in either the Euclidean metric or a p-adic metric.
To show that this is only rarely the case, we obtain a (sharp) bound on the
dimension of the corresponding variety given by these polynomials. We obtain
this by elementary algebraic means by exploiting the simple explicit description
of multiplication of elements in the order Z[/0].

Having shown that only those b, b, for which Ay, ,, has determinant almost
as large as possible make a contribution, we can localize the coefficients of by, b,
to a small region in the Euclidean metric and p-adic metrics for small p. Once
localized in this way, the denominator no longer plays an important role. The
remaining sum then factors, and so we are ultimately left to show cancellation in

’
Zgb,
b

where Y indicates that the coefficients are localized to a small box and an
arithmetic progression. Recalling that g, = 1%,(b) — iRz(h), we can show
such an estimate using a Siegel-Walfisz-type bound for Hecke characters. In
avoiding some algebraic considerations, we require uniformity in the conductor
to be slightly larger than a fixed power of a logarithm in the norm of the ideals
considered, and this requires us to take explicit account of possible fluctuations
caused by a Siegel zero throughout the argument.

3. Notation

We view n, k, 6 and K = Q(v/0) (or K = Q(w) in Section 12) as fixed
throughout the paper. All constants implied by O(-), o(:), < and >> may depend

https://doi.org/10.1017/fmp.2019.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2019.8

Primes represented by incomplete norm forms 9

on 6 (and, hence, may depend on n and & since 3k + 1 < n and # is the degree
of #). All asymptotic notation should be interpreted in the limit as X — oo.

Throughout the paper, we let € be a small but fixed (that is, independent of X)
positive constant which is always assumed to be sufficiently small in terms of n
and k. Our implied constants will not depend on € unless explicitly stated, but we
will assume € > 1/loglog X to avoid too many dependencies in our error terms.
We let Ag be the discriminant of the field K, ¢x(a) = N(a) lea(l — N(p)™h,
and yx the residue of {x(s) ats = 1.

By abuse of notation, we write N = Nk, for the norm form on ideals of
K and for algebraic integers of K. We let Ng(x) be the polynomial in n — k
variables x,, ..., x,_x which coincides with N /Q(Z:‘l:_lk x;~/0'=1) on integers.

We use lower Gothic script (for example, a, b, . ..) to denote integral ideals of
K and p to denote a prime ideal of K. Algebraic integers in Ok will typically
be written in Greek lower case (for example, «, B, ...) and («) is used to denote
the principal ideal generated by «. Vectors will be denoted by roman bold lower
case (for example, a, b, .. .), and we have endeavoured to use consistent notation
across vectors, integers and ideals referring to related objects so that b = (8) for
the principal ideal generated by g = Y _|_, b;~/0'~! for some vector b. We let

bl =/, b} denote the usual Euclidean norm.

4. Basic estimates

We recall some results from the geometry of numbers and Minkowski’s theory
of successive minima. We recall that a lattice in R* is a discrete subgroup of the
additive group R¥.

LEMMA 4.1 (Minkowski-reduced basis). Let A C R¥ be a lattice. Then there is
aset{vi, ..., v,} of linearly independent vectors in R* such that

(1) {vy,...,Vv.}is a basis:

A:VIZ+"'+VrZ.

(2) The v; are quasiorthogonal: For any xy, ..., x, € R, we have
r
vy + - A v =< Y vl
i=1

(3) The sizes of the v; are controlled by successive minima: If .y < Ay--- < A,
are the successive minima of A, then ||v;|| < A; for all i. In particular,

Vil -~ Ve[l < det(A).
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The implied constants above depend only on the ambient dimension k. Here,
det(A) is the r-dimensional volume of the fundamental parallelepiped, given

by
{ZX,‘V,‘ DXy ey Xy € [0, 1]},
i=1

and the jth successive minimum is the smallest quantity . ; such that A contains
J linearly independent vectors of norm at most X ;.

Proof. This follows from [6, Page 110] or [3, Ch. 1]. Explicitly, let a,
...a, be chosen in turn such that a; is the shortest vector of A which is
linearly independent from a,, ..., a;_;. Then ||a;|| = A; and the a; are linearly
independent by definition. By [3, Page 13, Corollary 2], there is then an integral
basis vi,...,v, of A with v; = Z{;Il Wi Vi + pj;a; for some constants
|wi ;1 < 1. In particular, ||v;|| < A; by the triangle inequality. Since {v;} is a basis,
v; is linearly independent of {a,...,a;_;}. Thus, ||v;]| > A; by minimality
of |la;||, and so we have ||v;|| < A;. By Minkowski’s second Theorem (see,
for example, [3, Page 205, Theorem 1]), we have that det(A) =< A;---A,, so
det(A) < ||vy] - - - ||V, ||. Trivially, we have that [|Y_;_, x;v;[| < > i_, lx:vill <
llx;v,ll forsome I < j <r.Letv; =v,+V] where v} € R* is linearly dependent
on the other v; and where v; € R* is orthogonal to the other v;. We then have
that

Apooe A, < det(A) = det(vy| -+ [v,) = det(vy| -+ [V}] - |[v,) < V]l ]_[/\i.
i#j
Thus, ||V’j|| > A; > |lv;|l. But since V} is orthogonal to the other v;, we have
I, xivill = ;¥ 11 > |lx;v; |, as required. Together, this gives the result.  []

We see that the properties of the Minkowski-reduced basis above indicate that
each generating vector v; has a positive proportion of its length in a direction
orthogonal to all the other basis vectors.

LEMMA 4.2 (Well-sized generators). Let a be a principal ideal. Then there is a
generator o of a such that
%] < N(a)'/”

for all embeddings o : k — C. In particular, « = (On)™" Y _;_, a;'0'~" for some
integers a; < N(a)'/".

Proof. Let @ € Ok and let K have r; real embeddings and r, complex ones.
The Minkowski embedding sends « to the vector (log |a’]), € R indexed by
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embeddings o of K, where one only considers one of the two complex conjugate
embeddings. The set of units of O is sent to a rank r; + r, — 1 lattice of
determinant O (1) in the trace 0 hyperplane. « € Oy is sent to a point x with
trace log N («). Note that x — log N () /n is a point of trace 0. By Minkowski’s
convex body theorem (or Lemma 7.1), there is a point e in the lattice such that

_ log N(«) <cC
n

’

’e—I-X

for some suitably large constant C. We then see that e is the image of a unit €,
and «e satisfies the required properties. O

LEMMA 4.3 (Prime ideal theorem). There is a constant ¢ > 0 such that

Y Ad@) = X + O(X exp(—cy/log X)).

N(@)<X

LEMMA 4.4 (Zero-free region apart from Siegel zeros). There is at most one
modulus 0* with N(0*) < exp(y/log X) and at most one primitive Hecke
character x,- (mod 0%) such that the Hecke L-function L(s, xo+) has a zero

in the region
c
:s=a+it:a>1— }

V91og(X 2 + 1)

Here ¢ > 0 is a fixed small constant. This character, if it exists, must be a real
quadratic character and the corresponding L-function has a unique real simple
zero By in the above region. The modulus 0* in this case must satisfy N (0*) >
(log X)€ and ©* must be square-free apart from a factor of norm O(1).

LEMMA 4.5 (Prime ideal theorem with Hecke characters). Let x # xo« be a
nontrivial primitive Hecke character with x = x\ x», where x, is the torsion part
of x and x, is torsion-free. Letting Ay, ..., A,_1 be a basis of the torsion-free
characters, we have that x, = [[/—| A" for some integers m;. Then we have

Z A(@)x(a) < X exp(—cy/log X)

N(@)<X

uniformly over all such primitive x = x1x2 7 Xo+ of conductor < exp(y/log X)
and with m; < exp(\/loﬁ)fm’ all1 <i <n—1.Inthe case x = xy+, we have

__YBor
;( + O (X exp(—c+/log X)).

o*

Y A@xe(a) =

N(a)<X
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Proof of Lemmas 4.3, 4.4 and 4.5. See [21, Theorem 1.9], for example. O
LEMMA 4.6 (Growth of Hecke L-series). Let r| and 2r, denote the number of
real and complex embeddings of K, and let Ay, ..., Ay 4r,—1 be a basis for the
torsion-free Hecke characters. Let x be a Hecke character of conductor q, and
let ¢ = N(q). Then x factors as x = xiA}" ...)»:122:1', where x, is a class
character mod q and my, . .., M, ,,—1 € Z. Then we have

ri+r—1 no/2+e
L(1 —o +it, x) < ((1 e+ Im,-l)q)

i=1

for|o +it| = 1/10. The implied constant depends on K and the choice of basis
)‘-l, e )‘-r|+r2—1~

Proof. This follows from the Phragmén-Lindelof principle—see [7,
Equation (1.2.8)], for example. O

LEMMA 4.7 (Lower bound in zero-free-type region). There is a constant cx > 0
such that foroc > 1 — cg/logt, we have

—  LlogCH ) ——
P L T pp—"

Proof. This follows from [20, Lemma b and y] and [4], for example. L]

S. Initial manipulations

We begin our first steps in the proof of Theorems 1.1 and 1.2 for K = Q(/8).
Here we use a simple decomposition to reduce our problem to counting principal
prime ideals whose generators are localized. We may assume, without loss of
generality, that 0 is a positive integer if n is odd. We note that N¢ (X, 1,0, ...,
0) = X" — 0 has no fixed prime divisor, and so Nx does not have a fixed prime
divisor (in particular, & # 0). We wish to reduce the proof to the following
proposition, where we set

n, = (log X))o, 5.1

PROPOSITION 5.1 (Localized prime ideal counts). Let Z = {x e R"™* : x; €
[X;, (14+n1)X;1} be a hyperrectangle fully contained in {x € R* : e X < x; < X,
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Nk (x) > €X"). Let
n—k
Alay) = {(Zai\/" 9i“> caeZN7ZF a=a,(mod q*)}.
i=1

Then if n > 4k, we have

#HANL*
Y #Haed@): pla= Np) > X"} =S+ oM E0E )
ape[L,q* ]+ nlog X
and ifn > 22k/7, we have
#HRNTLF)

Y #aeA@): pla= N(p) > X"} >

log X

age[l,g*n*

We note that since we are summing over all relevant choices of a;, the

restrictions mod g* in Proposition 5.1 are somewhat artificial. We have included

them since we will consider each a, separately in our later analysis. As an
intermediate step, we establish the following lemma from Proposition 5.1.

LEMMA 5.2 (Localized prime counts in Ok). Let Z = {x € R"*: x; € [X;,
(1 4+ n1)X;1} be a hyperrectangle fully contained in {x € R* : eX < x; < X,
Ng(x) > €X"}. Let &/’ (ay) C Ok be given by
n—k
o' (ag) = {Za,«/" 0i-':aeZNZ"*, a=a,(mod q*)}.
i=1

Then if n > 4k, we have

#HANL*
> #a e (a): Ne)prime} = (& + 0(6‘/"))(—),
nlog X
ape[l,g*1"*
and ifn > 22k/7, we have
#HA NI

Z #{o € o/ (a) : N(a) prime} >

age[l,q* 1"+

log X

Proof of Lemma 5.2 assuming Proposition 5.1. This is simply a question of
converting a count of prime algebraic integers to counting principal prime ideals.
We define

n—k
A(ag) = {(Za;\/" 9”) rae ;zf/(ao)}
i=1

to be the set of principal ideals generated by elements of .<7"(ay).
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We claim that every ideal in A (ay) has a unique generator in .o/ /(ao) Ifx e %,
then N (X) > € X" and x; < X for all i. Thus, it follows that |Z XV 1’| «
X for all embeddings o. This gives (letting ¢ denote the identity embedding, and
Y (K /Q) the set of embeddings of K/Q)

n—k N (X)
ZXi n’gi_l‘ — Knik p— >> GX'
i=1 HUEE(K/Q)|Z,-=1 X VO |

o L

In particular, if y,x € #Z, theny = x+ O(X), and so ) _;_, Y Z::f
x;/0'=1 =14 O.(n1), which cannot be a nontrivial unit when 5, is sufficiently
small (since the units of O distinct from 1 are bounded umformly away from 1).
Thus, there are no two associates Y i x;~/07~1 and Y '—f y;¥/6"~1 in .27’ (ay).
We therefore see that A(ap) is indeed in bijection with .27’ (ay).
There are O(X"/?) prime ideals p with N (p) < X not prime (i. a prime ideal
of degree greater than 1), so it suffices to simply count prime ideals in A at the
cost of an error term of size O (X"/?). Putting this together, we see that

#{a € & (ap) : N(a) prime}
=#{a e A@ay) : pla= N(p) > X} + 0(X"?).

We now see that the statements of Lemma 5.2 follow immediately from
Proposition 5.1, giving the result. O

Proof of Theorems 1.2 and 1.1 for K = Q(~/8) assuming Proposition 5.1. We
aim to reduce the statement of Theorems 1.2 and 1.1 to that of Lemma 5.2 by
considering the contribution from small regions separately.

The measure of t € [1, X]*™* such that Ng(t) < kX" is O '/"X"%)
uniformly in «, and so we see that

dtl Ldt,_y Xk
= (14+o0(1)) .
log Nk (t) nlog X

te[1,X]"F
Nk (t)>2

Thus, it suffices to show that if n > 4k, we have

#aecZ"*: 1<a <X, Ng(a) prime}

dt,...dt
S+0 1/2"/ / Ltk 5.2
=6+ 0(E’™) logNK(t) (5.2)
te[l,X]" %
Nk ()22

and if n > 22k /7, then the left-hand side of (5.2) is bounded below by a positive
constant times the right-hand side.
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We first consider the region
& ={xeR"*:0< x; <eX for some i}.

By a simple sieve upper bound (see [9, Theorem 5.1] or Lemma 7.9 of
Section 7), the number of prime values of N (ay, ..., a,_) fora e & N Z"*
is O(eX"*/log X). The contribution of t € & to the integral on the right-hand
side of (5.2) is also O (e X"~*/log X). Thus, we may restrict a and t to lie outside
of &, and so in the region where x; > € X for all i.

We recall from (5.1) that ; = (log X)~'®. We cover the region {x € R"* :
€eX < x; < X} with 0(eWy; ") disjoint hyperrectangles of the form
{(x € R"* : x; € (X;, X; + mX;]}. Again a sieve upper bound shows that
the number of prime values of Ng(ay, ..., a,_;) for integer vectors a in such
a hyperrectangle is O (n’f‘k X"*/log X). Thus, the total number of prime values
of Nk from the 06(7717(”7/‘7” ) hyperrectangles not entirely contained within our
region {x € R"* : eX < x; < X} is O.(n; X" */log X). Similarly, we see
that the total contribution to the integral on the right-hand side over real vectors
t in the union of such boundary hyperrectangles is O, (n; X"~*/log X). Thus,
we may restrict our attention to hyperrectangles fully contained in the region
xeR"*:eX <x < XJ.

We can clearly discard any hyperrectangles for which the norm is always
negative since they make no contribution to either side of (5.2). We note that
3o Nk (o X)) < X"Uon [1, X]" for all j € {1,....n — k}. Thus,
if |[Ng(x)] < €X”, then all points y in the same hyperrectangle as x satisfy
INk(y)| < 2€X". But there are O(e'/"X"*) integer points a € [1, X]"* for
which |Ng(a)| < 2¢X” since, given any choice of ay,...,a,; < X, Ng(a)
is a nonzero integer polynomial of degree n in a,, and we see that a; must lie
within O(e!'/"X) of one of the (complex) roots of this polynomial. Thus, there
are O (e'/"~°Wy, Py hyperrectangles containing a point x with | Ny (x)| < € X",
and the total contribution from these hyperrectangles is O (¢!/"=°M X"~* /log X).
Similarly, the contribution to the integral on the right-hand side from t in the
union of such hyperrectangles is O (e'/"~°) X"=* / Jog X). Thus, we may further
restrict our attention to hyperrectangles with Ng(x) > e€X” for all x in the
hyperrectangle.

Thus, we only need to consider hyperrectangles fully contained in the region
{(x e R"* :eX < x;, Ny(x) > €X"}. But for such hyperrectangles, the result
follows immediately from Lemma 5.2 since N (Zf;l aiv0'~1) = Ng(a). O

Thus, we are left to establish Proposition 5.1.
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6. Sieve decomposition

In this section, we give a combinatorial decomposition of the number of
primes in A based on Harman’s sieve [11] and reduce our result to establishing
suitable Type I and Type II estimates.

6.1. Initial setup. It will be notationally convenient to fix an (slightly
artificial) ordering of ideals in K for this section. We first fix an ordering of
prime ideals of K such that p; < p, if N(p;) < N(p,), and we choose an arbitrary
ordering of prime ideals of the same norm. We extend this to a total ordering of
all ideals so that a < b if N(a) < N (b), whilstif N(a) = N(b), we have a < b if
the least prime ideal factor of a/ gcd(a, b) is less than the least prime ideal factor
of b/ gcd(a, b). Given a set of ideals C and an ideal a, we let

Co=1{b:abeC},
S(C,a) =#{beC:plb=p> al.

For convenience, we let @ = 0.3182, and we fix ideals v}, v, chosen maximally
with respect to this ordering such that

xn(=3w) oy < 4k,
Xn73k74e, n 2 4/(,
N(ty) < X"1/249, (6.2)

N(t) < (6.1)

In particular, we see that
#a e A@) : pla= N(p) > X"/} = §(A(ay), tr).

We now wish to decompose S(A(a), t,) into various terms such that each term
can either be estimated asymptotically or the term is positive and can be dropped
for a lower bound. To ease notation, we suppress the dependence of .A(ay) on ay,
and so write A = A(ap). Roughly speaking, we will be able to asymptotically
estimate terms of the form S(A,, t;) when N(?) < X" %% and terms S(A,, t)
for fairly arbitrary ideals v if X*™¢ < N(d) < X"~%~¢ (this latter type we refer to
as the ‘Type Il range’). To make this precise, we introduce some further notation.

To keep track of the decomposition for A, we perform the identical
decompositions to a simpler set I3, which we use to compare to 4. To account
for the impact of a possible exceptional character x*, we consider ideals with
a fixed value of a real Hecke character so that the number of prime ideals in
B fluctuates in the same manner as those in A. Let ap = (Z;’;lk (ag); V0~ 1)
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be the ideal generated by the algebraic integer corresponding to a,, let x* be
a real Hecke character on ideals with modulus q* and let g* = N(q*). x*
will be taken to be an exceptional character, if one exists, and an arbitrary
such character otherwise, and ¢* will satisfy (logx)¢ < ¢* <« exp(y/log X).
q* will be square-free as an ideal, apart from a possible factor of norm O(1).
We see that x* takes values in {0, 1, —1} and factors on principal ideals as
x (@) = xj(@) x5 (@) as its finite and infinite components. Since all elements
of A are principal and their coordinates are localized such that no norms are
small, x% takes a constant value on .4; let us call this x % (A). Since all elements
of A come from a vector a = a, (mod ¢g*), we also have that Xr (@) is constant
and equal to X} (Z:’;lk (ag);~/0i~1) for all ideals () € A. Let Ny =, X be such
that the smallest norm of an ideal in A4 is Nj. We then define the set BB of ideals
of Ok by

B = B(ag)
= {ideals b of Ok : N(b) € [Ny, (1 +n)Ny1, x*(b) = xX (A x (@)}

Here oy = Z:.’;lk(ao),-\/" gi-1.

By a polytope in R*, we mean a bounded region defined by a set of linear
inequalities, where the inequalities can be strict, weak or a combination of strict
and weak inequalities. Given a polytope R C R* for some £, we define

le(@=1" a=p;...p with N(p;) = X, (e1, ..., e) € R, (6.3)
R 0, otherwise. '

We see that 15 is the indicator function of ideals with a particular type of prime
ideal factorization, given by the polytope R. Since we are only concerned with
1z(a) for a € A or a € B, we will only consider points with N(a) € [N{,
(1 + O(n))N{1, and so we could restrict our attention to polytopes R with
Zle e; = nlog Ny/log X 4+ O(n,). For technical reasons, we find it useful to
actually consider larger R without this restriction which are independent of X,
although it is useful to keep in mind the fact that only these points will actually
contribute to our final estimates. With this setup, we are now able to state our
two key propositions and the main lemmas.

6.2. Key propositions and lemmas.

PROPOSITION 6.1 (Type II sums). Let R C [€2, 2n]" be a polytope in R such
that (e, ...,e)) €E R =k +¢€ < Zizlej < n — 2k — € for some £ < £ and
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such that R contains points X,y with Zle xX; >n+e, Zl \yi <n—e€ Then

we have
Y 1 - 6— 5 0 1r(®) <z 0} #A
acA heB
Here
~1
& 1—[( V(P))<1_V2(P)> ’
pn
plg*
v(ip)=#1<a,...,a,x < p: Ng(a =0 (mod p)},

v2(p) =#{1 Sdap, ..., <P N(Zaivu 9i1> =0 (modp)}.

i=1

PROPOSITION 6.2 (Sieve asymptotic terms). Let R C [€2, 2n]* be a polytope in
R¢ such that (e, ...e;) € R = Zf e <n—k —4e, and R contains points
X, ywithY | xi >n+e Y _ yi <n—e Let X* < N(ay) < X" Then
we have

~ #A
ZD: 17{(0)(5(./40, al) - 6%5(607 al))

exp(—e ) #A vip)\ '
= - | | 1—
<r log X e prk

Here S and v(p) are as in Proposition 6.1.

Assuming these two propositions, it is fairly straightforward to establish
Proposition 5.1 when n > 4k. We first record a couple of estimates for the set

B= B(ao).

LEMMA 6.3.
vk Pk ((¢7)

#B =
2 q*n

nlN(i)l + O(Ng—H—o(l)).
In the lemma above, ¢x(a) = #{b (mod a) : gcd(b,a) = 1} is Euler’s ¢
function for ideals of K.

Proof. This is a simple exercise in counting via Perron’s formula, using the
bound L(1 —o +it, x*?), L(1 —o +it, x*) < (14 |t])g*)"/*" for |o +it| >
1/10 from Lemma 4.6. Let c = 1 + 1/log Ny and T = N,y. Moving the line of
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integration to N(s) = 1/2 gives

Z x*()* + x*(6) xf(a0) x5 (A)

#B =
- 2
N(b)E[Ng.(1+n1)NE]
c+iT an((l + n)s _ l)dS
== (L(s, (X)) + X} (@0) x5 (A L(s, X)) —
2mi c—iT 2s
40 (Ng‘ (10;; NO)Z)

11Ny » n—1+o
= % Res(L(s, (X)) + 0Ny ~")

_ K T, mN? + O(NI—1+0),
2 g
Here yy is the residue of ¢ (s) at s = 1, and the first summation is over all ideals

of Ok with the norm restriction. L]

Trivially, we have that the size of A is given by #4 = (1 + o(1))
g =P TT'=F X, for any choice of aj.

Finally, we have the following lemmas which show that if we sum over all
a € [1, g*]"*, then we remove any distortions caused by a possible exceptional

character from primes in B. We delay the proof of Lemma 6.4 to Section 7.

LEMMA 6.4. Let R C [e 2n]e be a closed polytope which contains points X,y
with Y, x; >n+¢€Y_ yi <n—e Then

*(n k) Nn
Z Z 1z (b) = 77;( H(l p(p)>(172+07z(1))

age[l,g*1" % beB(ap) rlg*
ged(Nk (a9),g™)=1

where

If £ = 1, then Iy is interpreted as 1 if n € R and 0 otherwise.

LEMMA 6.5. Let R C [€2, 2n]¢ be a closed polytope. Then

~#,4(2.) #(%ﬂZ" ky
Y. 6 B(az) Y Ir() = S eg xR +or(D).

ape[l,q* ]+ beB(ag)
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where Iy is as in Lemma 6.4. In particular, choosing R = [n(1/2 + €), 2n], we
have

#A(a) B #( A N L")
> 6#3( 5 8(B(@o). v2) = (1 +0(1)& ="

ape[1,g*]—*

Proof of Lemma 6.5 assuming Lemma 6.4. We recall that

ni* ; #HAZ N7
$AGa) = (1 oy Xy (1))%

*(n k)
for all choices of a, and that #8(ayg) = (yx/2 + o(1))niNjox((¢*))/q™" by
Lemma 6.3. Since 17 (b) is supported on ideals with no factors of small norm,
we see that there is no contribution from a, with gcd(Ng (ag), g*) ;é 1. We see
that the number of choices of ay € [1, ¢*]"* such that ap = (}_/— (ao),«/" oi-1)
has no common ideal factor with (¢*) is given by g**=% [1,,-(1— v(p)/p" ).
Thus, by Lemma 6.4 and our estimates for #.4(a,) and #5(a,), we have that

3 éi“g((a;’; 3 1k

ape[l,q*]"* beB(ag)
_Ur+ or(1)q*' & #(# N L") 1_[<1 B w)
Ykdx ((g*)) nlog X k)

plg*

We recall that yx = [],(1 — v(p)p™)~1(1 — p~') is the residue at s = 1 of
Lk (s) and so find that

" - v(p)) ( v(p)) < 1)1
— & 1 - 1 - 1-—) =6.
YxPx ((g*)) 1_[< prk l_[ pk P

plg* P

Thus, we find that

- #A(ao) #(ZNTLF
> 6 B0 > 1x(b) = (e + o1& 1o .

age[l,g*]* beB(ap)

Proof of Proposition 5.1 assuming Propositions 6.1, 6.2, Lemma 6.4 and n > 4k.
We first consider n > 6k. In this case, n — 3k —4€ > n/2 + €, so it follows from
Proposition 6.2 that (explicitly putting in our dependence on a,)

#.A(ao)

#B( . ————S(B(ay), t2)

S(A(ap), vp) =
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exp(—e~)#A(ay) ( v<p>>1>
+ 0 1— .
( log X Il,;[ P

We now sum over the choices of agy, noting that there is only a contribution
from those such that ay = (Zl’.:]k (ap);+/0~") has no common ideal factor with
(g*). The number of such aj is (g*)"* [1,,-(1— v(p)/p" %), and we recall that
#A(a)) = (1 + o(1)#(Z N Z"*)q*~"=_ Thus, we obtain

_#A
Y. SA@), = Y & @) 5B ag), v2)

ape[l,g*1"* ape[l,g*n* #8(30)
L0 exp(—e H#Z N L")
log X )

Lemma 6.5 gives an asymptotic estimate for the main term, giving

#HANZLF)

12
nlog X (I + O(exp(=€~7))).

Y. S(A@), ) =6

aoe[l,q*]”"’

This gives the result in the case n > 6k.
We now consider 6k > n > 4k. We see that by Buchstab’s identity (this simply
applies inclusion—exclusion according to the smallest prime factor), we have

S(A ) =SA ) — Y S(A.p).
T <p<r

Applying the same decomposition to 3 and subtracting the difference weighted
by G#A/#8B, we see that

SH#HA SH#HA
S(A, tg) = wS(B, tz) + <S(./4, tl) — wS(B, tl))
S#HA
—( D SCALp - — S(Bp,m).
T<psr T <p<r

By Proposition 6.2, the first term in parentheses is negligible. The second term
in parentheses counts ideals with O (1) prime ideal factors, one of which lies
between t; and v, and all of which are larger than t,. Therefore, splitting the sum
according to the number of prime factors, it can be written as a sum of O(1)
terms of the form _

D 1r(a) — %4 > 1z(b)

acA beB
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for some polytope R satisfying the conditions of Proposition 6.1. Explicitly, we
can choose

Ri={ecR:n—3k—4e <e; <n(1/2+4¢€), e; < es, e, < 1),
Ro={eecR:n—3k—4e <e <n(1/2+¢), e; < e <es, e3 <nl,
Ri={ecR':n—3k—4e<e, <n(1/24€), e; < ey < ez < ey, 4 <.

(We note that since n > 4k elements with all prime ideal factors bigger than
t; can have at most four prime ideal factors.) In particular, it follows from
Proposition 6.1 that these terms are negligible. Using Lemma 6.5, we see that
this gives (making explicit the dependence of .A on a,)

AV /i3

12
nlog X (I + O(exp(—€~77)))

Y S(A@). ) =6

ape[l,g*]n*

forn > 4k.

Finally, we consider the case when n = 4k. In this case, we cannot estimate
terms S(A,, p) with N(p) € &, where & = [X" 34 Xkre] U [ X<, Xn/2He],
since this lies outside the range of our Type II estimates. However, bounding
these terms by 0 < S(A,, p) < S(A,, t;) introduces a negligible error term to
the final estimates since this range of p is short. Specifically, letting . = A(ay) =
S#A/#B, we have

Yo SAw= > ASBre+ Y (S(At) —ASB.w)

age[l,g*n* age[l,g*n* age[1,g*n*

- ¥ > (S(Ap, p) — AS(By, p))

age[l,q*]"*k X"+‘<N(p)§X2"*‘

+ Y D O(S(Ay ) + AS(By. ).

age[l,q*]"~k N(p)e€

As before, the first term in parentheses on the right-hand side is negligible
by Proposition 6.2, and the second term in parentheses is negligible by
Proposition 6.1. Finally, by Proposition 6.2 and Lemma 6.5, the last term
is

Z Z é#A(ao) #(% n ank) .

< WS(Bp(ao), t) K€ log X

ape[l,q*]"* N(p)e€

Thus, this is negligible, and so using Lemma 6.5 for the main term, we obtain
the result. O

When n < 4k, we require a more complicated decomposition based on the
use of Harman’s sieve. Here we discard some terms through positivity, which
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restricts us to obtaining a lower bound of the correct order of magnitude. Because
the ranges of our ‘“Type I’ and “Type II’ estimates are the same as those used
in Harman’s work on the problem of Diophantine approximation by primes,
we could use precisely the same decomposition as Harman uses in [10]. The
only minor difference is that in our case, the summations are over prime ideals
rather than rational primes, but this does not affect the final estimates since they
both have the same density. Instead, since Harman’s decomposition is not fully
explicit, we have included an explicit description of an adequate decomposition
in the appendix to this article along with a Mathematica file performing the
relevant numerical computations for this decomposition. The result of this is
the following proposition.

