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Abstract

In this paper we consider the probabilities of finite- and infinite-time absolute ruins in
the renewal risk model with constant premium rate and constant force of interest. In the
particular case of the compound Poisson model, explicit asymptotic expressions for the
finite- and infinite-time absolute ruin probabilities are given. For the general renewal risk
model, we present an asymptotic expression for the infinite-time absolute ruin probability.
Conditional distributions of Poisson processes and probabilistic techniques regarding
randomly weighted sums are employed in the course of this study.
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1. Introduction

In this paper we address the probabilities of finite- and infinite-time absolute ruins in the
renewal risk model with constant premium rate and constant force of interest. In this model,
the claim sizes, Xk, k = 1, 2, . . . , form a sequence of independent, identically distributed
(i.i.d.), nonnegative random variables with generic random variableX and common distribution
F = 1 − F . The interoccurrence times θk, k = 1, 2, . . . , form another sequence of i.i.d.
positive random variables with generic random variable θ . We assume that the sequences
{θ, θk, k = 1, 2, . . .} and {X,Xk, k = 1, 2, . . .} are mutually independent. The occurrence
times of the successive claims, Tn = ∑n

k=1 θk, n = 1, 2, . . . , constitute a renewal counting
process

Nt = #{Tn ≤ t : n = 1, 2, . . .}, t ≥ 0.

Therefore, the compound renewal process, Ct = ∑Nt
k=1Xk , represents aggregate claims up to

time t ≥ 0, with Ct = 0 when Nt = 0. Let x ≥ 0 be the initial surplus of the insurance
company, let c > 0 be the constant premium rate, and let δ > 0 be the constant force of interest
so that after time t a capital x becomes xeδt . Then the total surplus up to time t , denoted as
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Wδ(t), is given by

Wδ(t) = xeδt + c

∫ t

0
eδ(t−y) dy −

∫ t

0
eδ(t−y) dCy, t ≥ 0. (1.1)

If the interoccurrence time θ is exponentially distributed with mean 1/λ, or, equivalently,
{Nt, t ≥ 0} is a Poisson process with intensity λ, then the model above reduces to the compound
Poisson risk model, also called the classical risk model.

In the actuarial literature, the probability of infinite-time ruin is defined to be the probability
that the surplus falls below 0. This probability has been extensively investigated in the
compound Poisson model with constant force of interest; see, e.g. [1], [16], [19], [20], [23],
[24], and [25].

As commented by Embrechts and Schmidli [10], the boundary zero here plays an unrealistic
role. They used the alternative boundary−c/δ. Whenever the surplus process hits this boundary,
the company will not be able to repay its debts. Motivated by the work of [10], we define the
probability of infinite-time absolute ruin as

ψ(x,∞) = Pr

(
inf
t≥0
Wδ(t) < −c

δ

∣∣∣∣ Wδ(0) = x

)
, x ≥ 0, (1.2)

and define the probability of finite-time absolute ruin as

ψ(x, t) = Pr

(
inf

0≤s≤t Wδ(s) < −c
δ

∣∣∣∣ Wδ(0) = x

)
, x ≥ 0, t ≥ 0. (1.3)

Compared with the study on the ruin probabilities in the ordinary sense, the absolute ruin
probabilities have received less attention than they deserve. In the compound Poisson model and
for the general case with possibly different forces of interest for invested and borrowed money,
using the technique of piecewise deterministic Markov processes and martingales, Embrechts
and Schmidli [10, Theorem 1] showed an equality as an estimate for the infinite-time absolute
ruin probability. This estimate involves a function that can be explicitly expressed in certain
cases such as that of exponential claims, but it is not easy in general.

Absolute ruin was initially considered in [12] and further included in the book [13]. It is
to be noted that in [8] martingale methods in the context of absolute ruin were applied and
in [9] the influence of the force of interest on the negative surplus through several examples
was described.