PROPOSITION 6.6 (Sieve decomposition for n < 4k). Let wn > k. There exist
sets Sy, ..., Ss of polytopes which are independent of X such that for any set C
of ideals a with e X" < N(a) < X", we have

SCe)=)_ Y 1r@SCot)— Y Y 1r@SCot)+ Y Y 1r(a)

ReS; 0 ReS;, ° ReS3 aelC
D IPMICEDPPPE LICE
ReS, acC ReSs aeC
Moreover, the sets Sy, . .., Ss satisfy

(1) #S; < 1 for each .

(2) (All terms involve a bounded number of primes factors) Each polytope R €
Ule S; lies in R* for some € < 1/€* (but different polytopes may be of
different dimensions).

(3) (No term involves small prime factors) If R € Uiszl Siand (e, ...,e) € R,
thene; > €* forall j € {1,...,¢)}.

(4) (R does not depend too much on the norms) Each polytope R € Ule S;
contains a point X and a point y with Y r_ x; > n+eand Y i_ yi <n—e.

(5) (81 and S, correspond to simpler sieve terms) I[f R € S| U S, and (ey, . ..,
e)) € R, then Zf:l e; <n—k—4e.

(6) (S; and S, correspond to Type Il terms) If R € S;US, and (e, ..., e,) € R,
then there is some £’ such that

E/
k+e<Zei<n—2k—e.

i=1
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(7) (The terms from Ss do not contribute too much) We have that all R € Ss

are closed and
> Ir <099,
R€S5

del e dé@,l
In=n [ .. [ ===
€;...€
(e1,....e)ER
Zf:lei:”

where

As mentioned above, the proof of Proposition 6.6 essentially follows from the
work of Harman [10], but in the interests of explicitness and verifiability, we
have included an alternative proof in the appendix. Since the full decomposition
is complicated to write down (and requires nontrivial numerical computation),
we just highlight some key details here.

In general, we use two means of transforming terms S(C,,a) in our
decomposition:

(1) Buchstab iterations: Given ideals a; < a, and 0 with N() <
X"~%=% /N (a,), we can apply two Buchstab iterations, which gives

SCoa) =5Coa)— D SCopa)+ Y SCopyp, b2
aj<pr<ay aj<p2<pI<ay

If a; = vy, then the first two sums correspond to polytopes in S; and S,.
Some of the terms in the final sum will involve factors which fall into our
Type II range and so correspond to polytopes in Sz and Sy; we are left to
obtain a suitable estimate for the remaining terms.

(2) Reversal of roles: If T is a set of ideals t satisfying b < t < b?, we can write

D S(Au, @) =) S(AL,, b),
peT prime ueld

where A*, ={te Ay :teTlandU ={u:plu=p>a}.

Having applied these transformations in some combination a finite number of
times, we produce a decomposition of the required shape

SCv) =Y D 1r@®SCort) = Y Y 1@SCot) + Y > 1r(a)

ReS; 0 ReS; 0 ReS3 aeC
- E E 1z (a) + E E 1z (a),
ReS, acC ReSs5 aeC
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for some explicit sets Sy, ..., Ss of polytopes R independent of X and with
#S; <« 1. Here we recall that 1% (a) is the indicator function of ideals which
have a particular shape of prime factorization determined by R. It then requires
a numerical verification that for this particular choice of decomposition, we have

Y res, Ir < 0.99.

Proof of Proposition 5.1 assuming Propositions 6.1, 6.2, Lemma 6.4 and n < 4k.
Applying Proposition 6.6 to A, we obtain

SA ) =D Y 1r@SAyt) = Y Y 1r@)S(Ay, 1)

ReS, 0 ReS, 0
+ Y D @ =) D) Ir@+ Y Y 1r(@). (64)
ReS3 ac A ReSs ac A ReSs ac A

The point of this decomposition is that we can obtain asymptotic estimates for
the terms coming from polytopes in S, S,, S3 and Sy by a combination of our
‘Type I and ‘Type II" estimates, and so we obtain a lower bound for S(A, t,)
by dropping the terms coming from Ss through positivity. Specifically, the terms
from S; and S, can be estimated using Proposition 6.2 and the terms from S; and
&, can be estimated using Proposition 6.1. It will turn out that since D s IR <
1, we still obtain a positive lower bound for S(A, t,), giving the result.

Applying the same decomposition of Proposition 6.6 to B and subtracting
these terms multiplied by a constant & = G#A/#8 from (6.4) gives

S(A ) =ASB, )+ Y Y 1r@)(S(Ay, t1) — AS(By, 1))

ReS, 0
=YD 1R @)(S(Ay. 1) — AS(By. 1))
ReS; °
+y (Z Ig(@) =2 ) 1R(b)>
ReS; “acA beB
- (Z Iz (a) — )»Zln(b)> + ) Y Ir@—2 Y > 1x(b)
ReS; “acA beB ReSs ac A ReSs beB
> x(S(B, DEDY Zln(b))
ReSs beB
— > Do1R@(S(As, 1) — AS(Bo, n))‘
ReSIUS,' o
- > D1z —AZIR(b)‘. (6.5)
ReS3US, 'ac A beB
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Here we have dropped the nonnegative terms » S Y aca Ir(a) for a lower
bound.

By Proposition 6.2, the second term on the right-hand side of (6.5) involving a
sum over R € §; U S, is negligible since S; and S, only contain polytopes with
sum of coordinates at most n — k — 4¢€. Similarly, the last term on the right-hand
side of (6.5) involving R € &3 U Sy is negligible by Proposition 6.1 since they
only involve polytopes where a subset of the coordinates lies in the Type Il range.
This gives us the lower bound for k/m + 8¢ < n < 4k

-1
a5 (s T o) o ZATI1-12) )

n—k
ReSs beB rlg* p

We now sum over a, € [1, g*]"* such that (Zf;lk (a9);~/0'~1) has no ideal factor
in common with ¢*. By Lemma 6.5, we have
#A(ao) #HANL')
SV s@B , = NG——,
> #Biag S B0 ) = (1 +0()S—1-m

ape[l,q*]"*

and for each R € S,

~ #A(ay) #(ZNZF
G 1z(b) = (1 +o(1 6—1 .
> B0 b;j) r(0) = (1+0()S—1-—Ix

age[1,g*]*

Putting these estimates together, we obtain

n—k
> S(A@).v) = GW(I - > Ir+ 0(6))

nlog X
ape[l,q*]"* & ReSs

SH(AZ N L")
log X

since, by Proposition 6.6, we have that ) - _ s Ir < 0.99. This gives the result
whenever n > k/@ + 8¢ > 22k /7, as required. O

Thus, to establish Proposition 5.1 and, hence, Theorems 1.1 and 1.2 for K =
Q(/6), it suffices to prove Lemma 6.4 and Propositions 6.1 and 6.2.

7. Type I sums

In this section, we establish Lemma 6.4 and Proposition 6.2 under the
assumption of Proposition 6.1 by using estimates from the geometry of numbers.
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LEMMA 7.1 (Geometry of numbers). Let R C R be a region such that any line
parallel to the coordinate axes intersects R in O (1) intervals. Then we have

-1
#acZ' NR}=volR + 0(1 +ZV_,-),

j=1

where V; is the sum of all the (£ — j)-dimensional volumes of the projections of
‘R formed by equating j coordinates to zero. In particular, if R is contained in
an [-dimensional hypercube of side length B and A C 7' is a rank € lattice with
successive minima Z; < --- < Z,, then we have

B/ >

! Z

Proof. The first statement is Davenport’s theorem [5]. For the second statement,
there is a basis z, . . ., z, of A with ||z;|| < Z; and | Yr_, iz || > Y, laiz |
for any a € R® by Lemma 4.1. Letting M be the £ x ¢ matrix with columns
Zi,...,Z;, we see that counting x € A N R is the same as counting X' €
Z*NM~'R. This region has volume vol R/ det(M) = vol R/ det(A). Any point
a =Y az must be a distance O(B) from the centre ¢ = Y ;_, ¢;z; of the
hypercube containing R, and so Zle l(a; —c))z;|| < |l Zle(a,- — )z || <€ B.
This means that ; is constrained to lie in an interval of length O(B/Z;), and,
hence, in this case, V; = O(B“f/]_[f;{ Z). O

vol R !
#Hac ANR) = o) +0(1+Z
j=1

LEMMA 7.2. Given d, e € Z"\{0}, let e & d be the vector b such that
D bV = e Vo x Y " diVpi
i=1 i=1 i=1

and let Aq be the lattice

Ag=1{eeZ": (doe); =0 forn—k < j <n}
Then for any d € Z"\{0},
(1) Aqisarankn — k lattice.

(2) det(Aq) < [,

Proof. We see that the jth component of ecd is v, q-€, where v; 4 is the jthrow in
the multiplication-by-) ;_, d;~/6'~! matrix with respect to the basis {v/6~'}/_,.
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The multiplication-by-Y ;_, d;+/6'~! matrix has determinant N(}_;_, d;~/6'-1),
and so is nonzero for any d € Z"\{0}. Thus, the vectors v, 114, ..., Upa are k
linearly independent vectors, so Aq is a lattice of rank n — k.

Since the components of v;4 have size O(]|d||), the lattice has determinant
det Aqg K 1_[, iyt IVjall K [ld||*. (This bound follows from considering the
dual lattice or is an immediate consequence of Lemma 10.1.) 0

LEMMA 7.3. Letd € (Z'\{0})N[—D, D]" and Aq be as in Lemma 7.2. Let Z,(d)
denote the shortest nonzero vector in Aq. Then we have ||z,(d)|| <« DY@ and

#{de[l,D]": |zi(d)|| < Z} « D" FreWznk,

In particular,

1
< Dn—k+k/(n—k)+()(l) .
Z llz; (d)[|"~*~!

ldii<D

Proof. By Lemma 7.2, Aq has rank n — k and determinant O(D*) when d €
[-D, D]". By Lemma 4.1, if A; < Ay < -+ < A, are the successive minima
of Aq, then

lzi (@) ["* = 2775 < Ay hy K det(Ag) < D,
so ||z;(d)|| <« D¥@®=b This gives the first claim.
Since z;(d) € Aq, we have (doz;(d)); =0forn—k < j <n.ByLemma7.8,
given x € Z"\{0}, there are at most (}_1_, x;v/0'~") < ||x[|°" choices of d and
zsuch thatzod = xsince Y ;_, z;v/0~" and )_;_, d;~/6'~! must be divisors of

>, x;v/0=1. Moreover, such a x must have x; = 0 for j > n — k. Putting this
together, for any choice of Z > 0, we find that

2 1<) >

de[1,D]" zeZ" de[l,D]"

lz1(@I<Z lzl<Z (doz),_O if j>n—k
( i el 1)
xeZ— k
Ix[l<DZ

—k 1 —k 1
< Dn +o( )Zn +o( )‘

This gives the second claim.
By considering ||z, (d)|| in dyadic intervals [Z, 2Z], we find

1 1
——— K logD —_— 1
Z ”Zl(d)”rlfkfl < 0g Supiv ankfl Z

de[1,D)" ZLDK =k de[1,D1"
Z< |z ()] <2Z
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<< Sup Dn7k+0(l) Z
Z KDk (n—=k)
< Dn—k+k/(n—k)+0(l)

This gives the final claim. O

LEMMA 7.4 (Weak Type I estimate). Let 0 be an ideal of Ok with N () coprime
to Q. Let R C [—X, X]"* satisfy the conditions of Lemma 7.1. Then we have

n—k
#{a ceZ"FNR :a|<Za,«/" 9i1>, a = a, (mod Q)}

i=1
_ p@)volR

= + O(N@)" X",
Here p is the function defined by

#a e (L NI : (I a6 D)
N(D)n—k—l :

p@) =

Proof. We split the count into residue classes modulo Q N (0). We note that if
a = b (mod N(0)), then 0|(Z;:1k b;~/6'=1) if and only if DI(Z;:{C a;~/0i-1).

Therefore,
)MINEEIED SUNED S

acZ"FNR be[l,QN ()" * acZ" FNR
a=ag (mod Q) b=ap (mod Q) a=b (mod QN (D))

oLyt a4 Vo) UK by YoiT)
By letting a = b + a, QN (0), we see that the inner sum is over a, € Z"* N R’
where R’ = (R — b)/QN(0) is a translated and scaled copy of R. Since R’ is
contained in a hypercube of side length X/ QN (0), by Lemma 7.1, the inner sum
is given by

ankfl
VOIR + 0(1 + Qn—k—]N(D)n—k—l)

vol R Xkl
+ 01+ .

= 0"k N (d)"—* 0" k1N (@)r—k-1
Since Q and N(?) are coprime, there are precisely N(0)"*~'p(d) < N(0)"

terms in the sum over b by the Chinese remainder theorem. This gives the result.
O
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PROPOSITION 7.5 (Type I estimate). Let R = R(X) C [—X, X]"* be a region
such that any line parallel to the coordinate axes intersects R in O (1) intervals.
Given a vector ay € Z"*, and a quantity Q < X', we define the set

n—k
€ = {Zai\/" i-1:aeZ"*NR, a=a, (mod Q)}.

i=1

We let €, = {k € € : 0|(k)} be the elements of € which generate an ideal which
is a multiple of 0. Then we have

2

N(0)€[D,2D]
ged(N (0), 0)=1

p(@) vol R

N

nfkflQn+a(l)Dl/(n7k)+0(l) 4 DanLo(l)'

In particular, taking R = [ X1, X1+m X 11X} [ X, Xpnx+mXn_i], Xo = A
and Q = q*, we have

2

N(9)€[D,2D]
ged(N(0),¢7)=1

_ p(O)#A
N(d)

& anka»o(l)Dl/(nka»o(l) + DXO(I).

0

Here p is the function defined by

#la e (L NI : AT a6 D)
N(‘D)n—k—l .

o) =

Proof. We consider separately the contribution from ideals 9 occurring in each
class C € Clg. Given a class C, we fix a representative integral ideal ¢ € C with
gcd(N (c), Q) = 1. We can choose such an ideal with N (¢c) = Q°V. (Since Q has
O (log Q) prime factors, there must be a prime ideal in C with norm coprime to
Q amongst the first O (log Q) prime ideals in C.) We let (§.) be the principal
fractional ideal dc™', where the generator 8. = Y ., div/6'~1/(OnN(c))" is
chosen such that d; € Z with d; < D" Q°". (The d; can be taken as integers
since ¢! (N (¢)) is integral and Z[/6] is an order in O of index dividing (6n)".
The d; can be chosen to be of size O(D'/"Q°"V) by Lemma 4.2.) We note that
18] = N(8)/ [ 1520, 1871 > D" Q°V for any embedding oy.
We see that

#HaeC :0(0)) =#aecb: (@) =ad=acdc for some integral a'}
=#{Bec Ok :8B8€%, c|/(B).

Here we have put 8 as a generator of the principal ideal a'c.
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We let B = (On) ™" ;_ biv/0'~! with b € Z". All such B have such a
representation since Z[~/6] is an order in O of index dividing (6n)". Moreover,
since Z[/0] € Ok, provided b lies in a suitable residue class (mod (6n)"),
we have that (6n)™ > ] b;v/0'~! € Ok, and so with this restriction on
residue classes, the representation is then bijective. We may introduce a further
restriction (mod N (¢)"(6n)*") to ensure B3, € Z[/6] and c[(B). We now split
the count into residue classes mod ¢ = QN (¢c)"(6n)*" so that we are left to

estimate )
>y oL (7.1)

bo beZ"
b=bgy (mod ¢q)
§.BeE

Here ZLO indicates that we sum over b, € [1, ¢]" restricted to the residue classes

(mod N (¢)"(6n)*") described above and also such that the coefficient of ~/6i~!
in Bod. € Z[V0] is congruent to 0 (mod Q) fori > n — k and congruent to
(ap); (mod Q) fori < n —k.

We concentrate on the inner sum. Recall that d ¢ b denotes the vector e such
that Y ' e;v/0=1 =30 diV6I x Y biv/6~1. Since §.f € €, we must
have that (d o b); = 0 forn — k < j < n. Thus, b is restricted to lie in the
lattice A4 described by Lemma 7.2. If there is no vector bV € A, such that
b = by (mod ¢q), then the inner sum of (7.1) is clearly empty. If there is such a
vector, we write b = b + gb®, giving

! "
2. X =2 2t
bo beZ" by bPeA,

b=by (mod g) ¢
5. pet ScPi+qdc pre€

Here )" indicates that we have the additional condition that such a vector b"
exists, and we have put f; = (9n) ™" Y, b\"/6i=1. The conditions b® € A,
and 8.8, +q8.B, € € are equivalent to b® € A, NR’ for some region R'. Since,
for any embedding o, we have [§7| > D'"¢°) and any & € % has |o°| < X,
we see that |(B, + B1/9)°| K XD~'/1g=1+°M 1n particular, R’ is contained in a
hypercube of side length X D~!/"g~1*°()_Thus, by Lemma 7.1, we have

Z | — vol R/ coli+ xn—k-1 .
= det(Aa) ||Zl(D)||'17k71D(n7k71)/n ’ .

b@eA,NR’

where z;(0) is the shortest nonzero vector in A,. We recall that R’ is the region
for b® from the condition that §.8; +¢8. 8, € €. From this, we see that vol R’ =
vol R/ f, , for some quantity f;, independent of X. Thus, after summing over
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by, we find

Joq 12 @)+~ D =k=Din

We note that the sum over by above depends on ¢ and 9 but not on X or k.
Since this holds for all X and R, if X is large compared with ¢, ? and R is the
hypercube [1, X]"*, we see that the main term must match that of Lemma 7.4,
and so we must have that

| . qnxnfkfl
#Ha €€ @} =voIRY  —+0(q"+ .
by

L @
— oy NOQ

Since the above equation is independent of X and R, it must, in fact, hold
regardless of the choice of X and R. Thus,

' B ,0(0) . qnxn—k—]
#oa €€ :0l(a)} = VOIRN(D)Q""‘ + O(q + ||zl(0)||”—k—1D<”"‘—1)/")'

(7.3)
By Lemma 7.3, when summing over N(0) € [D, 2D], the error term in (7.3)
contributes a total

. anﬂ—k—l
<< Z <q + ||Z1(D)||"_k_lD(n_k_l)/")

d<<D]/" Qn(l)

n—k—1 1
n o(l) n _
< Dq Q + 4q D(nfkfl)/n Z ||Z1(D)||"7k71

d<<D]/nQn(l)
« an Qo(l) + ann—k—l Dl/(n—k)+u(l) Q()(l)-

Recalling that ¢ < Q' we see that this is
< ankfl Qn+0(l)Dl/(n7k)+0(l) + DQn+0(1).

This gives the result. O

LEMMA 7.6. B
#B _ Xn7]+0(l)D1/n'
o _N(D) <

2.

N@®)XD

Proof. The proof of Lemma 6.3 shows that the number of ideals a of norm at
most ¥ > X€ with x*(a) = x*(ap) is (recalling g* = X°)

v Pk (™))

Y + O(Ylfl/l’H»O(l))
2q*n ’
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where yx = Res;—; £k (s). Letting b = ad € B,, this gives

B N Ny(L+mn) ok
#B, _#{a. N @) < N(o) < TN , X (ad) = x (ao)}

_ myxdx ((g*) Ny +o xn—l4o(D)
2q*nN(D) N(D)l—l/n .

Applying this also with @ = (1), we see that the main term above is (#5 +
O (X"~ *MY)) /N (). Summing over 0 then gives the result. O

Recall from Proposition 7.5 that p is defined by

#ae [, NOI ™ : o a;v/6i-1))

’0(0) = N(D)nfkfl

We wish to establish some basic properties of this function.

LEMMA 7.7. (i) p(p) = 1 for any degree one prime ideal p 1 (6n).
(i) We have
n—k
#{X e[l p17*r: ple(Z xixn/ef_l)} & prH,
i=1
In particular, for any ideal with N (¢) a power of p, we have

p) 1
Np) — p?
unless ¢ is a degree 1 prime ideal above p.

(iii) p(ab) = p(a)p(b) if gcd(N(a), N(b)) = 1.

Proof. (i) Let N(p) = p 1t 0n, so Z[V/0]/pZ[/6] = Ok /pOx. There exists
a € [1, p]” such that p|(}__, a;v/0~") but p* t N(O_|_, a;v/0'~") since there
are asymptotically more ideals which are a multiple of p than there are ideals
having norm a multiple of p?, by Lemma 7.6. But then the multiplication-
by->"'_, a;v/0~" matrix (with respect to the basis {1, Jo, ..., 6m1}) has
determinant a multiple of p but not of p?, and so has rank n — 1 over IF,. This
means the p"~! distinct multiples of "7, a;+/0~1 in Z[/6]/pZ[~/6] are all
the elements of Ok /pOk which generate an ideal which is a multiple of p. In
addition, the condition that >_;_, b;+/6'~! is congruent modulo p to a multiple
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of Y, a;~/0'~! is equivalent to ¢, - b = 0 (mod p) for some integer vector ¢,
since the multiplication-by-Y ", a;~/6~! matrix has kernel of rank 1. Therefore,
p(p) counts the number of x € [1, p]"~* x {0}* such that ¢, - X = 0 (mod p).
But N (Z:’;lk x;+/0~1) has no fixed prime divisor, so ¢, - X cannot vanish for all
x € [1, p]"™* x {0}*. Thus, there are exactly p"*~! such x, giving p(p) = 1.

(i1) Nk (x) is a nonzero polynomial in x; since the leading term is x}. Moreover,
the resultant of Ng (x) and %N x (x) (viewed as polynomials in x;) is a nonzero
polynomial in x,, ..., x,_; since Nk is separable. Both of these are therefore
nonzero polynomials over I, for p sufficiently large. Thus, there are O (p"*~")
choices of x;, ..., x,; (mod p) such that the resultant is 0 (mod p), and for
any such choice, there are O (1) values of x; (mod p) with Nk (x) = 0 (mod p).
These constraints give rise to O (p?'~%*-2) choices of x (mod p?). Alternatively,
if the resultant is nonzero, then for any such choice of x,, ..., x,_, there are
O(1) choices of x; (mod p) such that N(x) = 0 (mod p), and all of these
choices of x; lift (by Hensel’s lemma) to a unique x; (mod p?) such that
Nk (x) = 0 (mod p?). Thus, in either case, there are O (p>*~%*~2) choices. The
result follows.

(iii) This follows immediately from the Chinese remainder theorem. O]

LEMMA 7.8 (Divisor bound for Ok). For any positive integer m, we have
n—k m

> f(Z XV 9"“) < X" (log X))
i=1

x|l <X
x;j=0if j>n—k

Proof. By [13, Lemma 4.4], given any integer r > 0, an ideal a has an ideal
factor bja with N(b) < N(a)"/" and 7(a) < 2"~!'7(b)>~!. Thus, taking r = n?,

we have
n—k m
n . 2
> r<§ x,-«/@"‘) < > T Y1
Ix]l <X i=1 N@)<X!/n Ix]l <X
x;j=0if j>n—k xj=0if j>n—k
OIS xi VO
n—k
0 2mn? DN @) ! O (X" *1
< Y @™ p@N@) vy + O )

N@)<X!/n

<X Z N

N@)<X!/n

Here we bounded the number of x with Dl(zl’f;lk x;v/ 01 trivially by splitting
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the x; into arithmetic progressions (mod N (0)). The sum over 0 is then bounded

by
22mn2p(p) ( 1 )> ( 22mn2vp ( 1 ))
1+ ——+0 1 ol —
[1 (+ vor T O\wer)) < I (=7 4ol

N(p)<Xl/n p<Xl/n

< (log X)Om(l)’

by Lemma 7.7. O

LEMMA 7.9 (Fundamental lemma). Let 3¢ be chosen maximally with N (39) <
X<. Then we have

#A 273 -1
> )] S(s, 30 -6 SBo o) < oy ) )#Al_[<—”(’_’2)
L og X AN
g

Here & = ]_[m ( pff_’i)(l — ”Z;f))_l is as in Proposition 6.1.

Proof. We first relate the estimate to a sieving problem over Q, where the result
then follows from the classical ‘fundamental lemma’ of sieve methods. We have
S(As, 30) =#ae Ay pla=p > 30}
=#aec Ay : pIN@) = p> X}
+ 0( > #HaeA: p2|N(a)}).

pelxe*/n, X<

By Proposition 7.5 and Lemma 7.7, the final term is O (X n—k=¢*/m) The first term
is a classical sieve quantity.
Define a function p, on primes by

#ae[L p'1"*: pINCCI a6 1)) _v(p)
pn(n —k) pn—k

p(p) =

and extend p, to a function on square-free integers by multiplicativity. By
inclusion—exclusion, we have that

_ P p(p1p2)
D=2 N T 2 New

PIN(p) PIN(p1),N(p2)
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For a square-free integer e satisfying gcd(e, N(9)) = 1 and ged(g*, eN(d)) =1,
we define R, (e) by

p2(e)p(M#A
R =#laec A, :e|N(a)} - —F———.
a(e) { 2t e|N(a)} NQ@)
We see from the inclusion—exclusion formula above that
p(0¢)
R 2(e)| Age — —=#A|.
o(e) < Z 13 ( )‘ "~ N oo ‘
eIN(e)
N(e)|e"”

Thus, by Proposition 7.5, the error terms R, (e) satisfy

> Y. @Ry ()|

N@)<X" k¢, _xe/@n?)
plO=p>30 ged(e,g*N(d)=1

p(e)
< XD |# A — 4
Z Z Oe N(De)
N(@)<Xn—k=¢ N(e)<X€/2n
ged(N(e),g*N(0))=1
& X"kee/nto() 4

Here we used the divisor bound 7(d) < X°1 in the second line and
Proposition 7.5 in the final line. We note that p,(p) = v(p)/p"* =
v,/p + O(p~?) by Lemma 7.7, where v, is the number of degree one prime
ideals of Ok above p. By the fundamental lemma of sieve methods (see, for
example, [8, Theorem 6.9]) and the bound (7.4), we have

p(@#A v(p)
> r(a>’S<Aa,3o>— Vo) F[2<1— )‘

n—k
N(0)<X" k=€ p<X P
plo=p>50 pta*
~ v(p) T(0)p ()
< exp(—e™! 1— #A
< exp( ) l_[z( pnk) Z .. N@®
p<XE N(@)<X" ke
ol plo=p=>30
+ O (X e oy, (7.5)

Here we used the fact that 0 has no prime factors with norm < N (3¢) and so
must satisfy ged(g*e, N(0)) = 1 since ¢* < X°V, and we only consider e with
prime factors p < N (3¢).

The sum over ? in the final bound is then easily seen to be O (e~*) by an Euler
product upper bound and Lemma 7.7.
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We now replace p(0) with the constant 1 in the main term of (7.5). Since
p () = 1 on degree 1 prime ideals and 0 is restricted to prime factors p > 3o, by
Lemma 7.7, we have that

T(0)|p(®) — 1] 0(1)( < 0(1)) ) —e2/2n
! X | | —1 X s
E NQ) < 7 <

N(@)<X"—k=¢ p>Xin
plo=p>30

so this change introduces a negligible error term. Thus, since & = [] (1=
v(p)p~ )1 — p~H~! = O(1), we have

#A
3 r<a>‘S(Aa,zo) NG <1—”(p))‘

n—k
N(@)<Xx" k=€ p<X< P
plo=p>30 plg*
exp(—e ¥H#A v !
« PR v)
log X prk

plg*

An identical argument works for the sets BB, with v,(p)/p" instead of v(p)/p"*
Subtracting these expressions and noting the main terms cancel, we have

exp(—e~2/3) v(p)
ogx A H<1_p )

rlg*

#A
> r@)‘S(Aa,ao) 625 5B 30)| <

N(0)<X" k=€
plo=p>30

O

Using Lemma 7.9, we can now prove Proposition 6.2, assuming
Proposition 6.1.

Proof of Proposition 6.2 assuming Proposition 6.1. To ease notation, let ag, a,,
a3 be chosen maximally with respect to our ordering of ideals subject to N (ag) <
X, N(ay) < X2 and N(a;) < X"2%-2¢_ and let a, be as in the statement of
the proposition. We see from this choice that ay, = 3¢ defined previously and that
N(a;) < X" 3% 5o that a;a, < a;. We first consider the contribution from
0 < a,. Given a set of ideals C, we let

Tm (C; 0) = Z S(Cp].“p,,,s a())s
A <pm<<P1<ag
opr.pm<az
UnC:0) = Y SCppyPu):
Ap<pm<-<P1<ag
op..pmSaz
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VaC:io)= > SCpp Pu)-

ap<pm<-<P1<al
A <0P|..pm <A2Pm

Since a,a; < a3, all products 0p; .. . p,, occurring in V,,(C; 0) lie in our Type II
range between a, and as.
By Buchstab’s identity, we have that

We define T, (C; 9) = S(C; ag) and V,(C; 0) = 0. This gives

S(C.ap) = Tp(C;d) = Vi(C;0) — Ui(C:0) = Y (= 1)"(T,,(C; D) + V,,(C; ).

m=0

We apply the above decomposition to .A,. This gives an expression with O (e %)
terms since trivially 7;,(Ay) = U,,(Ap) = V,,(Ap) = 0if m > n/e>. Applying
the same decomposition to S(B,, a;), subtracting the difference weighted by
A= é#A/#B and summing over ? < a, with 1z (0) # 0, we obtain

D 1R @)(S(Ay, ar) — AS(By, a1))

0<ap

< Y D IR®IT (A 0) = AT, (Bo; 0))

0<m<n/e? 9<ay

+ D D IR@ Vi Ay ) = AV, (B d) | (7.6)

0<m<n/e?'0<az

For the first term on the right-hand side of (7.6), we expand 7,, as a sum, giving

Y IR@)IT(Ay; 0) — AT, (By; 0)]

o<ap

< E 1% (0) E |S(¢40p]...pm’ ap) — )"S(Bapl...pma ap)|.
o<ay ap<pm <-<Pp1<ag
opi.pm<az

We put 9’ = p; ... p,0 and note that any given 9’ occurs at most € 27 (') times
in the sum above and satisfies 9" < a,. Thus, using Lemma 7.9, we have

D IR@)IT(Ay; 0) — AT, (Ba; 0)

o<ap

& Z €2 T(@)|S(Ay, ag) — AS(By, a9)|

'<ay
plo'=p>ag
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,exp(—e H#A v\
<€ log X l_[ - prk :

plg*

For the second term on the right-hand side of (7.6), we expand V,, and
S(Aop,...p» Pm). For the part of the inner sum involving A,, this gives

D IR@Vu(Ar ) =Y 1@ Y S(Aopp,. )

d<ay 0<ay A<Pn<-<p1<ag
a2 <0P..pu<a2Pm

=Y 1z > > oL

d<ap Ao <pu < <P1<ag

a
A2 < 0P P Ko pp OP1Pma€A

pla=p>pn

Since a occurring in the sum above has all prime ideal factors bigger than ay, it
has O(e~?) prime factors constrained only to be larger than p,,. Thus, we may
rewrite the above expression as

DD r(w,

R a'eA

where R’ ranges over O(e~?) polytopes describing the possible prime
factorizations of a, all independent of X. Each polytope is in [€2, 2n]
for some ¢ <« €72. Moreover, by ordering the coordinates such that the

first £’ coordinates correspond to the factor dp;...p,, we see that (e, ...,

e) ER=>k+e< Zleei <n—2k—esince a, < 0p;...p, < az. Applying

the same manipulations to A V,,(B,; 9), we find

D 1R @)(Vi(Ag; 0) = AV, (Ba; 0) < Y

o<ap R

Zlgz(a) - AZlR/(b)‘.

acA beB

By Proposition 6.1, this is O(#A(log X)~'°). This completes the proof for
0 < ap.

The contribution from 9 with @ > a3 and N (9) < X*72¢ can be handled by an
essentially identical argument. Let b,, b; be chosen maximally such that N (by) <
X#+2€ and N(b3) < X" **andlet T/, U/, V! beT,, U,, V,, with a, replaced
by b, in the conditions on the summation. Applying an analogous decomposition
to the argument above, it suffices to handle only the terms corresponding to T,
and V, . Since b,a; < bs, all products dp; ... p,, occurring in V,, lie in the range
[b2, bs]. In particular, if a € A,,,. ,, for such a product dp; ...p,, then a =
a’dp; ...p, for some ideal a’ with N(a’) € [X**€, X"~%*~<]. Such sums can be
handled by our Type II estimate given by Proposition 6.1. Similarly, any product
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0p; ... P, occurring in T, satisfies 0p; ... p,, < by, and so the terms 7, can be
handled by our Type I estimate given by Proposition 7.5.

Finally, the contribution from 0 with a, < 9 < a3 or X*#*2¢ < N(0) < X" *%
is negligible without any Buchstab decompositions since it can be written as
a sum over O(e~2) polytopes to which Proposition 6.1 applies. This gives the
result. O

LEMMA 7.10 (P6lya—Vinogradov-type inequality). Let q be an ideal with a
prime ideal factor of norm at least logloglog X and g = N(q). Let x; be a
character of O with modulus q and no infinite component (that is, s factors
through (Ok /qOk)*). Then we have

n—k

> xf(;a,-«”/ef_‘):o( 3 1). 1.7)

ae[l.q]"* ac[l,g]"™*
ged(Nk (a),q)=1 ged(Nk (a),9)=1

Proof. This follows from a Podlya—Vinogradov-type inequality for
Z[/01/qZ[+/0], but there are some technical complications relating the
restrictions on the algebraic integers « appearing to ideals and the modulus ¢
of x ;. We let q; be a prime ideal factor of q of largest norm, and factor q = q;q»
with q, the largest factor of q with norm coprime to N(qj;). By assumption, we
have that N(q,) > logloglog X and is a prime power of exponent at most 7, S0
g2 is coprime to the ideal generated by n6. Correspondingly, we factor x s = xi x2
into characters modulo q; and q,. Letting g, = N(q,), we see that q,|(g.) and
SO wWe can view x, as a character on Z[«’/@]/qu[W] = Ok /q:Ok. (We have
Z[01/g:ZI0] = Ok /q,Ox since q, is coprime to the ideal generated by
n6.) Finally, we note that we have g, > N(q;) > logloglog X. By writing
ay = ¢q,a; + qia, (where ¢, = N(q,)) and using the Chinese remainder theorem,
we see that it is sufficient to show that

n—k
Z X2 <Z a;v 9il> = 0(g5™").
ae[l,q2]"* i=1

Finally, we let i be the additive character of Z[/6] / qzz[\'/é] given by
w(Z;:l a;j~0i~')y =exp(2mia,/q,) and x; be the Fourier transform of x, given
by

1
B == Y WY@y

2 €Tl ) g1 /6]
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We have
n—k
> m(ZaiW_-l): Yoo B Y v(—ap),
ae[l,g]"* i=1 BELZI Y0/ q2Z1 /0] ae[l,q 1"

where o = Zi:lk a;~/07=1, viewed as an element of Z[</01/¢>Z[~/0]. The inner
sum is 0 unless the final n — k components of § are equal to 0, in which case it
is qg’_k. Thus, we are left to show

> >€z<2k:b,-W> = o().

by,..., breZ/ g i=1

We note that

BRB = D xMv@y)

y€ZI¥01/ 0221 V6]

= > Y@ > .

aepZI V010221 V6] AeZ[Vg)}/QzZ[W]
=

Denote the inner sum by fgz(cr). We then see that x,(u) fg(e) = fz(uer) for any
invertible € Z[/01/g-Z[/0]. But if u = 1 (mod (g»)/ ged((g»), («))), then
Mo =« in Z[\”/E]/qQZ[W], and so fz(ar) = Ounless x,(u) = 1 for all invertible
uw =1 (mod (¢2)/ gcd((g2), (). Here the ideals are viewed as ideals in Oy,
noting that the choice of lift of « € Z[/0]/q,Z[~/0] does not affect the ideal
gcd((«), (g2)) (recall that Z[W]/qQZ[{Vg] = Ok /q:0k). But yx; is induced by
a primitive character (mod ¢,), and so this only occurs if q,|(g2)/ gcd((g2), (&)),
that is, if q, { (o) (since g5 is a prime ideal of large norm, and so lies above an
unramified rational prime). Thus, x»(8) = 0if q»[(8).

We also note that x>(uB) = x2(u)x2(B8) for any invertible w, so x» is of
constant magnitude ¢, on all 8 such that ged((8), (¢g2)) = 0. By Parseval’s
identity, we have

1
Yo @P= Y e@P = e(@)/g < L.

a€ZI Y01/ g2 ZI V6] 2 BEZIN01/a:ZI V6]

Thus, since there are O (g% /N (D)) elements 8 € Z[/0]/q,Z[/6] with gcd((B),
(92)) = 0, we see that c2g5 /N (9) < 1, which gives

A N (gcd i 1/2
(B < (ge ((/33/2(42))) .

9>
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Thus, recalling that x,(8) = 0 if q,|(8), we have

k
Z iz(Zbi\/"eil)‘gniﬂ Z N@®)'? Z 1.

bi,ee bk €Z/ g i=l @ dig/a 1<b1, bk <2
o|(h, b VoiTT)

We see that the final sum is counting points in a bounded region in a lattice of
rank k. Any point (by, ..., b;) with 3|(X+_ b;~/67-1) must have 5, |b;| >
N (Zf:] b,/6i=H1/" > N(@)"/". Thus, all nonzero vectors in the lattice, and in
particular the basis vectors, must have length >> N (0)!/". Therefore, the number
of points is O (1 + g% /N (0)*/"). This gives

k
2 XZ(Zb"nQH)‘g% 2. (N<°>”2+q§N(o)“2—’</">

bi,....bk€Z/ @ Z i=1 q2 0l(q2)/ a2
9 9
N(q2)1/2 N(qz)l/z—k/n :

Here we used the divisor bound in the final line. Since 2k < n, this is o(1), as
required. O

<L

We finish this section with a proof of Lemma 6.4.
Proof of Lemma 6.4. We recall the definition of B(ay):
B(ag) = {ideals b of Ok : N(b) € [Ny, (1 +n)Ngl, x*(b) = x% (A)xj (@)},

where here, and throughout the lemma, ¢y = Z;’;lk (ag);~/0~!. To ease notation,
let g = g*. We have

> Yo rl)y= > Y 1)

ape[l,q]"* beB(ag) ape[l,q]" % N(b)e[Ng,(1+n1)N]
ged(Nk (ag).q)=1 ged(Nk (a0),q)=1 x*(6)=x%, (A)x} (x0)
1+ x*(0) x % (A) xF (o)
- Y we ¥ 2
N(b)e[Ny,(1+n1)Ny] ape[l,q)"*

ged(Nk (a0).q)=1

(2 DT )

age[l,q]"* N(b)e[Ny,(14+n1)Ng ]
ged(Nk (a0),q)=1
nmNgy
ol == > X))
log X

age[l,q]"*
ged(Nk (a9),q)=1
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In the second line, we have used the fact that 15 is supported on ideals with norm
coprime to ¢ and so on ideals with (x*)? = 1. In the last line, we have separated
the summations and used a simple sieve bound for the sum over b in the error
term. Recalling the definition of v(p), the first term in parentheses is

1 g v(p)
O a (=)
ape[l,q]"* rlq
ged(N (ag).q)=1

By the prime ideal theorem (Lemma 4.3), the second term in parentheses is

Y 1gb)

N(b)e[Ng.(1+n1) Ny

_ q"_k V(p) )(Z 1"de] de@
i 10-55)( ] wow)

(e1,....ep)€ER
XZio1 4 N ()N

n—k pnyn
q" "Ny l_[( V(P))( /
+072(1)
logX = (1,me0)ER

Xz,-:lf‘fe[zvg,<1+m)1\’81

Since we have an error term which depends on R, we may think of R as fixed
and 7, as small. Since R is closed and log Nj /log X = n+o(1), we see that the
integral is equal to

de,...de;_
m/---/%wna):lﬁo(l).
.-

. €y

Finally, we recall that q* is square-free apart from an ideal factor of norm O(1)
and N(q*) > (logx)<, and so e satisfies the conditions of Lemma 7.10. Thus,
we have that

mNg . _ NG V(p)
log X Z . Xy (@) = O( log X 1_[ '
ap€e[l,q]"” rlg
ged(N (ap),q)=1
This gives the result. O

Thus, we are left to establish Proposition 6.1.
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8. Type II Estimate: The L! Bounds

In this section, we introduce an approximation 1 ~ 1 in our Type II sums
and establish various L' estimates based on this. Much of this section is a
generalization of the corresponding estimates of Heath-Brown [13]. The aim of
this section is to reduce the proof of Proposition 6.1 to Proposition 8.7.

We wish to establish Proposition 6.1, namely that

pIp TICIECE, 2}mw<RW%A (8.1)

acA beB

where R C [€2, 2n]* is a polytope such that there is an £ < £ so that any e € R
satisfies k + € < Zle e; < n— 2k —e. We recall that ; = (log X)~'% and that

L@ |1 a= P R Wit NG) = X9 (e ) € R,
R - 0, otherwise,

n—k
= {(Zai v 9i_1> Xy <a; < X +mXi, a; = (ag); (mod CI*)},
i=1

={b: N(b) € [Ny, (1 +n0)Ng1, x*(6) = x5 (A x} ()},

-1
o TI-22) ()

Plg*

with Nj > € X" the smallest norm of an ideal in 4. Since the implied constant is
allowed to depend on ‘R, we may assume that R is defined by a bounded number
of linear inequalities, none of which depends on our underlying parameter X. We
will therefore suppress the dependence on R for the rest of this section.

We now wish to reduce Proposition 6.1 to the following statement.

LEMMA 8.1. Let R satisfy the assumptions of Proposition 6.1. Given a
hypercube C, write C = R, x R, with R, representing the first £’ coordinates
and Ry the final £ — ¢ coordinates. Then for any set of nonoverlapping
hypercubes of side length n? which covers R, we have

Z (Z lRl(a1)1R7(a2)—6— Z 1R|(bl)1R2(bz)) <n 17:/2#./4,

C=R xR, * a1.a2 b1.bs
CNR#Y  a1az€eA b beB
1/2
E ( E 1z, (a)1g,(az) — 6— E 17%[(["1)1722(52)) <R ’71/ #A.
C=RixR, ap,az by,by
CCR ajareAd bibreB
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We note that 1%, is supported on ideals b with N(b) € [X*F</2) xn=2~¢/2]
from our bounds on Y_i_, ¢;.

Proof of Proposition 6.1 assuming Lemma 8.1. We cover R by O(nfze)
nonoverlapping hypercubes C so that each of ey, ..., e, lies in intervals of
side length n7. We see that

Yo l@<lr@ < Y le(@).

CCR CNAR#H

Thus, first upper bounding the sum over a € .4 and lower bounding the sum over
b € B, and then lower bounding the sum over a and upper bounding the sum
over b, we obtain

> (@) - 6— Y 1z(b)| <

> (Z Ie(a) — 6— > 10(5))’

acA bEB CNR#AY “acA beB
+1> (Z Ie(a) — Zlc(b)>'
CCR “acA beB
~ #A
+6.5 >0 (). (8.2)
CNR#4 beB
CZR
By the prime ideal theorem (Lemma 4.3), we have fore,, ..., e, > €2,
Z | H%ZXZf:]ei.

P, Pe )
N(ppelXx X7

Thus, since B is supported on ideals b with N (b) € [Ny, (14 n;)N,], we see that
for any hypercube C under consideration,

> 1e(b) < n¥ Ny < i HB. 8.3)
beB

There are OR(nfz(“])) hypercubes C intersecting the boundary of R since R is
a polytope defined by Ox (1) inequalities. Therefore, by (8.3), the final term on
the right-hand side of (8.2) contributes

~#,4 5 O 2 L) < #A Y ni T <ep mtA,

cma#w beBB CNRA£D
CZR CZR
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which is negligible. Thus, it suffices to show

> (Z 1e(a) — 6— Zlc(b)>‘ <r ' #A

CNR#H “acA beB

and similarly when summing over all C with C € R.

Any hypercube C can be identified with R| x R, with R, representing the first
¢’ coordinates of C. Call C good if C N'R # @ and C does not contain any point
e such that |e; —¢;| < rﬁ for some 1 <i < j < £.If C is good, then any a with
1¢(a) # 0 has a unique representation as a = a;a, with 1z, (a;) = 1g,(a,) = 1.
If C does contain a point e such that |e; — e;| < 57, then there can be between 1
and rn different representations a = a;a,. Thus,

> (Z Ic(a) — é% > lc(b))

CNR#AY “acA beB
> ( 3 1R1<a1)1m<a2)—6— 3 g, (6, )1R2(bz>)’
CNR#D uluzeA blb2€B
( B Zlc(b)D (8.4)
CHR#M beC
C not good

and similarly when considering all C € R.

There are 0()7[2“71)) hypercubes which contain a point e with |e; — ¢;| < rﬁ
forsome 1 < i < j < £. By (8.3), each such hypercube contributes O, (nl’Z 4B)
to the inner sum above. Thus, the contribution from hypercubes which are not
good is O (m#A).

Finally, Lemma 8.1 shows that the first term on the right-hand side of (8.4) is
Ox (n,"*#A), giving Proposition 6.1. O

It will be convenient to split the sum to localize the size of the norm of a,a,
and b, b,. We let

10¢
772 - 771 k)

n—k
= {(Zaiv" 9"—1) X <a < Xi +mXi, a; = (ap); (mod J!g"),

n—k
N(Z a;v/ 9f1> Xy, X; + nzxg]},
i=1

B ={beB:N(b) e [X), X} +mX1).
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Here we have extended the congruence conditions in A from a = a, (mod ¢*)
to a = a;; (mod J!g*), for a suitable constant J <« 1 which will be chosen later
do be large enough in terms of n and k. We consider separately all a;, such that
ay = ap (mod ¢*) and a = a; (mod J!) = pt N _,a;vV0~")Vp < J.
(It is sufficient to only consider such ay, since 1 is supported on ideals with no
small factors.) The key estimate we wish to establish is the following.

PROPOSITION 8.2. Let R satisfy the assumptions of Proposition 6.1. Uniformly
for Xy € [Ny, (1 + O(1n1))Nol and over all hypercubes C = Ry x R, "R # @
occurring in Lemma 8.1, we have

S Cr, ry (XD#A <1 X* (o) )

1 1 =
u]Z:az Rl(al) Rz(aZ) ¢K((q0))yK (_ﬂ*)lxg—nﬁ*

0.11126./4/

+ 0, #A),

where gy = Jg*, and

g™ cr, xR, (Xo)#B' < X" (ao) ) 13 12
" I, (b1, (bs) = X  Neout ),
b1,bo " ( 1) " ( 2) ¢K((q*))yK (_5*)5}((')! np (772 )
b]bQEB,

where B* € [0, 1] is a quantity depending only on X and where for a set S C R*

d€1
CS(I)_/ / 1/21_[ e
i=1"1

T logt log(t + n2/2t)
"7 llogX’  logX )

Here g* will be a possible exceptional zero if one exists, and 0 otherwise.
We note that for any set S C [€2, 2n]°, we have the following Lipschitz
bounds.

LEMMA 8.3. Let S C [€2,2n]", and let s* = sup{Zf:1 e:ecSlands™ =
1nf{zl e 1 e €S)

(i) We have

1)
CS(I‘{‘(S)_CS(I) <<€ 1/2 .
Up)
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(ii) If S is a polytope and logt/log X € [s~ + €, sT — €], then we have
)
cs(t+6) —cs(t) Les .

(iii) If S is a hypercube (with edges parallel to the coordinate axes) and £ > 1,
then

3
cs(t+8) —cs(t) <K e
All implied constants may depend on n and {.

We note that the implied constant in the first bound is independent of S,
whereas the implied constant in the second bound depends on S.

Proof. The first bound is straightforward. For any choice of ey, ..., e;_|, we
have
de 8
I B PR Te AE AR A AR
ep ¢ e
(21,..,,65)€$ (61,...,€()€$
Zf:] e €L, Zf:] ei€Tiys

Expanding cs(t +68) —cs(¢) by the integral definition and substituting this bound
then gives the first claim.

We now consider the second claim of the lemma. The result is trivial if § > €3,
so we may assume 8 < €. Since S is a polytope, the (£ — 1)-dimensional region
S, of e € S with Zle e; = u is a polytope depending on u. After translating S,
by O(v), we see that it differs from S, , by a region of ((¢ — 1)-dimensional)
volume Os(v), unless S has a face contained in Zf;ll e; = ug for some ug € [u,
u + v]. But S cannot contain such a face for u € [s~, sT — v] since it is convex.
Therefore, foru € [s~, s™ — €] and v < €3, we have

d€g 1 d€g 1
+ Oe,S(U)~
(e1 er)ES, € .. (e1,....0) €Syt €r...€

Here we used the fact that if e € S, then e; > €2. Thus, we find that |cs(f +8) —
cs(t)] is

del deg 1 del ...dEg_l d
uel; 7}5/2 B €1...€ "
S

ec
Z oi—u T ei—u loex8/0
=1¢€i i=1 ¢ =UT g x
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14 8
Les 7, s 7
ueZ; 772

This gives the second claim.

Finally, if S C [€?, 2n]" is a hypercube with edges parallel to the coordinate
axes and £ > 1, then the (£ — 1)-dimensional volume of ¢ € S with Y"r_ ¢; = u
is a region which varies in a Lipschitz manner as described above, with Lipschitz
constant O (1) independent of S, since all faces of S are at an angle >> 1 from
the hyperplanes Zle e; = u. Using this in the bound above gives the final claim.

O

We first show that Proposition 8.2 gives Lemma 8.1, and so Proposition 6.1.
We will then go on to establish Proposition 8.2.

Proof of Lemma 8.1 assuming Proposition 8.2. Summing the first estimate of
Proposition 8.2 over all hypercubes C C R under consideration, we obtain

> ) g alr, (@)

RixRr=CCR 01,02

ajare A’
g GHA < X () ) ]
_ 1+ . Xp).
¢k ((90)) vk (=B X" CXQ;CC( v

n 0(771/3 26— ”#.A/)

Since R is convex and contains points with sum of coordinates bigger than
n + € and smaller than n — ¢, there are O (n; e >) hypercubes C = [ay,
ay +n?) x -+ x [ag, a; + n?) intersecting the boundary of R with Zf Lai =
nlog X/ log X + O(n?). For each such hypercube C, we see cc(Xf)) < n% 2,
Therefore, we see that

Y ce(Xy) = cr(XY) + 0R<n1”+4 sup ce(Xg )) = cr(X}) + Or(n}).
Cor CNR#W

Thus, we have

gy GHA < X*(do) ) )
1 1 1 5 = 1+ — X
RIXgCCR UIZ:UZ (AT 62) ¢k ((q0)) vk (—po)Lxp ™ cr(Xp)

alaze.A

+ Or(P#A).

We note that for all Nj < X < (14 O(n1))Ny, we have cg (X)) = cr(Nj) +
Ox(n;) by Lemma 8.3, and we have l/X(')'fn‘s* =(1+ O(m))/Né'*"ﬁ*. We recall
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that g9 < Ny and n; = (log X)™'®, so ¢ /¢« ((q)) < n;"/'®. Thus, inserting
these bounds and summing over a suitable set of disjoint choices of A’ covering
A, noting that there are ¢ ((q9))/¢x ((¢*)) choices of a;, we obtain

" Scr(NIH#A ( x*(ao) )
1g, (a)1g,(0) = 1+ —F
R;m Z ri(alr, (00) = e BN

Cl]Cle.A

+ Or (0, #A).

We obtain an entirely analogous result for B which is larger by a factor
#/(S#.A). This gives the second claim of Lemma 8.1. The first claim is entirely
analogous, but we sum over C N R # @ instead of C C R. O

Thus, we are left to establish Proposition 8.2, which we will do over the next
two sections.

We first wish to replace 1%, (a) with a more easily controlled approximation
iRZ (a). To do this, we will take into account the possible effect of an exceptional
character distorting the distribution of prime ideals in residue classes (mod q),
and so we recall the results on zero-free regions for Hecke L-functions given
by Lemmas 4.4 and 4.5. This also makes precise the choice of g*, x* in the
definitions of .4, B which so far have been treated as arbitrary quantities and the
quantity S* appearing in Proposition 8.2.

We now describe how we define x*, ¢* and 8* and our approximation inz. If
an exceptional character x,+ does exist (in the sense of Lemma 4.4) and N (0%) <
exp(y/log X), then we let x* = y,+ with corresponding modulus q* = 0* and real
zero B* = By« If xo+ does not exist or if N (0*) > exp(y/log X), then we make an
arbitrary choice of q* and x* such that x* is a nontrivial primitive real character
to a square-free modulus q* with N (q*) < exp(y/log X), and we take 8* = 1/2.

With this choice of q*, x*, 8*, regardless of which situation we are in, we
recall the consequences of Lemma 4.5: we have that

Y A@x(a) K X exp(—cy/log X) (8.5)

N(@<X

uniformly over all nontrivial primitive Hecke characters x = x; ]_[::11 YRS

x* with torsion part x; of conductor < ¢*1°1°eX¥” exp(Flog X) and with m; <
g*(oglog X)? exp(/log X) forall 1 <i < n — 1. Ifinstead x = x*, we have

—_X#

g TOX exp(—cy/log X)). (8.6)

> A@x*(a) =

N(a)<X
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If p* = 1/2, then all the terms involving x* or 8* will be negligible and can be

ignored.
We then define
= x*(b)
1%,(b) = NO®)Y 1+ Aos 8.7
72 (B) = cR, ())( NG ﬂ)%j > (8.7)
where
R =X,
™1 R N@®) <R
(0] . < ’
I N )
0, otherwise,

and we recall the definition of cg, (¢) from Proposition 8.2.

The sum Zb\b A, should be thought of as a sieve weight which approximates
the indicator function of ideals with no prime ideal factors of norm less than
R, whilst the cg, (N (b)) factor represents the density of 1%, on ideals of norm
approximately N (b).

We will now proceed to show that the first estimate of Proposition 8.2 holds
with 1%, in place of 1z, and establish the second estimate directly. This then
reduces the problem to showing 1z, (a,) ~ iRz (a,) for a;a, € A, which we do
by our L? estimate in the next section.

To ease notation, we fix ay such that x*(ap) = x% (A) X5 ().

LEMMA 8.4. Let C = R, x R, be as in Proposition 8.2. Then

g cR, xR, (X0)#B' (1 X" (ap)
ok (@) vk (—BH)exy "

> g, (@)1g,(b) =

abeB’

) + O(m#B).

Proof. This essentially follows from the prime ideal theorem. We recall that
B = {a: N(a) € Z, x*(a) = x*(ap)}, where Z is the interval [X], X} +
mX{]. Since x*(ab)? = 1 if ged(ab, q*) = 1, which occurs on the support of
1%, (@)1%,(b), we have

1
2 IR @Ig,(0) = = D Ir, @1r, (B)(1 + x"(@b) X" (0)).
agéB’ N(SBI;GI

By the prime ideal theorem (Lemma 4.3), partial summation and Lemma 8.3, we
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have

> g, (@)1g,(b)

a,b
N(ab)eZ

XZicide, .. . de c
i=1€i

(e1,...,e0) ER1 xR

xZioitier
dey...de;,_
=X logX/ (/ : / ¥)dt + OmEXD),
X'eT €1...€
eER]XRz
Zf:l €=t

= MmX{er, xR, (Xp) + 0(’7§X(r)l)'

Similarly, using (8.6), we have

> g, (@)1g,(b)x"(ab)

a,b
N(ab)eZ
/ / - IEIdel e oaexn
n
T (- ,3 )K 20

l 1 €i
(T e/c)e'RlX'Rg

xTicitiez
— 2 ”/3 Xn) 19) 2Xn
= (—B)" Xy rixRr,(Xg) + Oy X0).
Since #B' = ¢k ((¢*) vk X5 /29™ + O(X(’,'*l), this gives the result. O

LEMMA 8.5. There is a constant ¢ > 0 such that for any integer q, we have

M(D)P(D) R qné (0(1) )

! - +0 —cy/logR) ).
N; N®)  CN®  k(@rx q"" exp(—cy/log R)
ged(N(0),9)=1

Proof. This is an application of counting via complex analysis and the zero-free
region of {x (s). By Perron’s formula, we have (noting that the integrals converge
absolutely)

Z n(@®@)p(0) log R 1 oo E( Z M(D)P(D))ds
2 1+4s
ecd(N (3) =1 N® NE) 2 S s oA Cl
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1
27 Jisico S%Ck(1+5)

where f(s) is given by the Euler product

=TI 22) (1= ) (- )
s) = — — —
N(p)y N(p)y N(p)*

pt(q) pl(q)
_ n( ) + 0(p —zwe(s))>< Y n 0(p—2m(s))>_l
ps
plq
M(-ver)
X 1- —>
Pl@) N(p)
1 —1
_ 1+ 0(p-2® 1— .
l_[< tow )) H( N(p)f)
plq pl(g)

1+ioco R*
= —/ Sl +5)ds,
1

53

(8.8)

Here we have made use of Lemma 7.7 to bound the error terms in the Euler
product and assumed that R(s) > 3/4. In particular, f(1 + s) converges

absolutely for Mi(s) > —1/4 and is of size O(g°") in this region.

We first move the line of integration in (8.8) to M(s) = 1/log R (covering a

region where the integrand is analytic), giving

Z n(®@)p(0) 1 R 1 /l/logR+ioo RS
(0] —_ 0
NO) BN 2 g hoive Sk (1+5)

N(®)<R
ged(N(2),9)=1

Using the bound ¢x(1 + 1/log R + it)™! < log(2 + |t]) for |t| >

S +s)ds.

1 from

Lemma 4.7, we see that the contribution from |3J(s)| > T := exp(y/log R) is

*MJog 1 *Dlog T
<</ q . Bl L loe
t>T t T

Thus, we may discard this part of the integral at the cost of a negligible
error. We now move the truncated contour of integration to the left again, to
N(s) = —2¢/log T, where ¢ = cx/2 > 0 is defined in terms of the constant
of Lemma 4.7, so we have the bound ¢x(s)~' <« log(2 + |s|) within this
region. This introduces a term from the pole at s = 0, an integral over the line
N(s) = —2c¢/logT, and small contour integrals along the lines J(s) = +T.
The contours integrals with |3(s)| = T contribute O (g°" log T/T?), and so are

negligible. The contour integral with 9i(s) = —2c¢/log T contributes
1 —2¢/log T+iT Rsf(l + S)

— ds < qu(l)(log T)ZR—ZC/logT
2708 J gepogr—ir 82k (1+5)
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q°V exp(—cy/log R).