Recently, most of the works on absolute ruin have concentrated on the compound Poisson
risk model. In [2] the Gerber–Shiu discounted penalty function was used to study the relation
between the asymptotic expressions for the infinite-time absolute ruin probability and the
ordinary infinite-time ruin probability. In [14] the compound Poisson risk model enriched
with an independent Brownian motion was considered and their analysis was based on the
jump diffusion model. There are calculations in three special examples with the corresponding
numerical applications. In [30] an asymptotic formula for the infinite-time absolute ruin
probability with different forces of interest for invested and borrowed money was established.
In [29] the multilayer model with different premium rates on different layers of the surplus
process and different forces of interest for invested and borrowed money in the framework of
the compound Poisson risk model was examined.

This paper aims to provide asymptotic estimates for the absolute ruin probabilities defined
in (1.2) and (1.3) as the initial surplus x increases for the case where the claim sizes follow
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a distribution from the class S(γ ) for γ ≥ 0. In doing so, we mainly apply some standard
probabilistic arguments from [7], [15], [21], [26], [27], and [28].

The rest of this paper consists of three sections. As the starting point of the present research,
we establish in Section 2 a proposition which presents a simple structure of the probability
of absolute ruin as being the tail probability of a randomly weighted sum of nonnegative
random variables, for both cases of finite and infinite time. In Section 3 three main results are
shown, two providing explicit asymptotic estimates for the finite- and infinite-time absolute ruin
probabilities in the compound Poisson model and one providing a general asymptotic estimate
for the infinite-time absolute ruin probability in the general renewal model. In Section 4 we
prove the main results after a series of lemmas.

2. A treatment on the probabilities of absolute ruin

At occurrence timeTn = ∑n
k=1 θk , we observe the valueWδ(Tn)which represents the surplus

immediately after paying the nth claim, n = 1, 2, . . . . By virtue of (1.1) we can see that this
sequence satisfies the recurrence equation

Wδ(0) = x, Wδ(Tn) = Wδ(Tn−1)e
δθn + c

δ
(eδθn − 1)−Xn, n = 1, 2, . . . .

Consider another sequence

Vn = Wδ(Tn)+ c

δ
, n = 0, 1, . . . .

It follows that

V0 = x + c

δ
, Vn = Vn−1eδθn −Xn, n = 1, 2, . . . ,

and, hence, that

Vn =
(
x + c

δ

) n∏
k=1

eδθk −
n∑
k=1

Xk

n∏
i=k+1

eδθi , n = 1, 2, . . . .

Since absolute ruin can happen only at the time of a claim occurrence, we rewrite the infinite-
time absolute ruin probability in (1.2) as

ψ(x,∞) = Pr

(
inf
n≥1

Wδ(Tn) < −c
δ

∣∣∣∣ Wδ(0) = x

)
.

With Yk = e−δθk for k = 1, 2, . . . , we further rewrite this probability as

ψ(x,∞) = Pr

(
inf
n≥1

Vn < 0

∣∣∣∣ V0 = x + c

δ

)

= Pr

(
inf
n≥1

((
x + c

δ

)
−

n∑
k=1

Xk

k∏
i=1

Yi

)
< 0

)

= Pr

( ∞∑
k=1

Xk

k∏
i=1

Yi > x + c

δ

)
. (2.1)
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Relation (2.1) can be interpreted easily. Each term Xk
∏k
i=1 Yi is the discounted value of

claim sizeXk according to the constant force of interest δ. The sum
∑∞
k=1Xk

∏k
i=1 Yi denotes

the total of all discounted future claims while the threshold for absolute ruin, x + c/δ, denotes
the initial surplus plus the total discounted premium.

Similarly, for the finite-time absolute ruin probability defined in (1.3), we have

ψ(x, t) = Pr

(
inf

1≤n≤Nt
Wδ(Tn) < −c

δ

∣∣∣∣ Wδ(0) = x

)

= Pr

(
inf

1≤n≤Nt
Vn < 0

∣∣∣∣ V0 = x + c

δ

)

= Pr

( Nt∑
k=1

Xk

k∏
i=1

Yi > x + c

δ

)
. (2.2)

We therefore record the following proposition.

Proposition 2.1. Consider the renewal risk model with constant force of interest δ > 0. The
absolute ruin probabilities in (1.2) and (1.3) can be expressed as in (2.1) and (2.2), respectively.