Thus, only the residue at s = 0 makes a nonnegligible contribution, and we have

> O R RIOLD L (o0 expcyng )

— 2
N@®)<R N(D) N(D) s=0 § é—K(l + S)
ged(N(0),9)=1

=y f(H+0 (q”“) exp(—c@))_

The result follows on noting that (1) = q”(:}/qbK((q)). O]

LEMMA 8.6. We have

QHA SR, or, (XD (1 LX)

1 1z, (b) = -
2 r @b = 2 (—pXy

a,b
abe A’

)+0( 1/3#./4/)’

where gy = J\q*.

Proof. This is a sieve calculation, relying on Proposition 7.5 and the prime ideal
theorem in the form (8.5) and (8.6). We substitute the definition (8.7) of 1%, (b)
and swap the order of summation to give

> g, (@)1r,(b)
a[?gA’

X" (u/a)
—Zlnl(a) > %Z%(N(u/a))(w( NG /a)lﬁ*) (8.9)

N@®)<R ueA
adlu

We wish to replace cg,(N(u/a)) with cg,(Xj/N(a)). Since all ideals in A’
have norm X 4+ O(n.Xj) with X§ > X", we have that cg,(N(/a)) =
cr, (X3 /N () + 0(7)1/2) by Lemma 8.3. This error term contributes

< n;/z log X Z 1z,

N(D)<R

We recall 1%, is supported on ideals a with N(a) < X"~*~¢ and with all prime
factors p of a satisfying N(p) > X € = R. Thus, 0, a must be coprime if they
make a contribution to the sum. We let ¢ = ad and recall that |1, <« log X.
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Putting this together, the error in replacing cg, (N (u/a)) with cg,(X;/N(a))
contributes a total

12 / 1/2 / p(e) n—k—e/2n
<mlogx > #A <0, logX#A ) WJFX

N(e)((RX"’k’S N(e)<Xn—2k—e/2

by Proposition 7.5, noting that if gcd(N (¢), go) # 1, then #A, = 0. The sum
here is O (log X) by an Euler product upper bound and Lemma 7.7, so the total
error is O (771/3#A’).
An essentlally identical argument shows that we can replace N (u/a)'~#" in
(8.9) with X~ """ /N (a)!=#" at the cost of an error term of size 0(171/2#.,4’).
Since all elements uof A" have x*(u) = x*(ao), we are left to evaluate

Xy x*(@) x*(ag) N (a)' =# ,
Xu: 1z, (a)cr, (N((;)> <1 + CpxT ) Z hott AL

N(@®)<R

Since all elements of A’ have norm coprime to gy, we can restrict to gcd(N (D),
go) = 1. Using Proposition 7.5, again, we may then replace #A/  with
p(ad)#A’/N (ad) at the cost of an error O (X"~*~¢/>"), which is negligible. Thus,
we are left to evaluate

, X0 X (@) x*(a) N (@)~ Aop(ad)
#A Z 1z, (G)CRZ(N( )> (1 + X ) N%;R N (@)
ged(N(@).g0)=1

Any pairs a, 0 making a contribution must be coprime since 15, is supported on
ideals with all factors having norm at least R. Thus, we may replace p(ad) with
p(0)p(a), and so the double sum factorizes as

(Z p(W)1g, (a) ( X )( x*(a)x*(aow(a)l—ﬂ*))
CR, 1+ —
T N(a) N(a) (—BHE X! np
Jop (D)
) ( Z N(®) )
N()<R
2cd(N(9),q0)=1

By Lemma 8.5, we have that the second factor is q(’)’é /v Pk (o)) +
O(q”(l) exp(—c+/log R)).

Since all degree 1 prime ideals have p(p) = 1, we see that 1z, (a)p(a) =
1%, (a) unless p?|N(a) for some p > )G Thus, we can replace p(a) with the
constant 1 in the first factor at the cost of an error

<Y X s z 5 1 (14 50) < xioex.

p>X* N(a)<X” —k—e/2 x€? N(p)<X
p*IN(a)
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by Lemma 7.7. This is negligible, and we can evaluate the resulting expressions
by partial summation, the prime ideal theorem (Lemma 4.3) and (8.6). We have

1z, (@) de
Xa: N@ (N(a)) / / 1/21 L+ o0,

lll
e)ER1XR,

Z — e,eIXu
1z, (@) x"(a)
Z Ry X* R / / ; ]/2 +0(T]2)
N(a)? N(a) (=B )‘ ‘ ﬂ 1€
a (e1,...,er)ER1 xRy i=
Z —1 e,EIXn
Combining these estimates gives the result. O

With these lemmas in place, we can reduce the proof of Proposition 8.2 to the
following proposition.

PROPOSITION 8.7. Let ¢ be a fixed ideal. Uniformly over all hypercubes R| x
R, intersecting R and uniformly over all A’ C A, we have

D g, (a/) (g, (b/c) — Ix,(b/c)) < n,*#A. (8.10)
a, b principal
clb, '|a
ab/N(c)e A’

Proof of Proposition 8.2 assuming Proposition 8.7. Lemma 8.4 gives the
second statement of Proposition 8.2, and Lemma 8.6 gives the first statement
with iR2 in place of 1¢,. We are therefore left to show that the error introduced
by replacing 1z, with iRZ in the first statement is suitably small. In particular,
it is sufficient to show that uniformly over all hypercubes C = R x R, with
CNR # ¢ and all sets A’

37 Iz, @)1, () — 1z, (0) < 1,/ #A.

abe A/

We split the sum over b into ideal classes C € Clg. We let ¢ be an ideal in C, and

= (N(c))/c. Then ac’ and be are both principal integral ideals, and so can be
written as («), (8) say with ¢'|(«) and ¢|(8). The above estimate now follows
immediately from Proposition 8.7. 0

Thus, we are left to establish Proposition 8.7.
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9. Localized ideal counts

The aim of this section is to show that 1z,(b/c) = iRz(b/c) when b is
localized to a particular ideal class, residue mod q and angle of Hecke character.
The main result of this section is Proposition 9.7, which will be important in
establishing Proposition 8.7 (and, hence, Theorems 1.1 and 1.2) in the later

sections.

LEMMA 9.1. Let Ay,...,A,_1 be a fixed basis of the torsion-free Hecke
characters of K. Let A > 0. Let o« € Ok and a = (). Let b be a principal
ideal such that for each j € {1,...,n — 1}, we have

1A;(b) = 2;(@)] < A

and such that |[N(b) — N(a)| < AN (a).
Then there is a generator 8 of b such that

B =a(l+ 0(AQ)).

We caution that the implied constant above may depend on the choice of basis,
but for the purposes of this paper, we just consider a single fixed basis.

Proof. This fact is given, for example, in [7, Section 3.2]. Alternatively, it
follows from the characterizations of torsion-free characters from [19, Ch. 7,
§6]. A torsion-free character (that is, of pure infinity type) takes the form

X () = exp(Z(pa log(|ZU|) +ig, log |y”|)),

where the sum is over embeddings o, p, € Z satisfy p,ps = 0 and g, € R
satisfy ¢, = g7 and ) __ g, = 0. Provided the right-hand side is trivial on units,
this is a well-defined character on principal ideals.

The result follows from Lemma 4.2 if A > 1, so we may assume that A is
sufficiently small. Let €1, ..., €,,4,,—1 be a basis for the torsion-free units in Ok.
Givenm = (my, ..., m, 4.,_1), there is a choice of coefficients g, such that

an log |e;.’| =2mm;.

(This is a system of linearly independent linear equations—the linear
independence follows from the nonvanishing of the regulator.) By considering
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m as the standard basis vectors of Z"72~!, we see that there are choices ¢ j.o for
1 < j<r+r,— 1suchthat

i ifr =,
i o log|e?| =
Zq” gle/| {0 otherwise,

o

and these give rise to Hecke characters xi, ..., X +r—1 such that

Xi(() = exp(z‘ Y 4j0log |y“|)

since the right-hand side is invariant under multiplication of y by units. These

X, are torsion-free, and so of the form A{' .. .)»f;"_’ll for some ey, ..., e,_1 Km 1.
Thus, since 4;((e)) = 2;((B)) + O(4), we have x;((«)) = x;((B)) + O(4Q),
and so

i qu'“ logla’| =i qu log|B7| + O(A) (mod 27i).

But, by construction, we see that we can find B, = €]"' .. et B for suitable

S ri4r—1
m € 7 such that

i) gjologla’| =iY g, log|B|+ O(A).

Moreover, since N(B,) = N(x)(1 + O(A)), we also have ) log|By| =
Y . logla®|(1 + O(A)). Thus, we see that since the (g;,), are linearly
independent, |87 | = (1 + O(A))|«°| forall o.

Similarly, we can choose p,, = 1 for a complex embedding oy, and p, = 0
for all other embeddings, and then find constants ¢, such that

Xoo (V) = CXP(log( - ) +) 4o log |y“|>

[yl

is a Hecke character. Again, we must have ., (@) = x,,(82)(1 + O(A)). But
since |a”| = |BY|(1 + O(A)) for all o, we see that this implies «®™ = B5°(1 +
O(A)). Thus, we have that «° = g5 (1 + O(A)) for all complex embeddings o
and that |a°| = |B5|(1 4+ O(A)) for all real embeddings. From this, we see that
o= B+ 0(AQ)). O
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LEMMA 9.2. Let Ay, ..., A, be a basis of the torsion-free Hecke characters,
and define
n—1
1 A A
(- ek () i) <o
W(a; b; A) = i 2m A A;(b) Aj(b)
0, otherwise.

Let A = B" and A > A=</ Then we have

vk A"A
E Wi(a; b; A) = Y (1+ 0(4)).
ASN(0)<A+AA K
a principal

(Here we use the branch of arg(x) such that arg(x) € [—m, 7).)

Proof. The result is trivial if A > 1, so we assume that A is sufficiently small.
By Fourier expansion, if |z| = 1, then

1

L sinTmAN? <1 - |arg(z)|>, if |arg(z)| < 27 A,

2JTAZZ (m) = 2w A '
mez 0, otherwise.

Thus,

n—1

A (@)™ (sinm; A\’
e R — n-1 . y
W(a; b; A) = A Z l_[ A, (bymi ( wm; A )

mezZn-1 j=1
- "(a) .
— a3 0 (m). ©.1)
mezn-1 X (b)

Here x™(a) = ]_[:L;: A?’(a), w(m) = ]—[;;}(sinnmjA/nmjA)z, and we take
sintm;A/mwm;Atobe 1 whenm; =0.
We note that

n—1
> W b;m:Ah—KZ Yo xm®hm) Y x™(@)E(),

ASN(a)SA+AA & mezZr-! ALN(a)SA+A4A
a principal

9.2)
where & runs over all characters of the class group Clg.
Since w(m) K ]_[Z;} min(1, (m;A)™?), those terms with m; > M, for some
j contribute O(A™"*2A/M,) in total to (9.2). Choosing My, = A~?" shows that
these contribute O (A" T2A).
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If |m|| <« My < A< and x™£ is nontrivial, then the inner sum over a in (9.2) is
O(A'=¢) by Perron’s formula and the bound L (s, x™&) < O(|s|+|m]))"=2)/2
from Lemma 4.6. Thus, these terms contribute O (A" 'MJ'A'=¢) = O(A™A)
in total to (9.2).

Finally, the term with x™& = 1 contributes yx A" A(1 + O(A))/ hg. Putting
these estimates together gives the result. O

LEMMA 9.3. Let ¢ be a fixed ideal and q < q*'°¢"°¢8 exp(Ylog B) with
(6n)"N(c)lq. Let o, o € Ok be such that ged((q), (Bo)) = ¢ and fo = a(1 +
0 (8y)). Let A = §; and Ng (o) < B*. Define

V() = Y I, (6/0OW(a; b; A).
BeOk
B—al< Alal /8y
p=Po (mod q)
N(@)/(+4) <N (B) KN (a)
Then if q*|(q) /¢, we have
n—1
~ hxox((@)/0)
x > 1z, (6/0)(1 + x*(6/0) x*(by/c)) + O (8, A" B").

b
N(a)/(1+A)SN(b)<N(a)
c|b

V()

If instead q* 1 (q) /¢, we have

Anfl '
Vi) = ————— § 1%, (b/¢) + O8> A" B").
hidi((q)/c) e 0
N(u)/(1+A)c|<bN(b)<N(a)

Here b denotes the ideal (B) generated by B € Ok. Similarly, a = («) denotes
the ideal generated by o and by = (By) the ideal generated by By.

Proof. We first detect 8 = B (mod q) by characters x; of the multiplicative

group (O /)* where § = (g)/c. Since ged((g), (By)) = ¢, we see that 8/, can
be viewed as an element of O /f if ¢|b. We see that #(Ok /) = ¢« ((g)/c), and

SO
1
Y= @0 Iz, (b/0OW(a, b; A), (9.3
« ¢K<<q)/c)§ ﬂ;K X (B/ B 1R, (6/OW (3, b; 4),  (9.3)
|B—al<Alal/s)"
1<N(a£|%)<l+A

where fo is a sum over all characters of (O /f)*.
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The characters x; are not characters of ideals, and so we first translate them
to this setting. Given a character x; on (O /f)*, as in the proof of Lemma 9.1,
there is a choice of constants p; ,;, go.5; < 1 for each embedding o : K — C
such that

i) = x;(v) exp(Z 9o.x; 0g Iy"l> [T /1y pren

is trivial on units of Ok. This then defines a character on principal ideals coprime
to f, which we can lift to a character on all ideals coprime to f. The resulting
character is not unique since there are O (1) possible choices of the constants
Po.xs» 9o.x; and the lift is only unique up to multiplication by Hilbert characters.
This lack of uniqueness is irrelevant to us, so we arbitrarily fix a lift for each x;,
which we also denote by ;.

We would like to replace x;(8/8;) by x;(b/by) in (9.3) so that we have
characters of ideals. Since b, by € C, we have b = by(1 + O(8)), and so,
since log is continuous, xs(8/8)) = x5(b/by) (1 + O(8y)). This error term O (&)
contributes

1 12 xn pon
_ I} 5. "A"B
@i L W<

X =a(14+0(A/8)")
to (9.3), which is negligible. Thus,

1
ox(@)/0
3 H6/6 1R, B/ W (@, b A) + OBYA"B).

X5 BeOk s
1B—al<Alal/5)"
1<N(a/b)<1+A

c|b

Via) =

Since all B in the above sum satisfy 8 = a(1 + O(A/8,/*")) and that A/8}/*" is
sufficiently small, we see that no two terms appearing are associates. Therefore,
(B) ranges over a set of principal prime ideals b with |[N(b) — N(a)| < AN (a).
Since W(a, b; A) = 0 unless [A;(a) — A;(b)] < A, we may restrict the
summation over 8 such that this holds. But then by Lemma 9.1, every such ideal
b occurs exactly once in the above sum. Therefore,

| 5 ) 1/2
Vy=———3" 3 30/bplr,(6/0W(a, b; A)+0 (8> A" B,
¢K((Q)/C) X5 b principal f v 0
I<N(a/b)<1+A
clb
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We use characters & of the class group Clg to detect the condition that b is
principal and insert the Fourier expansion (9.1) of W. This gives

A"
1% R — ) m —m = _[]
@ = @70 m;,“’“‘”%;X (@) x ™(©8 () Z(0o/0)
XY XTM0/0EDB/0F(0/0 1k, (b/0) + 05, A"B").
clb

1<N(a/b)<14+4

9.4)

By partial summation and (8.5), we have that if x ~™& ¥ is nontrivial (that is,
takes values not in {0, 1}) and not induced by an exceptional character x*, then
there is a constant ¢, > 0 such that

> x "(b/0§(b/0) x;(b/0)1r,(b/c) K B" exp(—coy/log B)

N(a)/(1+2)SN(b)<N(a)

uniformly for ¢, |m| < g*°e28)” exp(/log B). This implies that the total
contribution to (9.4) from all such characters x ~™&x; with |m| < M, =

A—Zn < q*Zn loglog B exp(2n 6/10g B) is

< A*IB"M(')‘*1 exp(—co+/log B),

which is negligible. Thus, we only need to consider characters with ||m| > M,
or when x ~™& X; is a finite order character induced by 1 or x*.

As before, using the trivial bound w(m) < [] i min(1, (m;A)~?), those
characters with [|m|| > M, contribute < A~>"*2B"M;"' « §,A" B", which is
negligible. We are therefore left only with the contribution from when x ~™& x;
is induced by the trivial character 1 or is induced by x*.

By considering the finite part of x ~™& X;, we see that this character can only
be induced by x* if q*|(g)/c, and in this case, there is a unique choice of x;,
& and m < 1 such that £ x ™™ ; is induced by x*. Similarly, there is a unique
choice of x5, £ and m < 1 such that & x ™™ ; is induced by 1.

Since 1%, is supported only on ideals coprime to g (because ¢ < X 52), if
Xx ~™& x5 is induced by x*, then we can replace it with x *, and if it is induced by 1,
we can replace it by 1. We note that w(m) = 14+0(A) and x™(a/by) = 1+ 0 (8)
if m < 1 and recall that by is principal so £(by) = 1.

Thus, putting the above estimates together, we find that if q*|(g) /¢, then

Anfl
\% = 1. (b
@ = (@0 2 Iwb/o
lgN(aZ‘E;])glJrA
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A (6070
@

I<N(a/b)<1+A
clb

x*(6/O)1z,(b/c) + O8> A" B").

If instead q* 1 (g)/c, then we obtain the same expression but without the second
summation. This gives the result. O

LEMMA 9.4. Let ¢ be an integral ideal of norm O(1). Let 8y and B be quantities
satisfying exp(—/log B)q*"°¢°¢ 8 L §y < my and X''° < B < X. LetC C R”"
be a hypercube of side length 8yB which contains a point by € 7" such that
Iboll < B andby= ((0n)™" Y ., (by):~/60'~") is an integral ideal which satisfies
N(bg) = B} > B" and c|by.

Then uniformly over all ¢ < q*'°¢"°¢8 exp(/log B) with (9n)"N(c)|q and
over all such C, by, we have the following:

L4 Ifng((f]), b0) # c, thel’l

> 1R2<§) = 0.

beC
b=by (mod ¢q)
e [fgcd((g), by) =cand x*(b/c) = x*(by/c) for allb = b,y (mod q), then

> 1, (b/0)

beC
b=by (mod ¢q)
/ / del d@e/ lda
VK(PK((Q)/C)N(C) log X [T, e;

acC,ee R,
£ ei=log N(a/c)/log X

N x*(bo/c) By PV / / de;...dey_ da
Yk (=B Pk ((q) /)N ()" logX]_L e ’

aeC ee 2
Zf:]e, log N(a/c)/log X

+ o6 B,

e Ifgcd((g), by) = ¢ but x*(b/c) # x*(bo/c) for some b = by (mod q), then

> 1g,(b/c)

beC

b=by (mod ¢q)

1 d .dey_1d

/ / er...dey_ a+0(83+1/23”).
" bk (@/ON(©) logX]_[l L€

acC EE 2

£ ei=log N(a/c)/log X
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Here b denotes the ideal ((On)™" Y_;_, bi~/6'=1) depending on the vector b. All
the implied constants are effectively computable.

Proof. Fundamentally, this is an exercise in counting localized ideals via Hecke
characters, although there are some technical complications passing conditions
between the vectors b, elements of the order Z[W], algebraic integers § and
ideals b.

We note that the sum is O if the ideal by/c is not coprime to (g) since 1, is
nonzero only when all prime ideal factors have norm at least X > N(g), and
this gives the first statement. Thus, we may assume gcd((g), by) = c.

We first detect the condition b € C by Hecke characters. Since C has side
length 6y B and contains a point by with N (by) = Bj < B" (from the assumptions
of the lemma), we have that N(b) = Bj + O(8yB;) for all b € C. Here, and
throughout, given b € Z", we let B = (On)™ >_;_ bi/6'~' and b = (B). By
Lemma 9.2, choosing A = N (b) and A = §;, we have

Y 1r,(6/0)

beC
b=by (mod g)

hx
= — 1z, (6/0)W(a; b; A) + O(8"'B™).
w2 L T/ 6 )+ 061 B
a principal beC

1SN (/D)< 1+A4
b=by (mod ¢q)

Here we used the fact that A = §; < §.

Let a = (a) witha = (On) ™" )_;_, a;~/0'~" for some vector a. We see that if
W(a, b; A) #0,then A;(a) = 1;(b)(14+0(A)) forall j € {1,...,n—1}. Since
we also have the condition N(a) = N(«x) = N(b)(1 + O(A)), by Lemma 9.1,
there is a generator « of a such that «® = $°(1 + O(A)) for all embeddings
o, and so a = b(1 + O(A)). Moreover, since b € C, a hypercube of elements
of norm >3 B" of side length &y B, all such « lie within a fundamental domain
for the action by the unit group of Ok. In particular, the « such that a is within
O (AB) of C are in one-to-one correspondence with a set containing all the ideals
a making a nonzero contribution.

If the distance from a to the boundary of C is a sufficiently large multiple of
AB, then the vectors b with a = b(1 4+ O(A)) are either all outside of C or all
inside C depending on whether a ¢ C or a € C. Since there are O (AB”") vectors
a within O (AB) of the boundary of C, these a contribute a total

hg AB"
< % sup Z 1l <K AB" K (Sg-HBn‘
Yk A" Bj jaj<s beat O(AB)
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Thus, we can restrict to a € C’, a hypercube inside C with all points at least a
certain multiple of AB from the boundary of C. This leaves us with

hx
—_— 1z, (6/c0)W(a; b; A). 9.5
o7 D IR DR LRGP 9.5)
acC’ b=a(1+0(4))
aeOk  b=by (mod q)
ISN(a/b)<1+A

We can relax the condition b = a(1 + O(A)) to |b — a| < Al|a||/é, 127 since by
our above discussion, the additional terms make no contribution.

‘We now consider the condition b = b, (mod g). We see that b = by (mod ¢)
is equivalent to B = (On) ™" Y ', biv/0'~! € Ok and B = B (mod gq) over Ok
for one of [(On)"Z[/0] : O] <« 1 different algebraic integers g. (Here we
are using the fact that (6n)"|q and by is integral.) We may choose f§ such that
By = (On)™ > " (by)i~/ 6~ for some vector b, € C. We consider each such
By separately. By Lemma 9.3, the inner sum depends on whether q*|(g)/c or
not. We argue now in the case when this happens; if q* 1 (¢)/¢, the argument
is identical with all terms involving x* simply omitted. By Lemma 9.3, we find
that

> 1, (/0 W(a, b A) = 05, A"B")

BeOk
B=p; (mod q)
1<N(a/B)<1+A

An_l
* hepk ((q)/¢) Z R /c)( + x7(b/c) x*( O/C))

N(a)/(1+A)SN(D)N(a)
clb

We can estimate the inner sum of (9.4) by partial summation and Lemma 4.5,
giving

XEhieide, .. dey
Z 1R2(b/c)=/.../ Z’l ¢
I

N(a)/(1+A)cﬁjN(b)<N(a) ecRoNI (1) i=1 €i
+O0(B" eXP(—cwlog B)),
XB T le'de ..dey
Y X0/, (6/0) = / / 1 de

[/
N(a)/(1+A)N(b)SN(a) ( ﬂ) i= lel
clb

ecRNI(a)

+ O (B" exp(—co+/log B)),
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where

v
log N (a/c) o Zei o logN(a/c)}'

I@=leer’ 29I
@ {e (I+ MlogX ~ & log X

We note that w(m) = 14 O(A) and x™(a/by) = 1+ O (8y) if m < 1, and recall
that by is principal so £(by) = 1. Thus, (9.5) simplifies to give

b XZi mdel .dey
1o [ =
% R(c) J/KAB"¢K((CI)/C) 2 / f T

C/
B=p (mod q) aee(f) RaNI (@)

N 1 (b//c)/ /xﬁ ol le'del dey
J/KAngbK((q)/c) (=p»"

ecRyNI(a)

c/ 1 1 el
ae(’)K

+ 08, B").

The condition o € Og is equivalent to a congruence condition on
a (mod (6n)") which holds for a proportion r,}l = [(On)"Z[V0] : Ok]™!
of the vectors a in a cube of side length (On)". Using the fact that
X Tihie = (1+ O(8plog X))Bj /N (c), we see that partial summation shows that
the right-hand side above is

! ( P & (70 )
VKFKN(C)d)K((q)/C) (_ﬂ )E/N( )/3* gfnﬁ*
X / cr, (N(a)/N(c))da+ 0@, *B").
aeC’

We now sum over the rx values of §;. (We recall that these are the elements of
Ok /qOk of the form By = (On)™" Y ", (by);v60~! with by = by (mod ¢).)
We see that the terms involving X *(by/c) cancel unless all b = by (mod g)
have x*(b/c) = x*(by/c) since x* is primitive. The rest of the expression is
independent of the B;. Thus, if x*(b/c) = x*(bo/c) for all b = by (mod g), we
have

bzbob%ngod q)
1
v Pk (@) /N () Jacer
N X*(bo/0)
vk (=B bk (@) /ON (©)F By "

cr,(N(a)/N(c))da+ O8> B")

/ o R (N(a)/N(c))da,
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and if x* is not constant over these b, then we have the same expression with the
final term removed.

Finally, extending the integration over a from C’ to C introduces an error of
size O(AB") since the integrand is of size O (1), and this increases the volume
of the region of integration by O (AB"). This then gives the result. O

LEMMA 9.5. Let ® be a square-free ideal with gcd(d, (¢))|bo and let (9n)*"|q.
Then we have

vol C
l== """ 18] anlN ) n—1 _n(n—1) .
2 Nem((). oy T 0BT V@D

be
b=by (mod g)
0lb

Proof. Let QO = N(em(0, (¢))) < ¢"N(®). Splitting into residue classes
(mod Q,), we have that

)SENEED SIS S

beC a (mod Q) beC
b=bg (mod ¢) a=b, (mod ¢) b=a (mod Q)
olb ola

Here we remind the reader again that a is the ideal generated by o =
(On)™ Y7, a;v/0'~". Since (6n)*"|q, the condition a = b (mod g) is equivalent
to o = B (mod q) over O for one of [(On) "Z[/6] : O] different g/, all of
which satisfy 8’ = 8 (mod ¢’) over Og where ¢’ = ¢/(6n)". Since ¢’ has the
same square-free part as ¢ and 9 is square-free, we then see that the outer sum
has no terms unless gcd(?, (¢))|by, in which case there are Qﬁ’*l terms in the
outer sum. The inner sum is (volC)/ Q" + 0(83_13”‘1). O

LEMMA 9.6. If gcd(bg, (q)) = ¢, then

3 ho _ ! + 0,
lem(N (@), N(@))  7xbx (@ /ON(©)
ged(0¢,(g))bo

and if gcd(by, (q)) # «¢, then the left-hand side is O (3).
Proof. We estimate that this in an analogous way to Lemma 8.5. We let (g) =

¢q192, with ged(q,, bg/c) = 1 and q; composed only of primes which divide
bo/c. Since A, = 0, if 0 is not square-free and ¢|by, we may replace the condition
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gcd(0c, (¢))|by with gcd(@, g2) = 1. The argument used to prove Lemma 8.5

then gives
Z M(D)log% _ 1 %o Rsg(] 4 5) i
N(@)<R N(em(c, cq1q2))  27iN(q20) Jisico $2Ck(1+5)
ged(q2,0)=1
1 Rig(l+s) ( )
= Res + O exp(—cy/log R) |,
N(ga¢) 5=0 s7¢x (1 +5) p( e
where

Np) ' =N~ 1
g(1+S)=1_[ —1-s 1_[ —1-s"
plai I=N) l plaz I=N®) 1

We see that the residue is 0 if q; # (1), whereas if q; = (1) (so ged(bo, (g)) = ©),
the residue is y,;lN(qz)/qﬁK (q2). Thus, if ged(by, (¢)) = ¢, then

3 o _ ! + 0,
lem(N (@), N(@))  7xbx (@ /ON(©)
ged(0¢,(g))bo

and if ged(by, (¢)) # c, then the left-hand side is O (§y). L]

PROPOSITION 9.7. Let ¢, 8y, B, C, by be as in Lemma 9.4. Then uniformly over
all ¢ < q*"¢¢B exp(/log B) with N(c)(0n)"|q and over all such C, by, we
have

Yo g6/ = Y dg,(b/0) + 0B

beC beC
b=by (mod g) b=by (mod g)

Here b denotes the ideal generated by (On)™" Y '  bi~/0i~'. The implied
constant is effectively computable.

Proof. 1f the result holds for any residue class by (mod N (¢)(0n)"q) instead of
any residue class (mod ¢), then (after perhaps adjusting the implied constants)
by summing over all by in a given residue class (mod ¢g), we see that the
result also holds for any residue class (mod ¢). Thus, we may assume that
N(©)2(6n)™|q.

We will evaluate the sum on the right-hand side, which is a standard sieve
quantity, and show that it gives the same result as Lemma 9.4 gives for the left-
hand side.