Proposition 2.1, which forms the foundation of our study, rewrites the absolute ruin proba-
bilities as the tail probabilities of randomly weighted sums. This gives rise to the opportunity
of applying some techniques well developed in the study of randomly weighted sums. We
also remark that relations (2.1) and (2.2) hold most generally, since in deriving them neither
independence nor the i.i.d. assumption is used. However, in developing (2.1) and (2.2) our
assumption of the same force of interest on invested and borrowed money is essential. Therefore,
Proposition 2.1 cannot handle the case of varying force of interest.

3. Main results

Here and henceforth, all limit relationships are for x → ∞ unless stated otherwise and
the symbol ‘∼’ means that the quotient of both sides tends to 1. Clearly, for two positive
functions f (·) and g(·), the relation f (x) ∼ g(x) amounts to the conjunction of the relations
lim sup f (x)/g(x) ≤ 1 and lim inf f (x)/g(x) ≥ 1, which are denoted as f (x) � g(x) and
f (x) � g(x), respectively. For two distributions F1 and F2 on [0,∞), denote by F1 ∗F2 their
convolution; that is, for every x ≥ 0,

F1 ∗ F2(x) =
∫ x

0−
F1(x − y)F2(dy).

Furthermore, we write F 1∗ = F and Fn∗ = F (n−1)∗ ∗ F for every n = 2, 3, . . . .
A distribution F on [0,∞) is said to belong to the class S(γ ) for some γ ≥ 0 if

lim
x→∞

F(x − y)

F (x)
= eγy (3.1)

for every real number y and the limit

lim
x→∞

F 2∗(x)
F (x)

= 2
∫ ∞

0−
eγyF (dy) (3.2)
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exists and is finite. A larger class, L(γ ), is defined by relation (3.1) alone. For the well-
known subexponential class S(0), when γ = 0, the right-hand side of (3.2) becomes 2.
For two distributions, F1 ∈ L(γ ) and F2 ∈ L(γ ), satisfying 0 < lim inf F1(x)/F2(x) ≤
lim supF1(x)/F2(x) < ∞, it is known that F1 ∈ S(γ ) if and only if F2 ∈ S(γ ); see, e.g. [17,
pp. 133–134].

Since it was introduced in [3], [4], and [5], the class S(γ ) has been extensively investigated
by many researchers and applied to various fields. This class is often used to model claim-size
distributions; see, e.g. [11], [18], and [28].

Closely related is the class R−∞ of distributions with rapidly varying tails, characterized
by the relation

lim
x→∞

F(xy)

F (x)
= 0, y > 1.

Clearly, if F ∈ L(γ ) for some γ > 0 then F ∈ R−∞. A lot of distributions in the class S(0)
such as lognormal and Weibull distributions still belong to the class R−∞.

For the compound Poisson model, the conditional joint distribution of the n occurrence
times given a fixed time of observation, Nt = n, lends easier evaluation of the weighted sum
in (2.2). The interplay of this conditional distribution and the asymptotic approximation of
convolution-equivalent tails entails the first main result in this paper.

Theorem 3.1. In the compound Poisson model with constant force of interest δ > 0, if F ∈
S(γ ) for some γ ≥ 0 then it holds that, for every 0 < t < ∞,

ψ(x, t) ∼ λ exp

{
λ

δ

∫ γ

γ e−δt
E esX − 1

s
ds − γ c

δ

} ∫ t

0
F(xeδs) ds. (3.3)

It is tempting to substitute t = ∞ into both sides of (3.3) to get an asymptotic expression
for the infinite-time absolute ruin probability. But, in general, the repeated limits with respect
to x → ∞ and t → ∞ of the ratio of both sides of (3.3) may depend on the order of the
limits, yielding different results. It turns out, however, that this intuitive substitute result in
the compound Poisson model is valid as a consequence of our next main result for the general
renewal risk model.

Theorem 3.2. In the renewal risk model with constant force of interest δ > 0, if F ∈ S(γ ) ∩
R−∞ for some γ ≥ 0 then

E eγ S∞ < ∞, where S∞ =
∞∑
k=1

Xk

k∏
i=1

Yi,

and

ψ(x,∞) ∼ E eγ S∞ Pr

(
XY > x + c

δ

)
, (3.4)

where Y = e−δθ is the generic random variable of the sequence {Yk = e−δθk , k = 1, 2, . . .}.
The expectation E eγ S∞ appearing in relation (3.4) is generally unknown for γ > 0.