Substituting the definition (8.7) of iRZ and swapping the order of summation,
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we have

Y Ir(0/0)

beC
b=bj, (mod ¢)

x*(b/c)
Y Y e 2(N(b/c))(1+ — )
N(@®)<R ’ beC & (_ﬂ )l N(b/c)l B
b=bj, (mod ¢)

olb/c

We split C into O(8,") disjoint smaller hypercubes C' of side length §3B
Since cr, (N (b/c)) satisfies the Lipschitz bound of Lemma 8.3, we can replace
cr,(N(b/c)) with

(C) / / del dEgrda
c —
s VOl C log X l_L | €i

acC’.ecR,
)
Y1 e €N

on the hypercube C’, at the cost of an error of total size

3 8o vol C log X
< Ylogx Y o« Y L s volc

12
N@)<R bec ' Naoer T NQ@)
b=by, (mod ¢)
o]b/c

Similarly, we can replace N(b/c) with N(by/c) at the cost of an error
08, vol C).
Thus, we are left to evaluate

“(6/0)
R (C) Y A (1+ x ) ©6)
202 o J%C:’d NN
o (mod ¢

db/c

Recall that A, is supported on square-free 0. For such 0, by Lemma 9.5, we see
that provided ged(dc, (¢))|bo, we have

volC’ i
Z l=——— 4+ O(B"'R"), 9.7)
= N(lem((g). dc))
b=bj, (mod ¢)
?|b/c

and otherwise the sum is 0. The O(B"'R"') error term makes a total
contribution O (B"~'R" log X), which is negligible.
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‘We now consider the terms involving x *. We have that x*(b/c) = 0 if gcd(q*,

b/c) # 1, and so there are no contributions from terms with ged(9, q*) # 1. By
splitting the sum into residue classes (mod Q,) where Q, = N (Ilem(0cq*, (¢)),

we see that
Y o xo= Y x@o Y oL

beC’ a (mod Q») beC’
bEb(/) (mod g) aEb6 (mod g) b=a (mod Q»)
olb/c Ola/c

By Lemma 9.5, the inner sum is vol C’/ Q% + O(8;" *B""), and this error term
makes a negligible total contribution. The remaining sum of x *(a/c) is then seen
to cancel completely unless x*(b) = x*(b) for all b = bj, (mod q). If this is the
case, then by Lemma 9.5, we have

. x*(by/c) vol C’ T
b/¢c)=———————+ O(B" R"), 0.8
g X0/ = Fiemiar e T O ) 9.8)
b=by{, (mod ¢)
dlb/c

and otherwise the sum is simply O (B"~'R"~!). Again, these O (B"~'R"~') error
terms make a total contribution O (B"~!' R" log X), which is negligible.
Thus, to estimate (9.6), we see from (9.7) and (9.8) that it suffices to estimate

l 4 )\‘D
Z cr,(C) vol C § lem(N (d¢), N((9)))"

CI
ged(0¢,(g))1bo

By Lemma 9.6, we have that the inner sum is

1
Yk Pk ((q)/ )N (c)

provided gcd(by, (¢)) = c. Finally, we note that

+ 0 (o),

Z cr,(CHvolC' = cg,(C) volC.

C/
Putting all these estimates together, we obtain an expression for
> g, (b/0),
beC
b=by (mod ¢q)

which is identical to the estimates of Lemma 9.4. This gives the result. O
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10. Some lattice estimates

In this section, we collect some information about the structure of ideals b €
A’ before we finish our Type II estimate in the next section. Here we exploit
some of the simple structure from the fact K = QY9).

If a = (@) is principal, then b € A’ if b = (B) with (Ba) = (3_;_, K x0T
forsomex € 7" with x; € [X;, X; + mX;]for1 <i <n—kandx; =0 for
n—k<i<nandx=x,(modg*) and N(X\—f x;¥/61-1) € [XJ, X + mX]].

Since Z[\”/_ 6] is an order in Ok of finite index dividing (fn)", any principal
ideal b has a unique representation as (8) with 8 = (On)™" Y _/_, b;~/0'~' and b €
7" N F for a fundamental domain F by the action of the group of units Uy, with
b satisfying some integral linear congruence conditions Li(b) = 0 (mod (6n)").

We have
(Z bl‘ Vn 9i1> (Z (ll‘\/n 9i1> = (Z Ci\/n 9[1)
i=1 i=1 i=1
with A
J n o
= <Z bj—i+lai + 0 Z bn+j—i+lai> =T7T"/ (b) - a,
i=1 i=j+1

where - is the usual Euclidean dot product on R”, v indicates the reverse of the
coordinates of v (that s, v j = Unq1—;) and T' indicates the ith iterate of the linear
map T : R" — R” given by

Tw), = {ij, ] <n,
vy, j=n.
We let ¢ denote the above operation so that ¢ = b ¢ a. We note that
N®) =det(T°V) | TMW) | ... | T (V).

In particular, if v # 0, then 7/ (v) are linearly independent for 0 < j < n.

Thus, there is a bijection between pairs of principal ideals a, b with ab/N (¢c) €
A’, and vectors a € Z" N F, b € Z" (for any choice of fundamental domain F
for the action of the unit group O%) with L(a) = L(b) = 0 (mod (6n)") and
with ao b € Ry, where Ry is given by

Rx={xeR":x; €[X, X, +mX/]fori <n—k, x;=0fori >n—k,

NQ_ xivVoi-1) e [ Xy, X§' + ngXé”]}. (10.1)

Here X = (6n)>" N (c) X;, which still satisfy X/ <. X. We see that, given a € Z",
the conditions (b ¢ a); = 0 force b to satisfy k integral linear equations and,
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hence, lie in a sublattice of Z". With this in mind, we define the lattices
Ay ={xeZ":xov); =0,n—k <i <n}
={xeZ :x-T'(v)=0,0<i<k—1},
Ay y,={xe€Z": (xov));=xoVv); =0, n—k <i <n}
={xeZ :x-T'(v;))=x-T'(v,) =0, 0<i <k—1}. (10.2)

We first establish some basic properties of these lattices.

LEMMA 10.1. Let v, v, v, € Z"\{0}. Let A(V) € 7@ be the vector of
determinants of k x k submatrices of the k x n matrix formed by the k vectors
TOV), ..., T¥"\(v). Similarly, let A(vy, v2) € Z(&) be the vector of determinants
of the 2k x 2k submatrices of the 2k x n matrix formed of the 2k vectors T°(v,),
L TNy and TO(vy), ..., T"Y(v,). Finally, let D, be the largest integer
D such that A(v) = 0 (mod D) and Dy, y, be the largest integer D' such that
A(V1,V2) = 0 (mod D'). Then we have

detcayy = 1A O

Dy

ALl

det(Avl,Vz) - D l.f A (b19 b2) # 0

Proof. Let vy, ..., v, be linearly independent vectors in Z", and let A = {x €
7" :x-vp =--- =x-V, = 0}. By [12, Lemma 1], det A = det A* where
A ={xeZ":x=)_ v ¢; € QL

Let D(vy, ..., v,) be the largest integer such that the determinant of all r x r
submatrices of the n x r matrix formed with linearly independent columns vy,
..., V, € Z" vanish mod D(vy, ..., V,). (That s, the largest integer D such that
vy, ..., V, are linearly dependent (mod D).) We define a reduction procedure
as follows. Given {x,...,x,} € (Z")" with D(xy,...,X,) # 1, we choose
(arbitrarily) a prime p|D(Xy, ..., X,). By definition of D(-), this means that
there are constants cy, ..., ¢, at least one of which is 1, such that Zle CiX; =
0 (mod p). We choose (arbitrarily) an index j such that ¢; = 1 and replace
x; with Z?zl ¢;X;/p € Z" to produce a new set of vectors (X}, ...,X,), and
we see that we must have D(x),...,X)) = D(Xy,...,X,)/p. By starting with
{v(, ..., v,} and repeatedly performing this reduction, we arrive at a Z-basis z,,
..., Z, € 7" for A*. (This process clearly terminates as D(xy, ..., X,) decreases
at each stage, and the resulting set is a basis since D(zy, ..., z,) = 1, so integral
vectors in the Q-span of z, . . ., z, lie in the Z-span of zy, . . ., Z,, and the Q-span
is clearly the whole lattice.) Moreover, we see that the Z-span of vy, ..., v, isa
lattice A which is an index D(vy, ..., v,) sublattice of A*.
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Thus, det A = det A* = det A/D(V], ...,V,). But det A is simply the
volume of the r-dimensional fundamental volume of A. If €.,...,e € R"
are orthonormal vectors orthogonal to vy, ..., v,, then det A is given by the
determinant of the n x n matrix with columns v, ...,V,,€..,...,¢€,. This is
then seen to be the Euclidean norm of the exterior product of vy, ..., v, (that
is, the vector of all determinants of the r x r submatrices of the r x n matrix
with columns vy, ...,V,) since both quantities are independent of a choice
of orthonormal basis of R” and agree on the orthonormal basis {e,...,e,}
extending e, ., ..., €,.

Applying the above argument to {v;, ..., v} = {T°(v), ..., T*"'(v)} gives
the result for A,, whilst using {T°(v)), ..., T*'(v)), T°(vy), ..., T* ' (vy)}
gives the result for Ay, y,. O

LEMMA 10.2 (Vandermonde determinant). Let m,,...m, be nonnegative
integers and n = r + Y ._ m;. Let Ay, ..., %, € C\{0}, and let M = M (%,
.. A, my, ..., m,) be the n x n matrix

M AL oo A A A ool A

ME2D L 2MH2H2 L gmpl L gmp2

n n mpyn n mpqn m n
AL AL L n™AT AL L n™AL L Al

formed with entries in the jth row given by j’")»f forO<m <myand1 <i <r.
Then we have
r mi—1 r
det(M) — <1_[ 1_[ m') (l_[ )\‘;”i(mﬁ-l)/Z)( l_[ (}"_i B )w)m,-mj>.
i=1 m=1 i=1 1<i<j<r

In particular, det(M) = 0 if and only if A; = A; for some i # j.

Proof. Let M be the matrix of the lemma. By subtracting a suitable linear
combination of the first j — 1 columns from the jth column, we see that
det(M) is equal to det(M’), where M’ is the matrix with jth row given by
G-—-D...(j - m)kf for 0 <m < m; and 1 < i < r instead of j"’)»{ (we
interpret the expression as A/ if m = 0). We see that the jth column of M’ is
a multiple of A'{ for all 1 < j < my. Therefore, the determinant is a multiple
of A7 *V/2 "and similarly for the other A; by symmetry. We now wish to show

that (A; —A,)™"2 divides the determinant. For £ =0, ..., mm,—1, we consider
9¢ n Glod 21)
— det(M) — Z i ) det(M J1seees, Jmy+1 ),
8)» _ . A ]l» ey _]m +1
Fh=h2 Jtseesjmy+120 !

ity 1=t
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Here M UtJim+1 is the matrix formed by replacing the ith column v; of M’ with

o

—_— V;

8)“{’ A=Az
for each i € {1,...,m; 4+ 1}. We see that this expression has jth entry (j —
D...(j—i)x (] Ji +1) A’ 7 In particular, fori < m;+ 1, we see that the
ith column of MUt-Jm+1 i a vector with jth entry P ( J))Lé for some polynomial
P of degree i + j;. However, the columns v,,, 2, . . ., U, 4m,+2 als0 have jth entry
of the form P (j)A3 for some polynomial P of degree at most m,. Thus, we have
m; + my + 2 columns, and for each column, there is a polynomial P such that
the jth entry of the column is P(j)ké forall 1 < j < n. Butany k + 2 vectors
whose jth entry is of the form P(j)A/ for a polynomial P of degree at most k
must be linearly dependent (this is seen by cancelling the highest coefficients in
turn). Thus, we see that these columns are linearly independent only if for every
k € N, there are at most k 4 1 columns involving a polynomial of degree at most
k. But this requires that the sum of degrees of the m; + m, + 2 polynomials be
at least (m; + my + 2)(m; + m, + 1)/2, which requires

m1+l. . m2+1. A+ 2) (s 4 1
0404 35 Ot et
This simplifies to
41
L= Z ji = mym,.
Thus, forall £ € {0, ..., mym, — 1}, we see that det(M~/m+D) = 0, and so we

must have that (A; — X,)"™"2 divides det(M’). By symmetry, we therefore find
that det(M’) is a multiple of

(lL[ )\’Ti('Tli+l)/2) ( l_[ (; — ymi ’"1)
i=1

I<i<j<r

By expanding the determinant via rows, we see that the determinant is a
homogeneous polynomial of degree n(n + 1)/2 in the A;, and so det(M) must be
proportional to the above expression. Finally, by considering the coefficient of
A{'ASE ... A% with first e; minimal, then e, minimal, we see that the coefficient is

r mi+1

[T11G -0

i=1 ji=I

This gives the result. O
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LEMMA 10.3 (Difference equations). Letcy,...,c, € Qwithc; #0andc, # 0.

Let xy, ..., x; satisfy
P
Xj = E CiXj—i
i=1

for j > r. Then there are constants A1, ..., A, € C and polynomials Py, ..., P,
such that

L
X =Y P
i=1

Moreover, Zf:] (1 +deg(P;)) < r, the A; lie in a finite extension of Q and the X;
only depend on cy, ..., c,.

Proof. Let M be the r x r matrix

Cp Cp C3 ...Cy
10 0...0
M=1010 0 ’
0...0 10
so if X; = (xj,x;_1,...,Xj_4+1), then X;;; = MXx; for j > r. In particular,

X; = M/="x, for all j > r. Since ¢, # 0, we see that M is nonsingular. But M
can be put into Jordan normal form after a change of basis, which means that
M = A~!'DA for some upper triangular matrix D formed of Jordan blocks. But
then M/ = A~'D/A, and the entries of D/ are all of the form P, (j)A{, where
the A; are the eigenvalues of M and P; is a polynomial of degree at most one less
than the multiplicity of ;. This gives the result for the shape of the x;. Since the
A; are the eigenvalues of M and deg(P;) + 1 is at most the multiplicity of A;, we
get the other claims of the lemma. O

LEMMA 10.4. Letn > 3k. Let b € Z"\{0} and let L be a linear subspace of R"
such that A(x,b) = 0 for all x € L. Then L has dimension at most k.

Proof. If A(x,b) = 0, then there exist constants ¢, ..., ci_1,do, ..., dy_1 € Z

not all zero such that . .
D aTix) =) _diT'(b).
i=0 i=0

Since b # 0, we have that { Ti(b)},’.’:_(} are linearly independent vectors in R”".
Thus, we cannot have ¢y = - - - = ¢;_; = 0 and we can write X = Z;‘;OI x; T (b).
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With respect to this basis, the above equation implies that Zl _o Cixj—i = 0 for
each k < j < n. Since the cy, ..., c;,_; are not all zero, we let ¢, be the first
k—1-€

nonzero element, so we have x; = ) ,_| " ¢, ,x;_; for each k < j < n with
¢; = ¢;/c,. For notational simplicity, we now restrict our argument to the case
when cg, ¢;_; # 0; the other cases follow by an entirely analogous argument.

The equation x; = Zf [ ¢ix;_; for k < j < n is a difference equation and
so, by Lemma 10.3, has solution x; = ) . P; (j))»j for 1 < j < n for some
polynomials P, ..., P, with ) _.(14deg(P;)) < k — 1 and some constants A; in
a finite extension of (Q, all of which may depend only on the constants c;.

We will show that in any linear space £ C R" containing only points with
A(x,b) = 0, at most k — 1 different monomials j")ui’ can appear in such an
expression over all possible choices of the c;.

Assume the contrary for a contradiction. By taking linear combinations of
these monomials, we see that there exists X,y € £ with (x); = Y, Pi(j)A]
and (y); = Y, Qn(jH)p), for 1 < j < n, for some polynomials P;, Q,, €
C[X] and some algebraic integers A;, u,, € C such that ) .(1 + deg(P:)),
> (1 + deg(Q;)) < k — 1; but, in total, at least k different monomials
j’"‘)»{;lz, Jjm ,uﬁu appear with nonzero coefficients across these two expressions.
In particular, there is a real linear combination a;X + a,y such that at least
k different monomials appear. But a;x + axy € L, so (a1X + a,y); can also
be written as ), R;( j)y,j with at most £k — 1 different monomials j’”‘yn{2
appearing and ) . (1 + deg(R; )) < k — 1. But then we have LRy =
ary., Pi()r + a, > Q;(j)u! forall 1 < j < n; so the monomials J"v
J" g, J™ AL, satisfy a nonzero linear equation ), e;M;(j) = 0 for all 1 <
j < n, for some constants e; not all zero and distinct monomials M;(j) of the
form j™y, | j" ), or j" A} (for some integers m, ..., mq). Moreover, since
.1+ deg(Py)), D, (1 + deg(Q))), > ,(1 + deg(R;)) < k — 1, there are at
most 3k — 3 monomials appearing in this expression. In matrix form, this set of
equations is

M) ... M3y_5(1) €
Ml‘(”l) ce. M3k;3(n) 631;—3

Since n > 3k, this includes the first 3k — 3 rows which form a (3k — 3) x (3k —
3) generalized Vandermonde matrix. By Lemma 10.2, the determinant of this

matrix is nonzero. Thus, the vector (e, ..., e3_3) must be zero, a contradiction
to our assumption that it is nonzero. Thus, only k — 1 different monomials can
appear, and so £ has dimension at most k (since x, is a free variable). O
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REMARK. The bound in Lemma 10.4 is tight since the subspace generated by
the vectors T°(b), ..., T*!(b) has dimension k.

LEMMA 10.5. Let n > 3k. Let a € Z"\{0} and A, have successive minima
Z, << Z,_. Then A, has a Z-basis z,, . . ., Z,_; such that

o foreachi € {1,...,n —k}we have Z; < ||z || <€ Zi;
° /\(Z],Zk+1) 7+—0,
o forany Ay, ..., Ay € R |30 K rizill > Zl Iz

Proof. Since T°(a), ..., T*"'(a) are linearly independent, we see that A, has
rank n — k. By Lemma 4.1, A, has a Minkowski-reduced basis {zi, ..., z, ;}.
The space generated by zy, ..., 7 is a linear space of dimension k£ + 1, so
by Lemma 10.4, we have that A(X, z;) does not vanish for all x in this space.
But since A(-,z;) = 0 is given by the vanishing of a system of homogeneous
polynomials of degree O (1), this means that there is a nonzero homogeneous
polynomial f € Z[X,, ..., X;,] of degree O (1) such that /\(Zfﬂl Xiz;,2;) =0
only if f(A(, ..., A1) = 0. But there is then a choice of Ay, ..., Ay € Z with
Mg1 = land A; < 1 forall 1 < i < k such that f(Al,...,kk+]) # 0. Let
Z,, = ZHI Aiz;. We claim that {z,, ..., %, Z_ |, Z> ..., Z,} gives a basis
with the required properties. Since z; ,, is a linear combination of z,, ..., z,
with z;,,-coefficient equal to 1, we see that this is indeed a basis since {z, ...,
z,_}is. Since f(Ay, ..., A1) # 0, we have that A(z, ,,, 2;) # 0. Since A; < 1,

we see that [|z; || < ZkH |A;Z;|| < Zyy,. Finally, since A; < 1, we have

n—k

A1Zi1 + E aiz;|| = i+ O(ak1))Z + @ Ziyr + E a;z;
ikt i—k+2
k n—k

=Y lai + O ) Zi + lawi| Zen + ) lailZ;

i=1 i=k+2
n—k

= lai|Z;.
i=1

In the last line, we used the fact that if |@; + O(ari1)| > a;, then the
contribution is < |a;|Z;, whereas if |a; + O(ay41)| < ai41, then the contribution
is O(ayy1Zyy1) since Z; < -+ < Zi41, and the (nonnegative) contribution is
suitably bounded by the contribution from a; Z; ;. This gives the result. O
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11. Type II estimate: the L? bound

In this section, we use the Linnik dispersion method and estimates from
the geometry of numbers and elementary algebraic geometry to prove
Proposition 8.7 and so finish the proof of our Type II estimate. We will
make use of Proposition 9.7 and the estimates of Section 10. It is this section
which involves the key new ideas behind our proof.

We recall from Proposition 8.7 that we wish to show that

> g, (a/) (AR, (b/0) — Lr,(b/0) < 1y #A.

a, b principal
c|b, c|a
ab/N(c)e A’

Here 1, = (log X)~'190@4¢+2 and

n—k

A = {(Zai v 9i_1> Xy <a < Xi+tmX, a = (36)1' (mod J!g"),
i=1

n—k
N(Za,«”/ﬁ) e [X). Xp + nzxg]}.

i=1

We first want to reduce this to the following proposition.

PROPOSITION 11.1. Let mod ¢ = (@n)"¢*N(©)(J)’ and ¢ =
g ¥ exp(—/log X). Let X**</> < B < X" *~</2 and AB =< X. Let

{1R2(b/c) — g, (b/0). T(b) < €2
&y =

0, otherwise.

Ro,p, ={acR": |a]| € [A,24], aob; € Ry, aob, € Ry}.

Then we have

Z gb]g_bz Z 1 & EQA”_Zszn_Zk.

byl b 1€l B.2B] acAb; b, "Rb, b,
bi,ba=by (mod §)

We recall that the lattice Ay, », is defined in (10.2) and the region R is defined
in (10.1).

Proof of Proposition 8.7 assuming Proposition 11.1. From the discussion at the
beginning of Section 10, ab/N(¢) € A’ for principal a, b is equivalent to a =

((On)™ 3" a;iv/0=1)) and b = ((On) ™ >__, b;v/0'~") for some a € Z" N F,
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b € Z", for any choice of fundamental domain F of the action of the group
of units Uy and with a ¢ b € Ry satisfying some congruence condition L(a,
b) = 0 (mod (6n)"). Here we recall from (10.1) that

Ry={xeR":x; e[X, X +mXlfori <n—k, x;, =0fori >n—k,
NI, xiV/6) € [XE Xg' + mX{]).

We recall that we have localized the norms of the ideals appearing so that if
1z,(a) # 0O, then N(a) € [A, 2A] for some quantity A, and if we also have
ab/N(c) € A, then N(b) € [B, 2B] for some quantity B with X**¢/2 < B <
Xn2%=<2and X <« AB < X.

Any element x € Ry N Z" has x| < X, and so y = >, x;/6~! has
ly?] <« X for all embeddings o. Since N(y) = [[, ¥ > X", this implies
ly?] > X for all o as well. We may choose a suitable fundamental domain F
such that the vector a satisfies ||a|| < A by Lemma 4.2. This implies that o« =
(On)™ Y"1 a0~ has |a°| < A for all embeddings o, and so any = y /o
will then satisfy |37| <« B for all o. Thus, this choice of F allows us to restrict
toa; K Aand b, € Bforalll <i < n.

Thus, splitting a, b into residue classes mod § = (9n)"g*N(¢)(J!)’ (where
J is the constant in the definition of A" which is O(1) and will be eventually
chosen large enough in terms of n and k), recalling that ¢* < exp(\/log X) and
letting €p = ¢~ *" exp(—/log X), we see that it is sufficient to show that

> D 1g,(a/)AR,(b/0) — 1r,(b/0) < &*A"*B"™* (11.1)

acZ'NF beA,
lal <A b=bgy (mod §)
a=aj (mod §) aocbeRy

for any agj, by with p t N (by) forall p < J.
To sidestep some minor issues associated with 1z, occasionally being large if
7(b) is large, we introduce a quantity g, defined by

{1R2(b/c> —1g,(b/0), T(b) <€,
b =

0, otherwise.

We now replace 1z, (b/c) — iRZ(b/c) with gy. Since 1z,(b/c) — iRz(b/c) <
t(zglk b;~/0'-1)log X, the error introduced by this change is

0(2 Z r(b)logX) < Z Z eét(b)zlogX

lal <A bed, la <A beA,
Ibl<B [bll<B
HOR .
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n—k 2
< Y gr ( > x,«"/@l’l)
i=1

[Ix|| <X
x;j=0if j>n—k

L X" *(log X)°W,

by Lemma 7.8. Since €, < exp(—y/log X), this is O (exX"*) and so negligible.
Thus, in order to show (11.1), it is sufficient to show

1/2 xn— _
> > g (a/)g < €A B (11.2)
acZ"NF beA,
llall€[A,2A] b=bgy (mod )
a=aj (mod §) aobeRy

By Cauchy-Schwarz (dropping the constraints a = aj (mod ¢) and a € F and
upper bounding 1z, (a/¢’) by 1), we have

Z Z 1z, (a/¢) gy

7"nF
H3||€lA 2A] b= bo (mod q)
a= aO (mod §) aobeRy

< < Z 1)]/2 <IIaII§2A]

lall<A

2>1/2

The first sum in parentheses is O (A"), so it suffices to show that

Zgb

beA,
b=by (mod g)
acbeRx

DD W R Cac: el (11.3)
bl b2 |€LB,2B] ac Ab, b, Ry b,
by,b2=by (mod g)
where
Rupv, ={a€R": ||a|]| € [A,24], acb; € Ry, ao b, € Ry}
This is precisely given by Proposition 11.1. O

Thus, we are left to establish Proposition 11.1.
If A(by, by) # 0, then Ay, j, is a rank n — 2k lattice, and we expect the inner
sum in (11.3) to typically be (using Lemma 10.1)

~ VOI,]Q,[)I,I)2 _ Db],bz vol Rbl,bz ~ CAn_Zk
det Ap, 1, | A (by, by B*

for some suitable constant ¢ = ¢y, p, Of size &~ 1 which varies continuously
and slowly with by, b,. The first approximation can fail if Ay, p, is highly
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skewed, whilst the second approximation can fail if Ay, p, has an unusually small
determinant. Ay, p, can have small determinant either for Archimedean reasons
Gf || A (by, by)|| is small) or for non-Archimedean reasons (if Dy, p, is large). To
deal with these issues, we show that for most by, b,, these complications do not
occur.

REMARK. Usually one would introduce a smooth weight on the sum over a
to allow for simpler or more precise analysis of the resulting inner sum. We
have deliberately chosen not to smooth here because we wish to emphasize the
elementary nature of the estimates we use from the geometry of numbers. In
principal, smoothing would allow one to use exponential sums to widen the
Type II ranges, but the author has not been able to get suitable control over
the resulting exponential sums. Nontrivially estimating these sums for general
n requires one to show equidistribution results for skewed lattices.

REMARK. The diagonal terms b; = b, contribute A"~ B"~*+°() to the overall
sum, and so we require A* < B"*+°)_f we do not show cancellations in the
error terms for the inner sum over a above, then we can only hope to gain an
asymptotic if A"~%* > B2 (but see the remark below). Together, these conditions
force X* < B < X", and our Type II estimate applies in essentially the full
range. Similar restrictions apply to any other sequence of density 1 —k/n, which
is why the initial work on Diophantine approximation by primes had equivalent
restrictions on the Type II range.

REMARK. We can obtain slightly more flexibility in our Type II estimates by
restricting b to lie in a residue class (mod Q) for a suitably sized modulus
Q before applying Cauchy—Schwarz. This has the effect of increasing the
contribution from the diagonal terms but enabling us to estimate the off-diagonal
terms in a wider range. This has the potential to give an asymptotic formula for
primes represented by an incomplete norm form of Q(</6) in the wider range
n > (2 + +/2)k. In the interests of brevity and clarity, we will not consider this
further here, but we intend to address this in a future paper.

11.1. Archimedean estimates. We first consider complications when the
lattice Ay, b, is skewed or has small determinant because || A (by, b,)|| is small.

‘We begin with a simple lemma counting the number of times a polynomial can
be small. The key point is that this estimate is very uniform in the coefficients

of f.

LEMMA 11.2. Let f(x) = deil + fd_lxd’l + -4 fo € Z[X] with fd ;é 0. Let
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D € Z be such that D/ ged(D, f;) = ]_[f:1 p;'. Then we have

#n e[l,y]: f(n)=0(mod D), |f(n)| < B}

([ BY\1
i de(D)(l + m1n<y, W)E)’
d

where D' = [];_, pi/"' > D4/ ged(D, f)V".

Proof. Let D = D/ ged(D, f;). Let f have (not necessarily distinct) roots o, |,

., o, 4 in a suitable finite extension of QQ,, and let || - ||, be the extension of
the norm on Q,,. Similarly, let f have roots @ 1, . .., too g Over C. If f(n) =
0 (mod D), then ]_[f:1 ln—apill, < ||ﬁ||p for all primes p|D, so certainly there
exists a root a” for each p|D such that |[n — a”||, < || D’[|, on recalling the
definition of D’. Similarly, if | f (n)| < B, then certainly there is a root > such
that [n — a™| < (B/|fa)".

Let us be given a root & over C and a root «” over Q, for each prime
p|D. Then integers n which satisfy |n — «®||, < ||D’||, for each p|D’ are
simply integers in a single residue class modulo D’ (by the Chinese remainder
theorem), and those with |n — a*| < (B/| f4])"/¢ and n € [1, y] are integers in
an interval of length <« min(y, (B/|f4])"/¢). Thus, there are at most 1 + min(y,
(B/|f41)"/4)/ D’ integers n < y which satisfy |la—a'?||, < || D’||, for each p| D’
and |n —a| < (B/|fa)"/*. But there are at most d choices of «>” and at most
T (D) possible choices of roots «'”, so there are at most dtd(D)(l + min(y,
BY4| £,17Y4)/D’) integers n < y such that f(n) = 0 (mod D) and | f(n)| <
B. [

LEMMA 11.3. Letn > 3k. Let A, have successive minima Z; < - -+ < Z,_; and
a Minkowski-reduced basis {z,, . .., Z,_;}. Let £ < 2k be such that k, = || A (21,
zg)||kaZ,_7k > 0. Assume that Z,Z, < BC. Finally, let

Sa(B, C; k) = #{b,c € A, : |bll < B, [le| < C,[| A (b, ) <xB‘C").

Then we have

5. Cy < (B4 D% (1 () )2
,Ci k — min( 1, [ — —
a B BC K> Z,

7zt ( BC\"™*
X —; log BC.
1_[1':1 Z,‘ Z]ZE

Proof. By symmetry, we may assume, without loss of generality, that B < C. We
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may further assume that Z; < B since otherwise there are no vectors b € A,
with ||b|| < B and so S,(B, C; k) =0.

We recall from Lemma 4.1 that we can write b = Y/ bz, ¢ = Y/ ;2
for integers b; <« B/Z; and ¢; < C/Z;. We have that || A (b, ¢)||? is given by an
integer polynomial of degree 4k in the coefficients b;, c¢;, which is a polynomial
of degree 2k in the b; and degree 2k in the ;. Since the coefficient of bi*c* is
| A (z1,2,)||> # 0, we have that this polynomial takes the form

b I A @20l + ) + fs

where f5 is a polynomial independent of b; and degree at most 2k — 1 in ¢,, and
/3 1s a polynomial of degree at most 2k — 1 in b;.

Let us be given a choice of by, ..., b, 4, C1, ..., Co_1,Cpi1s.-.,Cry and a
quantity U = 2/ « C* B%*. By Lemma 11.2, there are

L 1+ U A (21, 207 V*

possible values of ¢, such that cg" | A(z1, Zo)||> + f> € [U, 2U]. Here the implied
constant does not depend on our choice of the other b;, ¢; or on U. For each such
choice of ¢, there are O(1 + x/*BCU~'/?) possible choices of b; such that
| A (b, ¢)]|> < k?B*C* by Lemma 11.2 again. Thus, combining these bounds
with the trivial bounds B/Z; and 1 4+ C/Z, for the number of choices of b; and
¢y, respectively, we find that there are

C U B k*BC
min{l + —, 1+ —— |min[ —, 1 + ———
< < zo A G zonl/k) (zl e >
<<1+B+C+ KTBC
VAR A) | A (21, 2)||'/*
< B . C . k*BC
Zl ZK Kzl/kzlzg
possible choices of by, ¢, for this value of U. Since this bound does not depend
on U, we can sum over all possible values of U = 2/ with 1 < U <« B*CF at
the cost of a factor O(log BC). We also have the trivial bound where «/k, is
replaced by 1. Thus, for any choice of by, ..., b, 4, C1, ..\ Co1y Couts s Coris

we have Uk
Z, 7, . K BClog BC
— 4+ — I, { — _ 11.4
< (B e +m1n< (K2> )) Z,Z, (4

choices of by, ¢, such that || A (b, ¢)|| < x B¥C*.
Let jp, jo < n — k be chosen maximally such that Z;, < B and Z;. < C.
Then, since the number of choices of b; is O(1 + B/Z;) (and similarly for c;),
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the number of choices of by, ..., b, 4, C1y ...y Co_1, Cogly ey Cuk 1S
B C
< — —. 11.5
17 117 (1
I<i<jp I<i<je
i#1 it

We recall that we assume B < C so jg < jc. Thus, splitting into the three cases
Jjc=js =4, jc>€> jpand € > jc > jp and pulling out a factor Z;/ ]—[f:1 Zi,
we see that (11.5) is

B/s—1Cic-1
Zf,ZZZB.,_jC_g’ Jc 2 JB 2 E,
7zt Bis—1Cic—1
<<Y= ¢ X — — jc>£>j3,
Mz |zr'ze }
Bis—lCic
_—, > jc = jp.
-1 .
7 7E

Define a quantity F by

BC n—k—jc Zl JjB—Lt B Jjc—JjB
<lez) (Z_1> (Z_l) , Jc=zjs =2t
BC n—k—jc B Jje—Jjp—1
o R C R
144 1
BC n—k—jc—1 B Jjc—is
<Z125> (Z) ) > jc = jp.

Since BC/Z\Zy, Zy/Zy, B/Z; > 1 and we have the bounds £ < 2k < n — k
and jo < n — k, we see that F' > 1. Thus, we find that for all cases, we have
Zf Bn—k—lcn—k—l (Z] Z1 )
Y <YF < 21y
l—[le Zl' Zfl’lfkflzzl*kfl

B ' 7

Combining this with our bound (11.4) on the number of choices of by, ¢,, we
obtain that the total number of b, ¢ is

< Z N Z, min(1 (X 1k Z N Z\\ Z!B"*C"*log BC
— 4+ — 4+ min| 1, [ — — 4+ = .
B C €2 B Z,) 7y zZy M i Z

Finally, we note that since Z; < B,

Z(Z, T Z, T mi 1 K 1k < Z,Z, + Z,
— | — 4+ —+mm{ 1, | — —,
B\ B C Ky BC B
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and since Z, < Z;,, B < C,

Z\ (Z, " Zy 4 min( 1 K\ < Z, + min( 1 ¥\ Z,

——+—=4+min(1, | — — 4+ min{ 1, | — —.

Z,\B C K> B K2 Zy
These bounds give the result. 0

LEMMA 11.4 (Determinant rarely small for Archimedean reasons). Let n > 3k.
Let

S(A; B,C) = {(a,b,¢) € (Z") : ||a| € [A,24], |b]| € [B,2B],]¢c|| € [C,2C],
A(b,c) #0, ae Ay}
S(A; B,C; k) ={(a,b,c) € S(A; B,C) : | A (b, )| < kB*C*}.

Then there is a constant § = §(n, k) > 0 and G = G (n, k) such that

#S(A; B, C; k)
(BC)1/275
< (;«3/ k4 min(l, T)>A"—2’<152"—kc"—’f exp(G(loglog BC)?).
In particular, taking k = €g"° = §3%"/% exp(—8k\/log X /8) and B = C > X°,
we have

#{(a, by, b,) € S(A; B, B): 0 < || A (by, by)|| < €)'’ B*} « €] A"~ % B2,

Proof. We prove the result by induction on the size of BC. The lemma trivially
holds if BC <« 1. Assume that there is a constant G such that whenever UV < 27
with U < V, we have
#S(A; U, V; k)
Uv 1/2-6
< G(K‘S/" + min(l, L

i ))A””‘U”k V" * exp(G(loglog UV)?).

We now wish to bound #S(A; B, C; k) using the same constant G for BC <
2/+8J.

Given b, ¢ with A(b, ¢) # 0 and ||b|| € [B,2B] and ||c|| € [C, 2C], we have
that any a such that (a, b, ¢) is in S(A; B, C, k) satisfies ||a|| € [A,2A] and
a € Ay, Since A(b,c) # 0, Ap is a lattice of rank n — 2k and determinant
<« B*C*. If v = v(b, ¢) is the shortest vector in Ay, then ||v|""%* « B*C*k
and the number of a € Ay, . with ||a|| € [A, 2A4] is O (A" */||v||"~*). We recall
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that v e Ay implies b, ¢ € A,. Thus, putting ||v|| in one of O(log BC) dyadic
ranges [V, 2V ], we have

1
S(A; B, C; k) < A" * Z e
iz V@O
llelle[C,2C]
IAb,0)[ <k BC
1
< A" *(log BC su - 1 116
(log BC) Vn—2k<<1:;3kck Z n—2k Z (11.6)
IvlelV.2v] bced,
Ibje[B.2B]
lellelC.2C]

IA(b,0)| <k BC

Since v # 0, A, is a lattice of rank n — k. Let this have successive minima
Z, < -+ < Z,_,. We note that since n > 3k and V"% « B*C¥, we have

n—k
257, < 22 < [ 2 < det(Ay) < VE < (BOF/™20 (11.7)

i=1

Thus, Z,Z;.1 < (BC)'"% where § = (n — 3k)/(2n — 4k) > 0. By Lemma 11.3
(taking £ = k + 1), the inner sum in (11.6) is

VAR AV/ ez zk BC \"™*
< (_1 + 1 Lk+1 —|—min<1, (i) ) 1 ) kk+1 ( ) log BC,
B BC K2 Zivr) [1izy Zi \ Z1 Zka

(11.8)
where 1y = sup, . Z*Z, |l A (21, 2441 || and the supremum is over all z,,

Zcy1 € A, which can be extended to a basis ., ..., z,_¢ with | Y0—f Az || =
S0 A Zi. We see that k, > 0 by Lemma 10.5.
We note that there are

k
Zk+l

Hf:l Zi

different vectors y € A, with Z;,| < ||yl < Ziy; such that 0 < || A (zy,
VI < k27§ 41 since, given a basis z,, ..., z,_; satisfying the properties of
Lemma 10.5, all choices y = z;,,| + Zf.;l Aiz; with || A (y,z)|| # 0and A; <
Ziy1/Z; satisfy this by the maximality of «,. Thus, we may replace the factor
Z,’;H/ ]_[f:1 Z; of (11.8) with a sum over all such y. Putting ||z, ||, ||yll, x> each in
one of O(log BC) dyadic ranges [Z,2Z], [Y,2Y] and [K, 2K ], respectively, we
have

>

S(A; B, C; k) < A" * B *Cc"*(log BC)®
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VIR BRIy ov) 2y
e SE 21 |€1Z,22]
zZr sy lyllely,2v]
ZnT<k«l 0<[|A(z1. )| <K (ZY)
T7v5.cuxS(V; Z,Y; K)
L A" B EC" ¥ (log BC)’ sup ———-= ,
V.ZY.K Zn—kYn—k Vn—2k
(11.9)

where

T Z 2z i (X "
Bexkk =|=+—==+—-mn|l, | ,
ZY:B.C K B BC 'Y K

and where the supremum in the final line is over all V, Z, Y, K satisfying the
constraints V"* « B*C*, Z « Y, Z*Y"* « VFand (ZY) * <« K « 1.

If BC < 2%/ then, since ZY « (BC)'™?, we have ZY < 27 if J is
sufficiently large in terms of n, k. We can then apply the assumption of the
lemma, giving

S(A; B,C; )
An—Zan—kCn—k(log BC)S

. . (Zy)'/? 2
K G sup Tzypcuwk (KS/ + mln(l, T)) exp(G(loglog ZY)").
V.ZY.K

(11.10)

Since Z < Y and K > (ZY)7*, we have

Z e\ (zy)> (ZY ) (ZY)>
2 minl1. (£ gk e sk 4 e el
Cin(1 (%) ) (ks EL— ) (14 E

< Kk,

Since K < 1, Z € B,ZY < (BCO)'™ and Z « (ZY)'/?* « (BC)'*7% we

have
zZ ZY sk zZ ZY
4+ K+ ) =+ =—

B  BC B  BC
) (Bc)1/2—5 1
< min|( 1, B + (BO)»
(BC)I/ZﬂS
<min(1, 29
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Thus,

7Y 1/2—-68 BC 1/2-6
T7.v.5.Cix.K (K‘S/" + min(L %)) L 1k min(L %)

Since ZY <« (BC)'™%, we have loglog ZY < loglog BC — 2§. Substituting
these bounds into (11.10) gives
S(A; B,C; k)
An72an7kCn7k(]0g BC)S

8/k . (BC)'/27 2
<L Gl k" 4+ minf 1, —5 exp(G(loglog BC — 26)7).

Finally, exp(G (loglog BC —268)*) <« (log BC)° exp(G(loglog BC)?) for G >
257!, and so we obtain the claimed bound for S(A; B, C; k) if BC is large
enough. O

LEMMA 11.5. Let n > 3k and G’ be sufficiently large in terms of n and k. Let
Z;(a) be the ith successive minimum of A,. Then we have

Zis1(a)

< A" exp(G'(loglog A)?).
orn Z1@)"* Zi @)+ T, Zi(a)

Proof. We already established a similar estimate in the course of the proof of

Lemma 11.4. Let A, have a basis z;,...,z,_; with | A (z,Z:,1)] # 0 and
120 dizill =< Y12) |4i1Z;(a) for all A € R. This basis exists by Lemma 10.5.
There are .
Ziy(a)
> kkL
1_[,‘:1 Zi (a)

choices of y = z;,1 + Zf;l riz; with ||yl < Zi.(a) and A(z;,y) # 0. Thus,
using Lemma 11.4, we find

Z Zi (@)

o a 21 @ Z (@) [T, Zi(a)

1
<X

O<|lall«A z,yeA,
Izl <Z, (a)
Iyl =Zg+1(a)
Az, y)#0

<(ogA) sip Y3 » #

0<Z,Y A/KA
<LLACA yxy Jz1=Z acAuy
AY,2)#0 ||a|| <A’
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S(A,Y, Z)
< (logA)®  su _
g 0<Z,Y,£’<<A yn-kzn-k

< (log A} A" exp(G (loglog A%)?).
The result follows on taking G’ = 2G. O

LEMMA 11.6. Let n > 3k, and let § > 0 be sufficiently small in terms of n and
k. Given a vector a € 7Z"\{0}, let Z,_;(a) be the n — kth successive minima of
Aq. Then if A¥(0=9 < Bk we have

#{(a, b1, by) € S(A; B, B) : Z, i (a) > B/} K A" HBHTHI2,

Proof. LetZ,, ..., Z,_; be the successive minima of A,. Since A¥/(179 < pr=k,
n > 3k and Z¥Z] 1 <« det(A,) < A, we have Z,Z; 1, < B*%. Let j be
chosen maximally such that Z; < B. Then the number of by, b, € A, is

BY
z\7},,
BZj Zk BZj
7 < T X i
[li. Z [l Zi VAV
BZn—Zk

k 72n—3k—=2 72
ZIZk+l ank

’ ]<k7

<

, j=n—k.

Since Z,_;x > B'™%? and Z,Z;., < B*? and n > 3k, we have that in each
case, this is

Z[/(C . B2n—2k—8

+

< n— n—k
1_[;(:1 Zi Zl ka+i(

Thus, the number of triples (a, by, b,) counted in the lemma is

< B Zi4 1
X —.
|lall€[A,2A] Hi:] Z; Z1 22
But by Lemma 11.5, this is < A" B*'"#7%/2, as required. O

LEMMA 11.7 (Diagonal terms). Let n > 3k and let § > O be sufficiently small
in terms of n and k. Then if A¥=9 < B"* ywe have

#{(a,b;, b,) € S(A; B, B) : A(by, by) = 0} « A"k B2/,
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Proof. Let a be given; so we wish to count by, b, € A, with A(b;, b)) = 0.
Let A, have a basis zy, ..., z,_; satisfying the properties of Lemma 10.5, and
let by = Y- nzi, by = Y0y, with y,, A, < B/Z;, where Z; = Z;(a)
are the successive minima of A,. By Lemma 11.6, we only need to count the
contribution from a with Z,_,(a) <« B'7%2. Since A(z;, zx;1) # 0, we have
that A(by, by) = 0 only if a nonzero polynomial (of degree O (1)) in the A;, y;
vanishes. Thus, the number of choices of A;, y; < B/Z; such that A(b;, b,) =0

1S
n—k—1 2
B B
1 1+—1.
<<< +Zn_k) “( +Z,->

i=1

Since Z,_; < B'7%? and n > 3k, this is

BZn—Zk—l BZn—Zk—B/Q
<

n—k 2 n—k zn—k *
1_[1':1 Zi Z] Zk+l

< Zn—k

But then by Lemma 11.5, this means the size of the set in the lemma is of size

B2n—2k=5/2
& A"k pIn=2=/3 0
7]( .
f

k
Zk+1

<
Zi Z;‘lka

k
llalle[A,2A] l_[izl

11.2. Non-Archimedean estimates. We now consider b, b, for which the
determinant of Ay, p, is small because Dy, p, is large. We first establish a couple
of lemmas bounding the number of times a given polynomial f € Z[X] can
vanish (mod D). The key point of these lemmas is that there is only a very weak
dependence on the size of the coefficients of f.

LEMMA 11.8. Lete > 0. Let £ = (fi, ..., fi) € Z[x, ..., x,]¢ be a vector of
£ > 2 homogeneous polynomials of degree d with coefficients of size at most
F > 2 in absolute value and no nonconstant common factor in Z[ Xy, ..., X,]
amongst all of them. For each prime p, let e, € N be such that not all the f; take
only the value 0 (mod p¢r) on (Z/prZ)" but that all the f; only take the value
0 (mod pr~") on (Z/pr~'Z)". Let E =[], _, p°".

Then for any reals Dy > 1 and 1 < Xyin < X1, -+, X < Xinax, We have

#{(x, D) € Z" x Z, |x;| < X;, D > Dy, £(x) = 0 (mod D), f(x) # 0}

<<< ! + ! )(D FX )eE"ﬁX
W _ 0 max i
DO Xmm i=1

Here the implied constant depends only on €, n, d, €.
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Proof. For this proof, we let all implied constants depend on £, n, d and e.
Without loss of generality, we assume that X,.,x = X; =2 -+ 2 X, = Xun-
We first want to show the existence of short vectors u, v € Z" such that f(u) and
f(v) have a small common divisor.

We choose u € Z" such that |Ju|| <€ E, u, # 0 and f(u) % 0 (mod p¢r) for
any p < d or any p|E. This is possible since f does not vanish on (Z/p¢rZ)".

We now choose v such that any integer dividing all components of f(u) and
f(v) must divide E. For any prime p with e, = 1, the fact that f does not vanish
on [/ means that there is a polynomial f,, | € {fi, ..., f¢} such that f,, has a
nonzero coefficient over F,. Viewing f,, 1(X) as a polynomial in x; and selecting
a nonzero coefficient, we find a nonzero polynomial f,,» in x5, ..., x, such that
fp.11s anonzero polynomial in x; if f},, # 0 (mod p). Repeating this, we obtain
(possible constant) polynomials f,», ..., f,. with f}, ; a nonzero polynomial in
Xj,...Xxn, and f, ; is a nonzero polynomial in x; if f, ;11 # 0 (mod p). We
then choose nonzero integers v,, ..., vy in turn as small as possible such that
fpjj, ..., v,) # 0 (mod p) forall j € {1,...,n} and for any prime p > d
which divides all components of f(u) and has e, = 1. This is possible since any
nonzero polynomial of degree at most d can vanish at most d points over I ,, and
we only consider p > d.

Since f has coefficients of size O(F) and |u|| < E, we have |f(u)| «
(FE)°WY, Thus, there are O(log FE) primes p which divide all components
of f(u), and these must all satisfy p > d if e, = 1. Each of the polynomials
can have at most d roots modulo any prime p under consideration. Therefore,
each v; is the least integer which avoids one of O(1) residue classes mod p for
O (log FE) different primes p. By the fundamental lemma of sieve methods, we
have that v; < (log FE)?™.

Thus, we have found u, v < E(log F)°" such that any integer dividing all
components of f(u) and f(v) must divide E. In particular, for any integer D, we
have either D/ gcd(D, f(u)) > (D/E)"? or D/ ged(D, f(v)) > (D/E)"/?. Thus,
without loss of generality, it is sufficient to count pairs (x, D) as in the lemma
with the extra condition that D/ ged(D, f(w)) > (D/E)"?> where w € Z" is a
fixed vector with [|w|| <« E(log F)°", w, # 0 and f(w) # 0. By replacing f;
with a suitable integral linear combination of the f; we may moreover assume
that f;(w) is the same for all j.

We now change variables. Since w, # 0, |w;| < E(log F)°V and X; > --- >
X,, we can write any vector X € Z" with |x;| < X; as

n—1

w,X =Y yie; + YW,

i=1

with |y;| € Y; = X;E(log F)°"Y fori < n and y, < Y, = X,, where e; are
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the standard basis vectors of Z". Since the polynomials f; are homogeneous, we
have f(w,x) = wdf(x) Thus, it is sufficient to count pairs (y, D) with D > D,
D/ ged(D, f(w)) > (D/E)l/2 lyil < Y; and f(y) = 0 (mod D) but f(y) # 0,
where f(y) = f(Z, | Vi€ + Y W).

By the Euclidean algorithm (or calculating a suitable resultant), D|f'(y) only
if D|g(y1, ..., Y,—1) for some nonzero polynomial g independent of y, and
of degree at most d? and with coefficients of size at most F? since the
components of f have no nonconstant polynomial common factor. We consider
separately the cases when g(yl, ..., Ya—1) = 0 and when it is nonzero.

There are < [/=7 ¥; < XL E"~2(log F)°® [1/Z X; choices of y, ..., Y
such that g(yy, ..., yn 1) = 0. For any such choice, there are L Y, = X, choices
of y, such that f(y) # 0 and then O ((Xax F)€) choices of D|f(y) This gives the
result in the case g(y, ..., y,-1) = 0.

There are < []/—, ¥; = E"~'(log F)°" []'Z] X; choices of yi, ..., y,_; such
that g(y, ..., y.—1) 7 0. Given such a choice, there are then O((F X4x)¢)
choices of D|g(yy,..., y,—1)- We now wish to count the number of choices
of y, such that f’(y) = 0 (mod D). We recall that f;(w) is the same nonzero
integer for all j, so f; is a polynomial of degree d in y, with lead coefficient
f1(w). Moreover, we only consider D with D/gcd(D, f(w)) = D/ gcd(D,
fi(w)) > (D/E)"?. In this case, using Lemma 11.2, we find that the number
of choices of y, such that f;(y;, ..., y,) =0 (mod D) is

D i 1 1
<(1+X,|———r— D <« DSE'*X, +— ).
ng(Da fl (W)) Xmin Dé/zd

This gives the result. O

LEMMA 11.9. We have

#b el : A(b) =0} < p*!

Proof. We may assume that p is sufficiently large, so 8 # 0 (mod p) and p > n.

We recall that if A(b) =0 € IF),, then there exist constants cy, ..., cx—; not all 0
such that

k-1

> aTi(b) =0.

i=0

We argue in the case when this is the shortest linear relation of this type (so, in
particular, ¢y, c,_; # 0); the other cases are entirely analogous. By inverting co,
we have b = T°(b) = Zf;ll ¢/ T"(b) for constants ¢, with ¢;_, # 0. Thus, letting
b,yj=0b;/0,wehave b; = Zk 11 c;b;_; forall j € Z. Moreover, we may assume
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that b does not satisfy any other recurrence equation of this type because in that
case, we may take a linear combination and have c¢,_, = 0. This is a difference
equation, and so b; = Zf:ll P (j )Af for some polynomials P, ..., P, with total
degree at most k — 1 and constants A; in a finite extension of IF,. Moreover,
the monomials j™' 1/ uniquely determine ¢}, ..., c;_, as the coefficients of the
monic polynomial X~ — Y"1 ¢/ X*=~1 € F,[X] of least degree which has A,
as a root with multiplicity at least deg P;.

But then Y, P,(n + A" = b,y ; = b;/0 =671y, Pi(j)r] for all j. This
gives a fixed linear combination of the monomials j™' A/ which vanishes for all
J»and so as in Lemma 10.4, the coefficients of all monomials must be zero. Thus,
on comparing the coefficient of j‘A! and letting p,; be the coefficient of x* in
Pi(x), we have p,; = O] Y, -, Pmin™ " ('Z) By considering the coefficients in
turn from the highest degree coefficients to the lowest degree, we see that either
P(x)=0orA! =6""and p,; =0forallm > 2.

Thus, we have b; = Zi p,-,l)vi" where for each i, we have A!! = 6~!. But then
there are O(1) possibilities for the monomials appearing in b;, and so O(1)

possible choices for the coefficients ¢}, .. ., ¢;_,. Since b is uniquely determined
by ¢}, ...,c,_, and by, ..., by_y, there are O(p*~") different possible choices
of b. O

REMARK. We expect the bound of Lemma 11.9 to be sharp for infinitely many
p since it involves n equations in n 4+ k — 1 variables.

LEMMA 11.10. Let n > 3k and a € Z"\{0} and p a prime. Then there exists
by, by € A, such that A(by, by) # 0 (mod p).

Proof. Let z,,...,Z, ; be a basis of A,. From the definition of A,, any x €
Z" which is in the Q-span of z;,...,z, 4 is in A, and so must actually be in
the Z-span. Therefore, for any prime p, zi, ..., Z,_; are linearly independent
(mod p). After rearranging the coordinates, this means that the (n — k) x (n — k)
matrix formed by taking the first n — k components of z, . .., z,_; has nonzero
determinant (mod p), and so is invertible. But this means that given integers
by, ...b,_, there exists X € A, such that x; = b; (mod p). In particular, there
exists xV, x® e A, such that

I _—
X; =

1 (mod p), Jj =k,
0(mod p), 1< j<2kor2k<j<n-—k,

)
X;

1 (mod p), Jj =k,
O(modp), 1< j<2kor2k<j<n—k.
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We now consider the component of A(x", x®') which is the determinant of the
2k x 2k matrix formed by taking first 2k components of xV, ..., T*=1(x),
and x?, ..., T*1(x?). We see that this matrix is a lower triangular with 1’s on
the diagonal and so has determinant 1. Therefore, A(x", x®?) % 0 (mod p), as
required. O

LEMMA 11.11. Letf = (fi,..., fi) € Z[xy, ..., x,)° be such that
#{(ar,...,a,) €[1, p]": f(a) =0 (mod p)} < p"*

for all primes p. Then £ has no nonconstant common factor.

Proof. Imagine for a contradiction that there is a nonconstant polynomial
g € Zl[xy,...x,] dividing all the f;. Then there is a nonconstant polynomial
g1 dividing g defined over a finite extension of @Q which is absolutely (that
is, geometrically) irreducible (g, = g if g is absolutely irreducible). By the
Chebotarev density theorem, there are infinitely many primes p such that
g (mod p) has a factor g, corresponding to g, which is defined over IF,. It
follows from the Hilbert Nullstellensatz (see, for example, [18, Proposition 7,
page 157]) that g, is absolutely irreducible over IF, for all but finitely many
primes p. But the Lang—WEeil bound implies that there are (14 o(1)) p"~! values
a € ) such that g, (a) = 0 for any prime p for which g, is defined over I, and
is absolutely irreducible over IF,. In particular, there are 3> p"~! zeros of g over
F, for infinitely many primes p. This contradicts the assumption of the lemma,
and so no such nonconstant polynomial g can exist. 0

LEMMA 11.12 (Determinant rarely small for non-Archimedean reasons). Let
n > 3k, 8§ > 0.and AY1=9 < B" % Then we have for any constant C > 0
#{(a, b, bz) € S(A, B, B) : Dbl.bz > Gac, b, =b, = bo (mod (,i)}
< €0C/2OkAn—2kBZn—2k.

Proof. By Lemma 11.6, we can restrict our attention to a such that A, has all
successive minima Zi, ..., Z,_; < B'7%/2, and by Lemma 11.7, to by, b, with
A(by, by) # 0. By Lemma 11.5 (since €, “/** >> exp(G’(log log A)?)), it suffices
to show for each such a that

C/IOszn —2k
D D R (11.11)
D>e- € bi,breA, l_[ Z
O b, lIbyll€[B,2B]
D|A(b,¢)#£0

We split our argument into different cases, depending on whether D < B%? or
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D > B%? We first consider D < B%?. We recall that A(by, b,) is a vector of
homogeneous integer polynomials in the coefficients of by, b, with coefficients
of size O(1) and degree at most 2k. If A(b;, b,) = 0 (mod p), then there exists

constants ¢, ..., Cx_1,do, - .., dr_1 € Z at least one of which is 1 such that
k—1 k—1
Y aT!(b) =) dT'(hy) (mod p).
i=0 i=0

By symmetry, we may assume that one of the ¢; is equal to 1. Given a choice of

Cos -+ Cr—1,do, - .., dr_; and by, we see that we are counting solutions b; € A,
to a linear equation Mb; = v (mod p) for some given v € F depending on
b, and d, ..., d;_; and some given matrix M depending on cy, ..., c;_;. The

number of such solutions in F’p’ is at most the number of solutions of Mb, =
0 (mod p) by linearity (it is the same if v is in the image of M). But the number
of choices of by, ¢y, . .., ¢;_; with one of the ¢; equal to 1 and Mb, = 0 (mod p)
is the number of b; € F; such that A(b;) = 0 (mod p). Thus, by Lemma 11.9,
there are O (p*~') choices of b; (mod p) and cy, ..., c,_;, given a choice of b,
and d(), ey dkfl.

Letz,, ..., 2z, be abasis of A, and A, be the reduction of A, (mod p). Since
the integer vectors in the Q-span of zy, ..., z,_ are in A, from the definition of
A,, they must, in fact, lie in the Z-span of zy, . .., z,_. Thus, any basis z,, . . .,
z,_ is linearly independent (mod p), and so A, contains p"~* points. Thus,
there are O (p*) choices of dy, ..., dr_; (mod p) and O(p"*) choices of b, €
Aa. Hence, in total, there are O (p"t*~') « p*~2-2 choices of by, b, € A,
such that A(by, b,) = 0 (mod p). But there are p**~* choices of by, b, € A,.
Thus, by Lemma 11.11, /\(er'l:_lk a;z;, Zf;l b;z;) is a vector of polynomials in
a, b with no nonconstant common factor, and A(b;, b,) does not vanish on A,
for p sufficiently large. If p is bounded by a constant, then by Lemma 11.10, we
also have that A(by, b,) does not vanish on A,.