However, if we go back to the compound Poisson model then this quantity is explicitly available,
as shown in the following last main result of the paper.
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Theorem 3.3. In the compound Poisson model with constant force of interest δ > 0, if F ∈
S(γ ) ∩ R−∞ for some γ ≥ 0 then it holds that

ψ(x,∞) ∼ λ exp

{
λ

δ

∫ γ

0

E esX − 1

s
ds − γ c

δ

} ∫ ∞

0
F(xeδs) ds. (3.5)

As remarked above, relation (3.5) corresponds to relation (3.3) with t = ∞.

4. Proofs

4.1. Lemmas

Lemma 4.1. Let F , F1, and F2 be three distributions on [0,∞) such that F ∈ S(γ ) and that
the limit li = limx→∞ Fi(x)/F (x) exists and is finite for i = 1, 2. Then

lim
x→∞

F1 ∗ F2(x)

F (x)
= l1

∫ ∞

0−
eγyF2(dy)+ l2

∫ ∞

0−
eγyF1(dy).

Proof. See [21, Proposition 2].

Lemma 4.2. Let F1 and F2 be two distributions on [0,∞). If F1 ∈ S(γ ), F2 ∈ L(γ ), and
F2(x) = O(F1(x)), then F1 ∗ F2 ∈ S(γ ) and

F1 ∗ F2(x) ∼ F1(x)

∫ ∞

0−
eγyF2(dy)+ F2(x)

∫ ∞

0−
eγyF1(dy).

Proof. See [6, Corollary 1].

Lemma 4.3. Let {Nt, t ≥ 0} be a Poisson process with occurrence times Tk, k = 1, 2, . . . ,
and let {Xk, k = 1, 2, . . .} be a sequence of i.i.d. random variables independent of {Nt, t ≥ 0}.
Given Nt = n for arbitrarily fixed t > 0 and n = 1, 2, . . . , the sum

∑n
k=1Xke

−δTk is equal in
distribution to the sum

∑n
k=1Xke

−δtUk , where the random vector (U1, . . . , Un) consists of i.i.d.
random variables uniformly distributed on (0, 1) and is independent of the vector (X1, . . . , Xn).

Proof. According to [22, Theorem 2.3.1], the conditional distribution of (T1, . . . , Tn) given
Nt = n is the same as the distribution of the random vector (tU(1,n), . . . , tU(n,n)), where
U(1,n), . . . , U(n,n) denote the order statistics of the n random variables U1, . . . , Un. Further-
more, since in the sum

∑n
k=1Xke

−δtU(k,n) the vector (X1, . . . , Xn) consists of i.i.d. random
variables and is independent of (U(1,n), . . . , U(n,n)), by rearrangement, this sum is equal in
distribution to the sum

∑n
k=1Xke

−δtUk .

Lemma 4.4. For two independent nonnegative random variables X and Y , if X follows a
distribution F ∈ S(γ ) and Y follows a distribution with an upper endpoint

1 = sup{y : Pr(Y ≤ y) < 1},
then the product XY still follows a distribution in the class S(γ ).

Proof. See [26, Theorem 1.1].

Lemma 4.5. Let F be a distribution on [0,∞). If F ∈ S(γ ) then

(i) it holds that, for each fixed n = 1, 2, . . . ,

Fn∗(x) ∼ n

(∫ ∞

0−
eγyF (dy)

)n−1

F(x);
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(ii) for every ε > 0, there exists some constant Cε > 0 such that the inequality

Fn∗(x)
F (x)

≤ Cε

(∫ ∞

0−
eγyF (dy)+ ε

)n

holds for all n = 1, 2, . . . and all x.

Proof. See [4, p. 665].

4.2. Proof of Theorem 3.1

Starting with (2.2) and conditioning on Nt , we have

ψ(x, t) =
∞∑
n=1

Pr

( n∑
k=1

Xke
−δTk > x + c

δ

∣∣∣∣ Nt = n

)
Pr(Nt = n).

By means of Lemma 4.3 we can have a sequence of i.i.d. random variables, {U,Uk, k =
1, 2, . . .}, uniformly distributed on the interval (0, 1) and independent of {X,Xk, k = 1, 2, . . .},
such that

ψ(x, t) =
∞∑
n=1

Pr

( n∑
k=1

Xke
−δtUk > x + c

δ

)
Pr(Nt = n).

By Lemma 4.4, the products Xke−δtUk , k = 1, 2, . . ., are i.i.d. with common distribution
belonging to the class S(γ ). Therefore, by Lemma 4.5(i), it holds that, for each n = 1, 2, . . . ,

Pr

( n∑
k=1

Xke
−δtUk > x + c

δ

)
∼ ne−γ c/δ(E eγXe−δtU

)n−1 Pr(Xe−δtU > x).

Applying the dominated convergence theorem justified by Lemma 4.5(ii), we obtain

ψ(x, t) ∼ e−γ c/δ
∞∑
n=1

n(E eγXe−δtU
)n−1 Pr(Xe−δtU > x)

(λt)n

n! e−λt

= λte−γ c/δ exp{λt (E eγXe−δtU − 1)} Pr(Xe−δtU > x)

= λ exp

{
λ

δ

∫ γ

γ e−δt
E esX − 1

s
ds − γ c

δ

} ∫ t

0
F(xeδs) ds.

This leads to (3.3).

4.3. Proof of Theorem 3.2

Our proof below is motivated by an idea in the proof of [15, Theorem 1]. Let Z be a random
variable with distribution F and independent of {(X, Y ), (Xk, Yk), k = 1, 2, . . .}, and denote
the distribution of Y = e−δθ by G, which is supported on (0, 1). Then

Pr((Z +X)Y > x) =
∫ 1

0
Pr

(
Z +X >

x

y

)
G(dy)

∼ 2 E eγX
∫ 1

0
F

(
x

y

)
G(dy)

= o(1)F (x),
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where the second step is due to F ∈ S(γ ) and the last step is due to F ∈ R−∞. Therefore,
there is some x0 > 0 large enough such that, for all x > x0,

Pr((Z +X)Y > x) ≤ F(x). (4.1)

Construct a new conditional random variable X∗ = (Z | Z > x0), whose distribution still
belongs to the intersection S(γ ) ∩ R−∞. Then, it is easy to see that

(X∗ +X)Y
d≤ X∗, (4.2)

or, equivalently, for all x,

Pr((X∗ +X)Y > x) ≤ Pr(Z > x | Z > x0), (4.3)

where ‘
d≤’ denotes ‘stochastically not larger than’. Actually, when x ≤ x0, relation (4.3) is

trivial as the right-hand side becomes equal to 1, while, when x > x0, by (4.1),

Pr((X∗ +X)Y > x) = Pr((Z +X)Y > x,Z > x0)

Pr(Z > x0)

≤ Pr((Z +X)Y > x)

Pr(Z > x0)

≤ Pr(Z > x)

Pr(Z > x0)

= Pr(Z > x | Z > x0).

Thus, relation (4.3) always holds. Relation (4.2) leads to

(X∗ +X1)Y1
d≤ X∗, (X∗ +X2)Y2

d≤ X∗.

It follows that

((X∗ +X2)Y2 +X1)Y1
d≤ X∗.

Hence, ST1 = X1Y1
d≤ X∗ and ST2 = X1Y1 +X2Y2Y1

d≤ X∗. Repeating these iterations we

obtain STn
d≤ X∗ for every n = 1, 2, . . . . Letting n → ∞ yields

S∞
d≤ X∗,

which implies, as a by-product, that E eγ S∞ < ∞. Let S̃∞ be a copy of S∞ independent of
{(Xk, Yk), k = 1, 2, . . .}. Then, for every n = 1, 2, . . . ,

S∞
d= STn + S̃∞

n∏
i=1

Yi,

where ‘
d=’ denotes equality in distribution. Therefore,

S∞
d≤ STn +X∗

n∏
i=1

Yi.
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From this we obtain, for each n = 2, 3, . . .,