Let D = []_, p = DD, with D, = []_, pi» D = []i_, p“" be
factorized into square-free and remaining parts. By the above discussion, there
are O (p" %) choices of b;, b, (mod p;) with A(b;, b,) = 0 (mod p;) and
bi, b, € A,, and so certainly O(p;' @n=20=2) choices (mod pih). Alternatively,
by Lemma 11.2, there are O( pf"an_z“_re" /2K1H0)y choices of by, by (mod ).
(After a change of variable, one can assume that a homogeneous polynomial of
degree d has a monomial cx?, and so Lemma 11.2 applies for each choice of x;,
..., X,.) Thus, by the Chinese remainder theorem, the total number of choices
of possible residue classes for by, b, (mod D) is

D2n72k D2n72k D2n72k71/10k
<

< < .
ax(2,[e; /2k]+o(e;i)) i/2k—1+o0(e;) 14+1/50k 4~1/50k+o0(1)
I—L pmdx e/ o(e, l_[,-(p,-z)3/4(l7f / o(e, )1/4 l)1 / D2/ 0

1
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Since we are considering D < B%? < B/Z,_., the number of choices
of b;,b, € A, with |b{||, ||by]| in any given residue class (mod D) is
O(B*~2D=@n=20 / TT'_F Z2). Thus, the total contribution from ¢, < D <
B2 is

2n—2k—1/10k B2

< Z D]1+l/50kD21/50k+o(1) D> ['- kzz

D>¢,

P\Dzép\Dl
C/10k32;172k 1
< l—In T n—k »2 Zz D1+1/50kD1/50k+0(1)
Dy,D>y>1 1 2
p|D2=p|D;
C/lokBZn —2k 'L'(D])
<

- 3 72 D11+1/50k
D >1
C/IOk 32177216
l—In T n—k »2 Zz
This is sufficient to give (11.11) when D < B%/2.
Thus, we are left to consider the contributions when D > B%?2. Let z,, ...,

Z,_; be a basis for A, so thatb; = Z:'_lk Az, by = Zf_f y;z; for some integers
Ai, ¥; < B/Z;. From our above discussion, A(}_;_, * Az, Z:’;lk y:Z;) is a vector
of homogeneous polynomials of degree 2k in Ay, ..., A, V1, --+» Yai>» With
coefficients of size O (B) and which does not vanish identically (mod p) for p
sufficiently large or (mod p”’) for some fixed J for all other primes. Therefore,

by Lemma 11.8, the number of triples (b;, by, D) with D > B%? such that A(b,,
b,) = 0 (mod D) but A(b;, b,) #0is

< (11.12)

n—k B2
< B[] (11.13)

Recalling that €y = ¢ *" exp(—y/log X) > exp(—+/log X) and B > X°, we see
that (11.13) gives (11.11) in the remaining range D > B%2. O

11.3. Separation of variables and proof of Proposition 11.1. Finally, we
are in a position to prove Proposition 11.1. We assume that n > 3k.

Proof of Proposition 11.1. We recall that we wish to show

Z gb]g—bz Z 1 <« eoAn72kBZn72k

byl b2 ll€[B,2B] a€Ap; b,NRo, b,
bi,ba=by (mod §)
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for any choice of by, where A, B satisfy X <« AB « X and X**? « B «
X"~2%=¢/2_ For § sufficiently small in terms of €, we see that this implies that
BRI/ -2 _ A ~ BU-Hn—h)/k

Combining Lemmas 11.4, 11.7 and 11.12 and recalling that g, < 60_2, we
have

Z |gb1g_b2| Z 1 & GgAn_Zszn_Zk.

byl Ib2l€[B,2B] a€Ap; b, "Ry b,
8k/8 pok —24k
IA(by,b2)lI<€y " B or Dy, b, >€

Thus, we may restrict our attention to by, b, such that || A (by, by)|| > egk/ b g

and Dh],bz < EJSOk.

We first deal with the Dy, », factor. We note that

—30k
1, Db],b2 < EO ,

—30k —60k
>y -t ot <D <
- 2y _ —o(l) —60k —(100k)
D<e-30k g —60k O(T(Dbl»bz) ) = €o » € < Dbl,bz < €
0 0 _ —(100k)?
DIDy, b, d|Dp, b, /D 0(&,°%), €, """ < Dy, .

’

Thus, using Lemma 11.12, we see that we may replace the condition Dy, p, <
€ 3% by the double sum on the left-hand side at the cost of a negligible error
term coming from when Dy, , > €, °*.

We are left with

D DTIC) N S % D S &

d<eg®, D<ey ™ by, lIb2 | €[B.2B] a€ Ay, by R, by
bl Ebz Eb() (mod q)
dDID[,le2

where 3" indicates that we have the condition that || A (by, by)|| > €5*/° B%*.

Splitting the sum over by, b, into residue classes modulo D; = lem(d D, g)
and recalling § = (0n)"¢*N(c) < ;' = G* exp(y/log X), it suffices to show
that

Sup Z gblg_bz Z 1 << Ggook‘An—Zszn_zk‘

— 100k
Di<e, [byl,IIb2€[B,2B] a€Ap; b, "Rb b,
di.d2€Z" (by,b2)=(d;,d2) (mod D)

By Lemmas 7.1 and 10.1, we have that the inner sum is

Dy, 1, VOI R An-2k-!
S by YOUTCA A+0(1+—Zk 1>’
| A (by, bl Y2k
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where V is the length of the shortest vector in Ap, 1, By Lemma 11.4, since
V= & det Ay, p, < B, this error term contributes

S(V; B, B)

K BYe" + A" log B)eg*  sup  —o

Vn—2k<<32k
&« BYo()  gn=2k=1 pan—2k+2k/(n=2K)+o()

Here we used the fact that g, < €, % and that there are O(log B) choices
of dyadic interval for V <« B*/=20_ This is « A""2=%/2B2=2k gince A >
B 1+9k/(1=26) by assumption. Thus, we may restrict our attention to the main
term.

We split the sum over by, b, into O (5, 2"y nonoverlapping hypercubes C, . . . ,
C, of side length §,B, for some suitable §. There are O(§, ntly hypercubes
which do not have all points with norm either in [By, 2By] or outside of this
interval. Thus, on choosing

8o = €200/, (11.14)

we see that these contribute a negligible amount. Thus, we are left to show

Z Z* gbI%VOI 7—\)fb],bz < 8(1)/3An72k32n72k’

1<i,j<r (b1.by)eCixC; | A (by, byl
(b1,b2)=(d;,d3) (mod D)

where (C;)<i<, are the O(8,") hypercubes with all points in C; having norm in
[B, 2B] (since gy = 0if N(b) ¢ [B, 2B)).

Since the hypercubes have side length §oB and || A (by, by)]| is a continuous
function in the components of by, by, with the derivative with respect to any
component O (B*~"), we have that || A (b;, b,)| is almost constant on C; x C;.
Specifically, if || A (b}, b})|| > 8,/° B* for some b, € C; and b, € C;, then || A (b,
b = | A (b, b)) [[(1 4 O(8,)) for any b, € C;, b, € C;. Let ¢; be the vector
in the centre of C;. We now extend the sum to all pairs (b;, b,) € C; x C; for
which || A (¢;, ¢;)]| > € */* B* /2. These additional terms can be shown to be
negligible in an identical way to how we removed them originally. We are left to

bound
1
Z Sk/ﬁBZk

1<i,j<r

Z gb]EVOI Rb],bz .

(b],bz)ec,' XC.,
(b1.b2)=(d;.d2) (mod D)

Similarly, vol Ry, b, is the volume of a region whose dependence on by, b, is
through constraints which are linear in the coefficients, and so vol Ry, n, <
A" can vary by at most O(8,A" %) on C; x C;. This error contributes

O (8pe; **/° A"~k B2=2%) in total and so is negligible. Thus, we may replace
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vol R 4 with the volume evaluated at ¢;, ¢;, which we bound by O (A"2%) . Thus,
it suffices to show for any choice of D < §, % and any i, j, d;, d;

Z g, T; < 52n+l/2B2n

(b1 ,bz)eC,» ><Cj
(b1.b2)=(d;.d2) (mod D)

This sum factorizes as
(2 ) = =)
b]EC,' szCj
by=d; (mod D) by=d; (mod D)

We now replace g, with the original coefficients 1x,(b) — iRz(b). As in
Lemma 7.8, the error introduced by making this change is

< Z T(b)log X « GZOOOk /8 Z 7 (b)) 000K /5+2

beC beC
r(b)>e(;2
<8 Y T(N@)Y Z !
N(0)<B!/2 oTGngZ’/II\;(i}?Lb d (mod N())
T(@)°0
< 5n+an
0 Z N®)

N(0)<B1/2

< 8 (log B)°V B,

Since the trivial bound for either sum is 8 B"¢;”, this makes a negligible
contribution. Thus, we are left to show that

Y (ry(b) — Iry(0) < 857287,

b]EC,‘
bi=d; (mod D)

We recall that § = ¢* 21 exp(— 0 ({/log X)) > g*7'¢e 8 exp(—Ylog B) and
that D < 8, « ¢*'¢*¢® exp(/log B). Thus, we may apply Proposition 9.7,
which gives the desired result. This completes our proof of Proposition 11.1. [

Thus, we have established Theorem 1.2, and Theorem 1.1 in the case K =

Q/0).
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12. General K = Q(w)

In this section, we sketch the changes in the argument required to generalize
the above result to K = Q(w) for w a root of a monic irreducible polynomial in
Z[X] instead of K = Q(~/8). Most of the arguments work with any occurrence
of +/6i=1 simply replaced by w'~!, but in a few places, we require some small
modifications to the argument. We have used throughout the paper the fact that
an element of Ok can be written as an element of (9n) "Z[</6]. For K = Q(w),
we note that Z[w] is a finite index lattice in Oy, and so Dx'Z[w] € Ok C Z[w]
for a suitable constant Dy . Thus, we can simply replace (6n)" by Dk throughout.

We now consider the argument of Sections 8—11 which establishes the Type
IT estimate Proposition 6.1, where a couple of other changes are required. The
argument of Section 8§ is essentially unchanged as in no place did we use the
explicit structure of K being of the form QY0).

In Section 10, we make use of the explicit multiplication rules in Z[/6], and
so we need to modify this for Z[w]. We see that

(En biwi_l)< gn a,-a)i_l> = ( E" Ciwi_l)
i=1 i=1 i=1
with

¢
Cp = (Z beri-ia; +
i=1

where ¢; ; , € Z are some constants depending on the coefficients of the minimal
polynomial f of w. Here Ty, ..., T,_, are linear maps with the property that
T;(b), is equal to b, _j_ (or 0 if n < j + £) plus some integral linear
combination of b, 5, ...,b, (if £ > 2). Again, we let ¢ denote the above
operation so that ¢ = b ¢ a. We then have the corresponding definition of the
lattices Ay and Ay, y,

Z €i,j,Zbiaj) =T,_¢(b) - a,

i+j>n+2

A, ={xeZ":(x0ov);=0,n—k <i <n}

={xeZ:x-T;(v)=0,0<i<k-1},
Ayy,={xeZ": (x0oV);, =x0oVy); =0, n—k <i <n}
={xeZ" :x-Ti(vi)) =x-Ti(v) =0, 0<i <k—1},

and Lemmas 10.1 and 11.10 then hold in an identical way with T' replaced by T;.
In place of Lemmas 10.4 and 11.9, we have the following two simple lemmas.

LEMMA 12.1. Given b € Z"\{0}, let L be a linear subspace of R" such that
AX,b) =0 forallx € L. Then L has dimension at most 2k — 1.
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Proof. We note that for x € Z"\{0}, we have N(Q_"_ x;o'™") # 0, so the

i—1

columns Ty(x),..., T,_;(X) in the multiplication—by—Zl’f:l X;w'~" matrix are
linearly independent. Thus, there are no constants cy, ..., ¢;_; not all zero such
that Zf:& ¢;T;(x) = 0. Thus, by linearity of the 7;, we see that given ¢y, . .., ¢;_;
not all zero and given d, . . ., di_1, there is at most one x € Z" such that

k—1 k-1

Y aTi® =) dTb).

i=0 i=0
Hence, if A(x,b) = 0, then x is given by vector of rational polynomial
expressions in cy, . .., ¢x_1,dg, - . ., dy_1. Since one of ¢y, ..., cx_1,dy, . . ., dy_1

may be assumed to be 1, we see that x lies in a variety of dimension at most
2k — 1, and so any linear subspace containing only x of this form must have
dimension at most 2k — 1. O

LEMMA 12.2. We have
#b e : A(b) =0} < p* 2.

Proof. If A(b) =0 € F’, then there are constants cy, ..., ¢ one of which is 1
such that Zf;(; ¢;T;(b) = 0. We argue in the case ¢;_; = 1; the other cases are
analogous. Looking at the £th component for £ < n—k+ 1, we see that this gives
by_gso—¢ interms of b, 34y, ..., b,. In particular, b is uniquely determined by

bp_is2, ..., byandcy, ..., ci_,. Hence, there are at most p*~2 choices of b. [

Since we have a bound 2k — 1 in Lemma 12.1 instead of k of Lemma 10.4,
we can only ensure that A, has a basis satisfying the first and third conditions
of Lemma 10.5 with A(zy, zy;) # O instead of A(z;, Zy;) # 0. This requires a
number of small modifications throughout Section 11 with each instance of z;
replaced by z,; (and some corresponding minor adjustments replacing k + 1 with
2k). This affects the argument when we establish (11.7) since, instead, we have

Z¥ 257 < det(Ay) < VE < (BOK 0,

and so to deduce that Z;Zy < (BC)'"% for some § > 0, we require that
n > (54 +/3)k/2. Similarly, for Lemma 11.6, to ensure that Z,Z, <« B* %
using Z# 757 « det(A,) < AF, we require that A¥/(=9 « B?"=% a5 well as
A=) « Bn=k The rest of the Archimedean estimates go through as before.
For the non-Archimedean estimates, we use the bound of Lemma 12.2 instead
of Lemma 11.9 in Lemma 11.12. In order to conclude that for b;, b, € A,, we
have A(by, by) = 0 (mod p) only if at least two nonzero polynomials with no

https://doi.org/10.1017/fmp.2019.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2019.8

J. Maynard 102

common factor vanish (mod p), we require that n —k > 2k —2+k+2 instead of
n—k > k—1+k+2;thatis, we require n > 4k. We note that 4k > (5+ \/g)k/Z.
With this restriction, the rest of the proof of the Type II estimate goes through as
before.

Combining the above restrictions, we see that we have the Type II estimate,
provided n > 4k, and any polytope R < [€2, 2n]‘ has

kn 4 € “
&, ..., &) eR:max<k+e, 2n_5k) < ;s, <n—2k—¢
for some ¢ < ¢ (in addition to the assumptions already contained in
Proposition 6.1). For n < 5k, this has reduced the range of our Type II
estimate, and so we require a slightly different decomposition of S(A, t,).
When n > 4k, we see that we can handle Type II terms if there is a factor
with norm in the interval [X"/3*¢, X"/2=¢]. An identical argument then shows
that we have an equivalent of Proposition 6.2 for sums ), S(A,, t}) instead
of Y, S(Ay, t1), where v} is any ideal with N(t}) < X"/~ (since this is the
length X"/*7¢/X"/3*¢ of our new Type II range). We let v}, ¢}, v}, v}, t5, ) be
chosen maximally (with respect to the ordering of ideals from Section 6) subject
to N(t)) < X072 N(t)) < X"+ N(¥y) < X"/*7¢, N(t)) < X"/*™, N(¥}) <
X3¢, N(vy) < X*/3+2¢ By applying Buchstab’s identity twice and splitting
up some of the summations which appear, we have

S(AT) = S(Ap. ¥ — Y S(A.p)
vy <p<ry
=SA D= Y St — Y SALP = Y S(Ap)

/ / / ' Y /
v <pI<T) T <p<y v<p<ry

+ Z S(APIPZ’ p2)

v <pa<pi<r)

=SAH = Y St = Y SALP = Y S(A.p)

v <p1<r) <p<eg ty<p<ry
+ § S(Ap1p27 pz) + E S(Ap1p2$p2)'
v <pa<pI<Y, v <pa<p1I<Y)
th<prpa<ry or vy <prpa <y v2<pipa<rh or vy <pipa<r) or vh<pipa<ry

The first three and the fifth terms in the decomposition above can be evaluated
asymptotically by the equivalents of Propositions 6.1 and 6.2. The fourth
and the final terms can be bounded in magnitude by replacing S(A,, p) and
S(Ay,p,, p2) with S(A,, 1) and S(A,,,,, t1), respectively, and the equivalent of
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Proposition 6.2 then shows that these terms contribute O (€) to the final estimate
since the range of norms in the sums is of length O (¢) in the logarithmic scale.
Thus, we have a decomposition where all terms can be evaluated asymptotically
or contribute a negligible amount.

The final minor change is in the proof of Lemma 6.4. In establishing (7.7), we
used the multiplicative structure of Z[~/6]. However, recalling that (a ¢ b), =
a - Ty(b) and Ty(b), is equal to b, | _,, we see that

=k oifh, =---=b =0,
S e@ T/ =17 . o
., 0, otherwise.
ac([l,q]
a;j=0if j>n—k

Thus, the proof goes through exactly as before.
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Appendix A. Explicit sieve decomposition

In our appendix, we give a description of an adequate sieve decomposition
used in Section 6 in the case n < 4k. As mentioned previously, the work of
Harman [10], in principle, gives a decomposition which is adequate for us, but
in the interests of clarity, we give a different explicit decomposition here.

We recall that we have an ordering on ideals which respects the partial
ordering by norm and that v, is maximal with N (t;) < X"1/2¥9 We recall the
notation C, to denote the set of ideals ¢ such that ¢d lies in the set C and the
notation S(C, 3) to denote ideals in the set C with all ideal factors larger than 3.

We wish to obtain a decomposition of S(C,t,) of the type given by
Proposition 6.6, which then allows us to obtain a lower bound for the number of
primes in A by performing the same decomposition to B, giving a lower bound
of the form (6.5).

Rather than directly produce a decomposition of the form of Proposition 6.6
for a general set C, it is more convenient and more conceptual for us to deal
with A and B at the same time so that we can pay attention only to those terms
which cannot be shown to be negligible by Propositions 6.1 and 6.2 since then
the motivation for our decomposition is clear. With this in mind, we define

< #A
T(av 3) = S(-AD’Z)) - G@S(BD’ 3),
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and we wish to make a decomposition of 7((1),t;) into terms that can be
shown to be negligible by Propositions 6.2 (giving the sets S; and S,) and 6.1
(giving the sets S; and Sy) and some remaining terms for which we can produce
an adequate lower bound (giving the set Ss). It will be obvious from our
construction that once we have obtained suitable decomposition of 7 (9, 3), this
immediately gives a suitable decomposition of the type in Proposition 6.6.

We see that Propositions 6.1 and 6.2 show that various averages of T (0, 3)
are negligible. Similarly, although the decomposition of Proposition 6.6 is given
in terms of polytopes, we will deal just with sums of terms of 7(9, 3). Since
all these expressions will be involving ideals with at most 1/(3zw — 1) prime
factors with constraints only on the number and size of the prime factors, we see
that they can be re-written in terms of polytopes to give a decomposition of the
originally desired form.

We assume throughout that 0.25 < k/n + 4 < @ := 0.3182 and note
that 7/22 < 0.3182. We will only use our Type II estimate of Proposition 6.1
to evaluate terms involving an ideal factor with norm in the interval [X"?,
X"1=22)] or [X*@, X"1=)] and we will only use Proposition 6.2 for sums
> o 1r(@)S(Ay, v1) where the D in the summation satisfies N(d) < X"~
(This corresponds to restricting to the conditions wn < Zf;l e, <n(l —2w)
and Zle e; < n(l — @) in Propositions 6.1 and 6.2, respectively.) We note
that the restriction to k/n + 4€ < @ implies that N (t;) < X"~3*~% as required
by Proposition 6.2. Thus, our decomposition will be valid for all &, n satisfying
k/n <o — 4e.

We fix ideals 3; < --- < 36 chosen maximally (with respect to our ordering)

subject to
N(ﬁl) < Xn(173w)’ N(Zu) < X", N(33) < Xn(172w),
NG < X", NGs) <X, NGe) < X"

The quantities vy, v, from Section 6 are equal to 3; and 34, respectively.

Since we can estimate S(I3, 34) by the prime ideal theorem (Lemma 4.3), we
see that it suffices to get a suitable lower bound for 7'((1), 34) to produce the
desired lower bound for S(A, 34).

By Buchstab’s identity,

T((1),3) =T(1),50— Y. T, p)

31<P<34
=T((M.30— Y Te.30+ Y. T(ipp)
31<p<32 31<pa<p1<52

https://doi.org/10.1017/fmp.2019.8 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2019.8

Primes represented by incomplete norm forms 105

— Y Tem— Y Tea+ Y T@Epsp)

32<P<33 3<P<i4 3B3<PI<i4
31<p2<Ppi

=: TI—T2+T3—T4—T5+T6. (Al)

By Proposition 6.2, the Ti, T» and Ts terms are O(c#.4/log X), which is
acceptable. By Proposition 6.1, T, = o(#.4/log X) and so is also negligible.
Thus, we are left to consider 75 and T5.

We first split 73 and Tg into subsums T3, 75, and Tg;, Ts, depending on
whether pm% < 36 or not. First we consider T i, the terms from Ty with plpg < 365
where we can apply further Buchstab iterations. This gives

Tori= Y TEpap)= Y TEpnz)— Y. T(oipaps.s)

3<p1<s4 33<P1<34 3<P1<s4
31<P2<pi 31<p2<p1 31<P3<P2<Ppl
p2p1<s6 P3p1<ss p3p1<s6

N(p1pap3)<X”

+ Z T(pr...ps,04).

B3<PI<34
31<pa<-<p1
p3p1<s6
N(p1pap3) < X"

Here we have the additional restriction N (p;p»p3) < X" since T (pip2ps, p3) =0
otherwise. Since p1p,, p1P2p3; < 36, Proposition 6.2 shows that the first two terms
are negligible. This leaves

Si= > T(r-..pap). (A2)

33<p1<34
31<P4<-<PI

P3p1<36
N(p1p2p3)<X”

Similarly, for T3 ;, the terms from 73 with plpg < 3¢, We find

Z T(pip2, o) = Z T(p1p2, 51) — Z T (p1p2bs, 51)

JI<p2sp1<i2 31<p2<P1<32 31<P3SP2SPISH2
p3p1<s6 p3p1<s6 p3p1<s6

+ ) T papa).

31<pa<-<P1<52
p3p1<s6
Since P17, p1Paps < 3¢, by Proposition 6.2, the first two terms are negligible. If
32 < P12 < 33, then the contribution is also negligible. Thus, the final term splits
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as S, + 83 + o(#A/log X), where

S = E T(pi...ps,ps) = E T(pi...ps,bsa), (A3)
31<pas<-<P1<52 31<pa<<-<P1<31,1
Pap1<3s pap1<s2
P1P2<32
S3 = E T(pr...psspa) = E T(p1...Psspa). (A4)
31<pasSPISH2 312<P1<52
pIp1<ss 31<ps<-<PI
P1p2>33 P2p1>33

Here 3,; and 3;, are chosen maximally such that N(3,;) < X"“"~D and
N(312) < X"1/2=®) We are left to consider S, S», S5, T3, and Ty 5.

We now consider Tg, and split it into T4, and Tg,, depending on whether
P1p2 < 36 or not. We first consider T, 1, where we are dealing with terms with
p1p3 > 36 and p1pa < 36 and p; > 33. Here we apply a reversal of roles. Over
the collection of such py, p,, we note that T (p,p,, p,) is counting products p;p,q
with p|q = p > p,, with the size constraints on (py, )

pm% > 36, PiP2 <36 33 <P1 <4 31 <P2< Py, N(P%Pl) < X".
(A.5)
Since the contribution with a factor a satisfying N (a) € [Y, Y'T°(] is negligible
and N(ppoq) < X", we see that we can translate these size constraints into
constraints on the size of q and p, at the cost of a negligible error. Therefore,
letting 3(q, ) be maximal with norm at most (X"*¢/N (qp,))"/**¢, we find

> T(pipap2) = Y T(ap2. 3(q. p2)

P1,p2 q,p2
= Z T(qp2, 31) — Z Z T (qpaps3, P3).
q.p2 q.p2 31<p3<3(q,p2)

Here the summation over py, p, is constrained by (A.5), and the summation over
g, p, is constrained by ((X)/qp», p2) satisfying (A.5) in place of (p;, p,) as well
as plq = p > p,. The first term is negligible since p; > 3, and so qp, < 3¢. The
second term is counting products qp,p;q, with p|q = p > p, and p|q, = p > ps.
Thus, we may rewrite this term as

— Z T (q2p2p3, P2),
q2,P2.p3

which is constrained by the conditions that (q,p3, p,) satisfies (A.5), 3; < p3 and
plg. = p > p;. Applying another Buchstab iteration gives

- Z T (q2p2p3, p2) = — Z T (42293, 31)+ Z Z T (q20203P4, P4).

q2,p2,p3 q2,p2,p3 q2,P2,P331 <pa<p2
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The first term is negligible since pp, < 36 implies gop2ps; < 3¢. Thus, apart from
an error term O (e#.4/ log X), we are left with

Se= ) T(apapspa, pa). (A.6)

q.P2,P3,p4
31<p4asp2
pla=p>ps
(gp3,p2) satisfy (A.5)
Finally, we wish to consider T3, and Ts,,, which is the terms with p;p3 > 36
and either p1p, > 36 or p; < 3> (note that these cannot simultaneously occur as

3w < 1). These contribute S5 and Sg, respectively, where

Ss= Y T(pipa ), (A7)

3<P1<34
d6<P1p2
N(p3p)<X"

Ss= Y T(pip2,p2)- (A.8)

P2SPIS<H2
P%PI>36

Thus, to get a lower bound for 7'((1), 34), it suffices to get lower bounds for the
sums S, ..., S¢. Recalling the definition of 7' (0, 3), we see that we have the
lower bound (valid for N (93) < X"(179)
< #A
T@,3) = S(As.3) — G@S(Bm 3)

- #A
> =6, =583

G#A log(X" /N (d
— (1ol w( g(X"/N( ))’
N(0)log N(3) log N(3)
where w(-) is the Buchstab function defined by
1
o) =—, I<u <2,
u
ow
ua—(u)za)(u—l)—a)(u), 2 < u.
u

This lower bound allows us to obtain an explicit integral expression as a lower
bound for T((1), 34). Moreover, we can restrict the summation in each of the S;

so that no subproduct of py, ..., p, lies between 3, and 33 or between 35 and 3
since these parts are negligible by our Type II estimate. For example,
S1 = Z T(py...pa,pa)
33<P1S54
31<P4SP3SP2<PI
P3p1<se
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!/

> ) T(i..psps) +o(#A/logX)

3<P1<34
3I<Pa<P3<P2<PI
p3p1<36

, » log(X" /N (p1p2p3pa))
1 DGHA ) e
2 —
(1o N (p1p2paps) log N (ps)

33<P1<34

31<pas<P3<P2<PpI
p3p1<s6
S#A C (1= —a — a3 — o\ doy doy dos d
= (~1+o(1)) //w< = — o “4) a da da; da;
nlog X o o 0030

Here Y indicates that we have restricted the summation so that no subproduct
of py, ..., py lies between 3, and 33 or between 35 and 3¢, and in the final line,
we used partial summation with the change of variables N (p;) = X"*, and the
integration is over the region defined by

1-20 <o <1/24€¢, 1-3 <ay<a3<a <o,

Y ¢ w1 -20]1URw, 1 —w]VJ C(1,2,3,4},
ieJ

Oll+"'+05j71+205j < 1Vje{2,3,4}.

In principle, this should already give us a reasonable lower bound for 7'((1),
34). Unfortunately, it appears difficult to get a good numerical approximation to
integrals over regions similar to the above one, presenting a practical difficulty.
To get around this difficulty, we split the sums S, ..., Sg further into various
subsums, and on these subsums, we relax some of the constraints (corresponding
to obtaining an upper bound for the integrals appearing) so that we have explicit
integrals which are amenable to numerical integration. The remainder of the
appendix is spent performing such a decomposition explicitly and obtaining the
corresponding numerical estimates.

From now on, we use the notation Z* and f f * to denote the fact that we
are summing or integrating over variables with various size constraints, which
we only explicitly write down later. The constraints implied by the asterisk will
remain the same within each display but may be different in different displays.

A.l. The sum S;. We first split the summation according to whether

P1P2p3Ps < 35 OF P1P2P3Ps > 36 OF 35 < P1P2P3P4 < J6- The final range makes a
negligible contribution by our Type II estimate. This gives

Si =811+ 812+ o0@#A/log X).
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We first concentrate on S, ; where pp,psps < 35. We split this into two further
sums S, and S 1, depending on whether p;popsp; < 36 or not. If pypopsp? <
36, then we can perform two further Buchstab decompositions. Thus, we find

*

St = Z T(®i...p4,P4)
P1,p2,P3.p4
= Z TMi...p4,31) — Z Z T(pi,...,Ps 31)
Ploees pa Ploeees P4 31<p5<Ps

+ Z Z T(p1---Pss Po)-

Ploes P4 31<PeSP5SP4

By Proposition 6.2, the first two terms make a negligible contribution, and lower
bounding the final term, we find that S} | ; is

A - 1
> (1 -
(o) e x Zp NG o)

/ / <1—a1—~--—a6)dot5da6
1-3w J1-3w OlsOlg

+ O(e#A/log X)

G#A
z—(+ 0(6))n10gx

/ /*dotl...dom 1 1 Oy 1 + 1
X Y 0 — —
o) ...0 1 -3 & 1-3w oy

G#A
= —(+ 0(6))n10gX

11,1,l~

Here we trivially bounded the Buchstab function by 1, and the integral 7, ; ; is
over the region defined by

1 -2 <a; <1/2+e¢, 1-3w <oy
a+otot+2e<]l—-o a)+ 20, < 1 -,
o) + oy + 203 < 1,

and this can be evaluated numerically in a feasible manner.

We will not perform further decompositions for the remaining parts of S,
simply splitting the summation according to size conditions. The remaining part
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S1.1.2 of §1,1 with plpzp_gpﬁ > 3¢ we lower bound directly, giving

S>> —(+ (1)) / / <1_a1—;.._a4>d2...5?4’
L
4d(¥]
>—(l+o(1)) // ,
70[]
6
==+ o), ok

Here we used the fact that oy + s + o3 + s <2 sol —o; — oy — a3 — oty >
20y to note that the value of the Buchstab function is always at most 4/7 since
sup,.7/4 @(u) = 4/7. The integration in I; ; » is over the region defined by the

conditions
1 -2 <a; <1/2+¢, l=3w Sas <oz <o <oy,
Ol1+(12+0l3+20l4 l—o 061+20l2 l—o
o) +oap +oaz+ oy < 2w, 011+Olz+013+20!4\1,

oy oy + 203 < 1.

This gives our lower bound for S; ;. We now consider S; ,. We note that we have
the constraints p;p3 < 36 and p3 < Py S0 PiPaps < 36. Thus, by our Type 11
estimate, we can restrict to p;p,p; < 35 at the cost of a negligible error term. We
now split the summation depending on whether p,p3py < 32 or Popsps > 33 (the
intermediate range being negligible by our Type II estimate). This gives

*

Sip= Z T(pr...pa,p4)

Plsesba
= D TOipap)+ Y T(i...psps) + oA/ log X)
p2pIPiSs: A

= S]yz,] + S],zyz + 0(#./4/ IOg X)

We first consider S , ;. Here we have the constraints p;p,ps < 35 and papsps < 32,
so we see that N (p;p.psp3) < N(3532) < X" for all terms in consideration. We
then obtain the lower bound for S 5 ;

l—a;— - —as\day...day
//( PR
dda; .
/ /7 ap .
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G#
=: - +0(1))n A Lo

log X
We bounded the Buchstab function above by 4/7 since N (p;popsp;) < X" and

so 1 —a; —---—ay 2> 204. The integration in I, , ; is over the region defined by
1 -2 <a; <1/2+¢, 1—-3w <as <oz <oy <ay,
a2+(x3—|—a4<w, a1+2a2 l—o
ajtoay+oztas>1—w, 061+062+063+2064\1,
o) + oy + 203 < 1, o+ o +o3 < 2w.

For S 5, we obtain the lower bound
[ / <1—061 Ol4)d(¥1...d0l4
ay o ..o
f / dOll
oe4 ’

1122

Sipp 2 —(1+ 0(1))

WV

- +0(1))

=: —(1+0(1)) gX

Here we bounded the Buchstab function above by 1 and the integration in /; 5,
is over the region defined by

1 -2 <o <1/2+¢€, 1-3w <as <oz <o <oy,
o +ozstoy, >1-—2w, a1 +200,<1—w
agtomtazta=l-o 0l1+0!2+0l3+2064\1,

o) + oy + 203 < 1, o)+ o +o3 < 2w.

This completes our lower bound for S.

A.2. The sum S,. We now consider the sum S,. There is a negligible
contribution whenever any product of three of py, p,, p3, p4 lies between 3, and
33. We therefore split the summation according to the range of each of these triple

products.
S, = Z T(pr...p4,p4)
PL.sba
= Z T(pr...papa) + Z T(p1...papa)
Pis P4 Pi,.-. P4
P1pP2p3<s2 P1P2P3>33

P1P2Pa<s2
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+ Z T(pr...ps,p4)

P1,....pa

P1P2pP4>33

P1Ip3pas32

+ E T(py...ps, bs) + E T(py...ps, pa) + oA/ log X)
pIPiPI pIBIPIC S

Pap3pa<se

= S0+ S0+ S5+ Sou+ S5 +o#A/log X).

We decompose S,,; once more, depending on the size of p;p,psp4, giving

*

So1 = Z T(pr...p4,04)

Pis- P4
= Y TMi...pepd)+ D T(i...psps) +o#A/log X)
P1P2|:~"%“!;'f<32 Plgzl.ﬂ'snﬁpm

= SZ,I,I —+ S2,1,2 + 0(#./4/ lOg X)
We also split S, 5 according to the size of pipapsps and N (pipaps) N (ps) /4.

*

S5 = Z T(pi...pa, ba)

Piy-s b4
* *
= Z T(pi...ps,bsa) + Z T(pi...ps,04)
PrsnPa Pls-nba
P1p2p3p2<se p1p2p3pI<se
N(p1p2p3)N(pa) /4 <X" N(p1p2p3)N(pa)! 74> x"
*
+ Z T(pi...ps, 0a)
PlseesPa
2

P1p2pP3Ps>36
=: 851+ 8252+ S253.

For each of S2,1,11 S2'1,2, Sz.’z, 5273, S2’4, 52,5’1 and 5245’2, we obtain lower bounds
in an analogous manner to S; ; ;. We have plpzpﬂﬁ < 36, and so we can perform
two further Buchstab iterations. We have

*

S = Z T(pr---pas31) — Z Z T(p1,...,Pps:51)

P4 P4 31<ps<Ppa

+Z > Tki...pe o)

PloePd 31 <PeSPs<P4
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6#.,4
> —(+ 0(6)) o X

dO[l dO(4 1 Oy 1
log —= ) —1)+—
/ / 0y (1—3 (0g<1_3w) >+(¥4>

= —(1+ 0(1))n

A
L.
log X

Here we used the fact that N (p;p,p3)N(ps)'* < X" to bound the Buchstab
function by 4/7 since it is only ever evaluated at arguments larger than 7/4. The
integral I, is over the region defined by

o)+ o; +o3+as < w, l-3mw<yy<oz <oy <o) <4do —1,

o+ o < w.

In an entirely analogous manner, we obtain

Srip 2 —(1+ 0(6)) Lo,
log X
G#HA
S22 =+ 0(e)) I,,
nlog X
G#A
S$3 2 —(1+ 0(e€)) 2.3,
nlog X
G#HA
So4 2z —(1+ 0(€)) I 4,
nlog X
G#HA
S50 =2 —(1 4 0(e) L,
nlog X

where the integrals 15 15, 1,2, 123, 14, 125, are all of the form

/ / dO[] dOl4 1 1 Oy 1 + 1
O —_— p— —
.y 1-3w & 1—-3w oy

for some constrained region in R*. Explicitly, I, ; » is over the region defined by

gty tastay>1—2w, 1-3ov<uyu<as<o <o <do —1,

~X
a+o < o, o+ +a3 < .
The integral I, , is over the region defined by

O{1+CU2+O{3 I—ZZD' 1—3ZD' 4< 3<(¥2<(X1<4ZD’—1,
ST

ato <o, o t+ay+oy
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The integral I, 5 is over the region defined by
o toatay>1— 2w, -3 <ay<os<a <o <4do — 1,
o +a <, a+azt+ay <@

The integral I, 4 is over the region defined by
o taztas>1-—2w, l-3mw<as<as<op <a <dow — 1,
o +o < @, o tosto <@

The integral I, 5 ; is over the region defined by

ajtay+oust+20<l—w, 1-3m<uyu<uy<ay <o <4o —1,
(¥2+O{1\ZD', 062+0(3+Ot4>1—2w

o) +ar +az+ 190[4/4 < 1

When dealing with the sum S, 5., we cannot bound the Buchstab function by
4/7, so instead we bound it by 1. In this way, we obtain

S - 1 0 £
52 = —(1+ (6)) log X 25,2

I / / dOll... (071 1 | oy 1 n 1
= ... o _ -
252 o ...0 1 —3w & 1—-3w oy )’

with the integral I, 5, over the region defined by

ajtayt+out+20<l—-—w, 1-3m<u<u<ay <o <4o —1,

a +a < @, atasto>1-2w,
aj+oa,+o3+19u/4 > 1

Finally, for the sum S, 5 3, we cannot perform further Buchstab iterations, so we

just bound it directly. This gives

G#A
Sr53 2 —(1+ 0(1))n10gX

*docl...doe4
12,5,32 5
op...0y

with the integral 7, 5 3 over the region defined by

12,5,37

ajtayt+oust+202]l—-w, 1-3m<uyu<u<ay <o <4o —1,
>1-2w

o +o < w, o + o3 + oty

This completes our decomposition of S,.
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A.3. The sum S;. We now consider the sum S;. By our Type II estimate,
there is a negligible contribution when any product of two of py, p,, p3, P4 lies
between 3, and 33. We now split the summation according to the size of the
pairwise products, noting that in all cases, we have p;p, > 33. This gives

*

Ss= > T(r...psps)

P1,P2,P3.p4
* *
= E T(pi...ps,0e) + E T(py-..paspa)
P1.P2.P3.p4 P1.P2.P3.p4
P1P3<s2 P1P3>33

P1P4.P2p3<s2
*

+ > TOipap)+ Y TP papa)

P1,P2,P3,P4 P1,P2.P3,p4
P1Pa>33 p2p3>33
Pap3<i2 P1Pa<s2
* *
+ Z T(pr...papa) + Z T(p1---Paspa)
P1,P2.P3,p4 P1,P2,P3, P4
P1P4,P2P3>33 P2bha>33
Papa<se P3pa<s

+ Y T(pr...papa) + o(#A/log X)

P1.P2,P3,p4
P3P4>33

=831+ S50+ S35+ S34+ S35+ S36 + 837+ 0o(#A/ log X).
The final three sums we obtain lower bounds without further decompositions,
giving

G#A

S35 =2 —(1+0(1)) 3,55
nlog X
G#A

S36 =2 —(1 +0o(1)) L3,
nlog X
G#A

S37 2 —(1+0(1)) 3,75
nlog X

where I35, I3, 137 are all integrals of the form
“doy...doy
/ o / o .. .o
over some region in R*. Explicitly, I3 5 is over the region defined by

1/2—w <a < @, 1 -2 -y <y <(l—@ —w)/2,
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l-3m <ay<az<ay<a, o+ao+2a; <1,
o) + o + a3+ 204 < 1, o toy > 1—2w,
o+ oz > 1— 2w, o tos <o

The integral I ¢ is over the region defined by

1/2—w <o) < o, 120 —a <, < (- —ay)/2,
-3 <ay<oz<a <oy, a+o+2a3 <1,
061+O(2+0£3+20[4< 1, Dl2+064 1—207

o3 +oy < .

The integral I3 ;7 is over the region defined by

1/2—w <o) < o, 120 —a <, < (-7 —ay)/2,
-3 <oy <3< <o, oto+2a <1,
Ot1+0(2+0t3+20{4<1, Ol3+0[4 1 —2w.

We now consider S;4. Since plpg < 36, We have pipop; < 36, and so we
can restrict to pp,p; < 35 at the cost of a negligible error term. We split the
summation according to the size of pp,psp4.

*

S34 = Z T(py..parPa)

P1.P2.P3.P4

= Y TMi...pupd+ D T(ki...pspa) +o@#A/log X)
P1.p2.P3,p4 P1,P2.P3,p4
P1P2P3Pa<3s P1P2P3Pa>36

= S34.1 + S342 + 0#A/log X).

Since pops < pi and pips < 32, we have N(pipopsp;) < N(32)° < X", and
so N(log(X"/N (p1pa2psps))/log(N(ps))) > 3 > 7/4. Thus, we obtain lower

bounds
G#A
S341 2 —(1+ 0(1)) X13,4,1,
#.A
S340 2 —(1 +0(1)) I3,
log X

where I3 4.1, I3 4 are integrals of the form
/ /*4da1...da4
Tooy .. .(xi
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over some region in R*. Explicitly, /3 41 is over the region defined by

12— <o < o, 120 —a << (l—o—0a)/2,
l-3m <ay<a3<ay<a, o+a+a;<2o,
051+052+0h+20€4<1, a) +oy < @,

o+ oz > 1 — 2w, o tor a3+ o, <2w.

The integral I 4, is over the region defined by

1/2—w <o) < o, 120 —a <, < (- —oay)/2,
l-3o<ayy<ayzs<oy<a, ot+a+a <20,

ap +oay +o3+ 204 < 1, o +oy < o,

(12+(X3 1—2@' a1+a2+a3+a4>1—w.

We now consider S33. We split the summation according to whether we can
perform further Buchstab iterations and according to the size pp,psp4, noting
that terms with p;p,p;p4 between 35 and 3¢ make a negligible contribution.

*

S33 = Z T(pr...pa,p4)
P1.P2.P3,P4
= Z T(pr...parpa) + Z T(py-..parpa)
P1.b2,P3.p4 P1.P2,P3.p4

P1P2P3Pa<3s
p1Ip2p3p3<s6

>

P1P2P3Pa<3s
p1P2P3IPT>36

T(p1-..ps, pa) + 0(#A/log X)

P1,P2,P3,P4
P1P2P3P4>36

=: 8331+ S332 + S333 + o(#A/log X).

With S35, we can decompose using two further Buchstab iterations, as we did
with Sy ; ;. This results in the lower bound

S331 2 —(1+ 0(6))n

S#A

VEERE
log X 331

I _/ /*dOll...dOl4 1
330 op...04 1-3w

(o5 ) =) +20)

with the integral /53, over the region defined by

12— <o < o,

SU-—o—a)/2,

]—2ZD'—Ol1<O[2
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1—3w< < 3< o a]+a2+2a3< ,
atat+ou3+20<1l—w, o +as>1-2w,

a2+a3\w, a1+a2+a3+a4\2w.

a <

With S; 5 ,, we split further depending on the size of p,psp4, giving

*

8330 = Z T(pi...ps4,p4)

P1,P2,P3.p4

= Y TMi...pupd+ Y T(pi...psps) +o#A/log X)
P1.P2.P3,b4 P1.P2,P3. P4

P2p3pa<so Pap3pa>33

=: 83321 + S3322 + 0(#A/log X).

We directly lower bound S35, and S 322, noting that N (pipopsp;) < X"
(since p1P2psps < 3s), so occurrences of the Buchstab function can be bounded
by 4/7. This gives

S3321 2 —(1+ 0(1)) L3,

g X
A
g X

S3300 2 —(1+o0 (1)) L3355,

where both I35, 1 and I35, , are of the form
/‘ / 4d(xl doy dos doc4
Ol10l20l3064

The integral I 5 5 ; is over the region defined by

12 —ow <o < w, 12— <, <(l - —0w)/2,
-3 <as <oz <ap <ay, o +ar + 203 < 1,
l—-wm<at+art+o3+20, <1, o+as>1-2w,
a + a3 < o, a Foaz+ou < w.

The integral I3 3 5, is over the region defined by

1/2—o <o < o, 120 - << - —a))/2,
1 -3 <oy <a3<a <o, o+ oy 4203 < 1,

l—-wm <o t+art+a3+204s <1, a4+as>1—2w,

o+ o3 < o, oo+ o3+ oy < 2o,
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(X2+ag+0[4 1 -2w.

The sum S; 5 3 we lower bound directly, after splitting according to whether we
can bound the Buchstab function by 4/7 or not. We obtain

6#./4
S333 2 —(1+ 0(1)) (13,3.3,1 + 153332),

4 dOll dO[z dO(3 dOl4
Lz = —_—

a1a2a3a4

dOll dO[z d0l3 dOl4
Lz, = —_—,

0[10[20[30(4

where the integral I3 ;3 ; is over the region defined by

1/2—o <o < o, 120 —a <, <(—w —ay)/2,
-3 <auy<ays<op <o, ot+a+2a <1,

o+ oy o3+ 204 < 1, o +os > 1-2w,

o+ a3 < o, o +atastos>1—w,

061+O(2+Ot3+11014/4<1

The integral I 5 3, is over the region defined by

1/2—w < o) < @, 12— << - —ay)/2,
-3 <ay<as <y <oy, o +o+2a; <1,

o) +ar +ay+ 204 < 1, o +as > 1—2w,

a +a3 < @, aj+a+aztas 21—,

0(1+O(2+0€3+110£4/4>1

We now consider the sum S; ,. We split the sum according to whether we can do
further Buchstab iterations or not. This gives

*

S32 = Z T(pi...ps, bs)

P1.P2.P3.p4
* *
= E T(pr...psaspa) + E T(pr...p4,Pa)
P1.P2.P3,p4 Pl,ququpa
p1p2p3pi<se P1P2p3Pi>36
=: 8321 + $320.
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The terms in S;,,; can undergo two more Buchstab iterations. As with S} 1, we
obtain

S#A
S321 2 —(1+ 0(e))
nlog X

I / /*d0l1...d()l4 1 1 Oy 1 i 1
= ... o _ —).
a2l oy ...0 1 —-3w & 1 -3 ol

with the integral /5, over the region defined by

13,2,17

1/2—o <o < o, 120 —a << (- —0a)/2,
1—3@' < < 2<(X1, ()l]+(¥2+20{3<1,
051+052+0h+20l4< , a +az > 12w,

a+o; < @, o+ oy < @,
a1+a2+a3+2a4<1—w.

We apply a direct bound to S;,,, and note that since p;p4, pops < 32, We can
bound occurrences of the Buchstab function by 4/7. This gives

S3p02—(1+o0 (1)) f;

I _/ / 4d0l1... Oy
22 Tay ..o

with the integral /5, ; over the region defined by

13,2,2’

1/2—o <o < o, 120 —a <, < (- —0ay)/2,
1-3B3m <oy <3< <o, o+o+20; <1,
ap+oa, o3+ 204 < 1

o +o3 < o, o +ay < @,

o +art+ay+2a, 21 —w.

) o +az > 1—2w,

Finally, we consider S; ;. We split the summation according to whether we can
perform further Buchstab iterations

*

S31 = Z T(pr...p4,pa)

P1.P2.P3,p4
* *
= E T(pi...ps,bsa) + E T®i...p4,Pa)
P1,P2.P3,p4 P1,P2,P3.p4
p1p2p3pi<se p1P2P3PI>36
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=: 8311+ $3,1.0-

We split S5, further depending on the size of p,psp4.

*

S0 = Z T(py...P4,p4)

P1.P2,P3.P4
= Y TMi...pupd+ Y T(pi...psps) +o#A/log X)
P1,P2.P3,p4 P1,p2,P3,p4
Pap3pass2 P2P3P4>33

=: 83111+ S31.12 + o(#A/ log X).

In both S5,,1.1 and S5 .12, we can perform two further Buchstab iterations. In
S3.1.1.1, we have pipapspd < 36 and papsps < 32, S0 N(pipapsp;) < X", and
it follows that we can bound occurrences of the Buchstab function by 4/7. In
S3.1.1.2, we just bound the Buchstab function by 1. This gives

G#
Ss0 2 —(1 4+ 0(6)) A

Lo,
gX 3,1,1,1

S >—(14+0 1l ,
312 = —(1+ ()) Tog X 3,1,1,2

dOl] dO{44 1 ®4 !
I _ _ l —1 I
31,11 / f s 7(1_3w<0g<1—3w> )+a4>
dO(l.-' 0y 1 &4 !
fae [ 1 U+ )
3,112 / / o (1_3w(0g<1—3w> >+a4)

Here the integral /5 ; 1 ; is over the region defined by

1/2—w < o) € @, 12— << - —ay)/2,
l-3o<ay<as<ap <o, o +o+2a; <1,
a1+a2+a3+2a4<1—w, Oll+Ol3<ZD',

o+ o3 +ay < .

The integral I3 ; , is over the region defined by

1/2—w <o) < o, 120 —a <, < (- —a)/2,
1—3@' <O[3<Ol2<0{1, (¥1+(¥2+20[3 1,
artoytost2a<l—-—o, ot <o,

o tastay>1-—2w.
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The sum S;;, we lower bound directly, noting that p,ps < pip3 < 32, SO
N(p1p2p3pl) < X3@" and we can bound occurrences of the Buchstab function
by 4/7. This gives

G#A
S312 2 —(140(1))
nlog X

! _/‘ /*4do¢1...d0¢4
2 Tay ...}’

with the integral /5, over the region defined by

I3,

1/2—o <o < @, -2 —a; <, < (1l —@ —ay)/2,
I -3 <ay<az<ap <o, o)+ oy + 203 < 1,
l—-o<ar+a+azs+20 <1, oa+az <.

This completes our lower bound for S;.

A4. The sum S4. We split the sum S, first according to the size of p,pspy,
then according to the size of qp,p4 or popy4. This gives

*

Sy = Z T (qp2p3Ps, Pa)

q.P2.P3.P4

= Y T@papsbap)+ Y T(apapapa. pa) + o(#A/ log X)
q.p2.P3,p4 q.P2.p3,P4

P2p3pa<s2 Pap3pa>33

= Z T (qp2p3pa, Pa) + Z T (qp2p3pa, pa)

q,P2,P3,p4 q,P2,P3,p4

P2p3pass2 P2p3passo

ap2p4<3s qp2pa>3e

*

+ Z T (qp2p3pa, pa) + Z T (qpop3ps, pa) + o(#A/ log X)

q,P2,P3,p4 q,P2,P3,pP4
P2p3p4a>33 pP2p3p4>33
P2pa<s Paba>33

=: 841+ Ss2+ Sas+ Sas+ o(#A/log X).

We perform no further decompositions and directly obtain a lower bound for the
sums Sy ; and Sy . This gives

G#A
Iy

Ss1 = —(1 1
41 (I +o( ))nlogX
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G#A
> —(1 1
S42 (1+o( ))nlogX

14,27

where I, | and I, are integrals of the form

/ / ( —Ol3) (1—/3—0[2—0[4)61,3610[262&';610[4' (A9)
oy 0300,

(This arises from putting N(q) = X"#7"*, N(p;) = X"%.) The integral I, is
over the region defined by

1 -2 <B<1/2+¢, 1 -3w < a3 < B/2,

B—as+a+a < 2w, l1-3w <oy <(1-B—-m)/2,

o+ o3+ oy < @, l—w—-B<a,<(1-7.)/2.
The integral 14, is over the region defined by

1 -2 <B<1/2+¢, 1 -3 < o3 < B/2,

B—azst+artas>1—ow -3 <as<(1-8—-ay)/2,

o o3 +oy < @, - —-B<a,<(-p8)/2

We split S, 5 up further depending on the size of p,p; and qp,p4. This gives

*

Sia= Y T(apapspa, pa)

q,P2,P3,p4
= Y T@pabsps,pa)+ Y T(apapsps, pa) + oGrA/ log X)
q,P2,P3,pP4 q,P2,P3,p4

P2p3<s P2p3>33
= Z T (qp2p3pa, pa) + Z T (qpop3pa, pa)

q.p2,P3,pP4 q.P2,P3,pP4

P2p3<s P2p3<s2

ap2pa<ss qp2p4>je

*

+ D T(@papspa, )+ Y T(@pabapa, pa) + 0GhA/ log X)

q,P2,P3,p4 q.P2.P3,P4
P2p3>33 P2p3>33
ap2pa<ss ap2p4>36

=: 8431+ Sa30+ Sa3s+ Saza+o(#A/log X).

We now obtain lower bounds for Ss 31, ..., S43.4 exactly as before. This gives

G#
Saz = —(1+ 0(1))n

Iy,
log X +31
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S#A
S —(1 400 Lis0,
432 2 — (1 +o( ))nlogX 43.2
G#A
Ssz3 = —(1 +0(1)) 1433,
gX
S4342—+o0 (1)) X14,3,4-
Here the integrals 1,3 1, . . ., 1434 are of the form (A.9). The integral 1, 5 ; is over
the region defined by
1 -2m <B<1/2+¢, 1 -3w < a3 < B/2,
B—az+a,+ay < 2w, 1 =3w <ay <(1—-8—m)/2,
l—-o—-B<a,<(-p8)/2, a+az < @,
o) + o3+ (X4 1 —-2w.
The integral I, 3, is over the region defined by
1 -2 <B<1/2+c¢€, 1—-3w < o3 < B/2,
B—ayst+tatouyu21l—o 1-3o <y < (1 —-8—0w3)/2,
l_w_ﬁ g(l_ﬂ)/27 a2+a3<wa
o tozstay>1—2w.
The integral 1, 3 3 is over the region defined by
1 -2 <B<1/2+c¢€, 1 —-3w <oy < B/2,
B —az+a +ay < 2w, -3 <oy <(1-B—m)/2
l—w - <a<(1-74)/2, a+oa3 2 1—-2w,
o +oy <.
The integral 14 5 4 is over the region defined by
1 -2 <B<1/2+4e¢, 1 -3w < a3 < B/2,
B—azs+a+ay 21— -3 <oy <(1-8—-a)/2,
l—o-B< <(1—,3)/2, a +az > 12w,

o +oy <.

Finally, we consider S, 4. We split S, 4 according to the size of p,ps, and then qp,4
and qp,p4. This gives

*

Ssia= Y T(qpapspa. ps)

q,P2,P3,p4
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= Y T@paksps,p)+ Y T(apapsps, pa) + oGhA/ log X)
q,P2,P3,p4 q,P2,P3,p4
P2p3<s2 P2p3>33
= Z T (qp2p3pa, Pa) + Z T (qp2p3Ps, Pa)
q,P2,P3,p4 q,P2,P3,p4
Pap3<s pP2p3>33
qapa<s2

*

+ Z T (qp2pspa, pa) + Z T (qpap3pa, Ps) + o(#A/ log X)

q,P2.P3,P4 q.P2.P3,P4
P2p3>33 P2p3>33
qpa>33 qp4>33

qap2pa<3ss qpapa>3e

=: S4a1 + Saa2 + Saas + Saaa +o#A/log X).

We then obtain lower bounds of S, 4, exactly as before. This gives for each i €

{1,2,3, 4} SHA
Sa4i = —(1+0(1)) Lyai,
nlog X

where 1 4; is an integral of the form (A.9). Explicitly, 144, is over the region
1 -2 < B<1/2+5€, 1 -3w < a3 < B/2,
o toy>1-2w, 1 -3w <oy < (1 =8—a)/2,
l—o—-B<a<(-78)/2, o +o3 < @.

The integral I, 4, is over the region
1 -2 < < 1/2+¢€, 1 —3w < a3 < B/2,
o +oy 2 1-2w, 1 -3 <oy <(1-8—-a)/2,
l—w—-B<a<(-p8)/2, wta 21 -2,
B—oas+ay <.

The integral 14 4 3 is over the region
1 -2 <B<1/2+c¢, 1—-3w <oy < B/2,
a+ay 21— 2w, -3 <oy <(1-8—-0a)/2,
l—-om —B<a,<(-p8)/2, o +as > 1 - 2w,
B—as+tay>1-—2w, B—ay+a+oy <2w.

The integral 14 4 4 is over the region
1 -2w < B<1/2+¢€, 1 -3w < a3 < B/2,
a+oay 21 -2w, 1 -3 <as < (1 —B8—w)/2,
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l—o - < <(1-p5)/2, 4oz > 12w,
B—as+ay>1-2w, B—oaz+oa+as>1—w.

This completes our decomposition of the sum .

A.5. The sums Ss and Sq. The sums Ss and Sg require no further
decompositions, and we obtain the lower bounds

G#A
2 —(1 1 )
Ss (I +o( ))nlogX 5
G#A

nlog X

Se = —(1+0(1)) I,

where

1/2+4€ (1—ay)/2 daldaz
Is = (A.10)
1

2 Jl—w—a ajon(l —a; —ay) '
“ “ 1 —o; —or\do doy
Is = w 5 (A.11)
(=w)/3 J(1—w—ay)/2 (0%) ooy

A.6. Numerical conclusion. Putting everything together, we find that the
above manipulations give a decomposition of the form of Proposition 6.6,

namely
S(A ) =D Y 1r@S( Ay — Y Y 1@ S(As, 1)
ReS, 0 ReS, °
+ O Y 1r@ =D Y r@+ > Y 1g(w,
ReS3 ac A ReS4 ac A ReSs ac A
for certain sets of polytopes Sy, ..., Ss satisfying the properties claimed in the

proposition. Specifically, all terms coming from S; and S, can be evaluated using
Proposition 6.2, and all terms coming from S; and S, can be evaluated using
Proposition 6.1. All the terms corresponding to Ss are terms which we discard
for a lower bound by positivity, corresponding to the lower bounds we obtained
for the subsums of S, ..., Ss. All the terms we have considered throughout
the appendix (including those we discard or deal with using Propositions 6.1
and 6.2) can be viewed as sums of the form 1z (a) (potentially summing over
O (1) polytopes) since all terms are sums of integers with at most 1/(3zw — 1)
prime factors, with the only restrictions being on the size of these prime factors.
We are left to check the final estimate, namely that

Z Iz < 0.99.

RESs
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From our previous work, we see that
Z In=L+bL+ 5L+ 1L+,
R€S5

where

Li=1L 1+ 12+ Lo+ 1o,

L=hLi1+hi,+ho+hLs+hastbhsi+Lsy+ Iss,

L=Lii1+hLiia+DBia+Dhar+Dhoy+ s+ 13010+ 13300
+ s+ 5330+ Lo+ L, +Ls+Le+ 13,

Li=L i+ Lo+ Lz +Lso+Liss+Taza+ sy + Laasr+ 1sa3+ Isaa,
and Is, I are given by (A.10) and (A.11). In particular, we obtain the required
result, provided I} + I, + Is + Iy + Is + Is < 1. All the integrals appearing
are in a suitably explicit form that they can be calculated numerically. The
following table gives the result of these numerical estimates. A Mathematica

© file performing these computations is available along with this article at
https://arxiv.org/abs/1507.05080.

Integral | Numerical upper bound Integral | Numerical upper bound
11 0.00393 IEREN 0.02824
L1 0.03341 L33 0.00045
L2, 0.05488 L4, 0.00350
11‘2,2 000098 13,4,2 001 194
Ly 0.00370 Ls 0.00615
Lo 0.00769 L 0.00038
L, 0.00011 VEY, 0.00158
L 0.00147 Iy 0.00001
Ly 0.00623 L 0.02744
bLs, 0.00614 I3 0.00161
L, 0.00118 I3 0.09657
bLss 0.00289 L33 0.14092

IERRE 0.00388 Iisa 0.00054
VAR 0.00546 Iyg1 0.05416
L, 0.00437 Iygn 0.00736
Loy 0.00277 Iy 43 0.00499
Lo 0.00578 Iyga 0.06736
L33, 0.01363 Is 0.14018
JEREN 0.01524 Is 0.22180
Lisan 0.00085

This gives a total bound of 0.98977 for I, + - - - 4+ I which is less than 0.99,
as desired.
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