Pr(S∞ > x) ≤ Pr

(
STn +X∗

n∏
i=1

Yi > x

)

=
∫ 1

0
Pr

(
X1 +

n∑
k=2

Xk

k∏
i=2

Yi +X∗
n∏
i=2

Yi >
x

y

)
G(dy). (4.4)

By Lemma 4.2,

Pr

( n∑
k=2

Xk

k∏
i=2

Yi +X∗
n∏
i=2

Yi > x

)

≤ Pr

(( n∑
k=2

Xk +X∗
)
Y2 > x

)

=
∫ 1

0
Pr

( n∑
k=2

Xk +X∗ > x

y

)
G(dy)

∼
(

E eγX
∗
(n− 1)(E eγX)n−2 + (E eγX)n−1

F(x0)

) ∫ 1

0
Pr

(
X >

x

y

)
G(dy)

= o(1)F (x),

where the last step is due to F ∈ R−∞. Now we apply Lemma 4.1 to continue the derivation
of (4.4) to find that

Pr(S∞ > x) �
∫ 1

0
E exp

{
γ

( n∑
k=2

Xk

k∏
i=2

Yi +X∗
n∏
i=2

Yi

)}
Pr

(
X1 >

x

y

)
G(dy)

= E exp

{
γ

( n∑
k=2

Xk

k∏
i=2

Yi +X∗
n∏
i=2

Yi

)}
Pr(XY > x),

or, equivalently,

lim sup
x→∞

Pr(S∞ > x)

Pr(XY > x)
≤ E exp

{
γ

( n∑
k=2

Xk

k∏
i=2

Yi +X∗
n∏
i=2

Yi

)}
.

Clearly,
∑n
k=2Xk

∏k
i=2 Yi +X∗ ∏n

i=2 Yi converges to S∞ in distribution as n → ∞. There-
fore, by the dominated convergence theorem, the expectation on the right-hand side above
converges to E eγ S∞ as n → ∞. This establishes the asymptotic upper bound as

lim sup
x→∞

Pr(S∞ > x)

Pr(XY > x)
≤ E eγ S∞ .
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It is easier to construct the corresponding asymptotic lower bound. Similarly as above,

Pr(S∞ > x) ≥ Pr(STn > x)

=
∫ 1

0
Pr

(
X1 +

n∑
k=2

Xk

k∏
i=2

Yi >
x

y

)
G(dy)

∼ E exp

{
γ

( n∑
k=2

Xk

k∏
i=2

Yi

)}
Pr(XY > x),

or, equivalently,

lim inf
x→∞

Pr(S∞ > x)

Pr(XY > x)
≥ E exp

{
γ

( n∑
k=2

Xk

k∏
i=2

Yi

)}
.

Clearly,
∑n
k=2Xk

∏k
i=2 Yi converges to S∞ in distribution as n → ∞. Therefore, the expec-

tation on the right-hand side above converges to E eγ S∞ as n → ∞ too. We have

lim inf
x→∞

Pr(S∞ > x)

Pr(XY > x)
≥ E eγ S∞ .

This completes the proof of Theorem 3.2.

4.4. Proof of Theorem 3.3

We first calculate the factor E eγ S∞ of (3.4) in the framework of the compound Poisson
model. As in the proof of Theorem 3.1, applying Lemma 4.3 to

St =
Nt∑
k=1

Xk

k∏
i=1

Yi =
Nt∑
k=1

Xke
−δTk

we have a sequence of i.i.d. random variables, {U,Uk, k = 1, 2, . . .}, uniformly distributed on
the interval (0, 1) and independent of {X,Xk, k = 1, 2, . . .}, such that

E eγ St =
∞∑
n=0

E

(
exp

{
γ

Nt∑
k=1

Xke
−δTk

} ∣∣∣∣ Nt = n

)
Pr(Nt = n)

=
∞∑
n=0

E

(
exp

{
γ

n∑
k=1

Xke
−δtUk

})
Pr(Nt = n)

=
∞∑
n=0

(E eγXe−δtU
)n
(λt)n

n! e−λt

= exp{λt (E eγXe−δtU − 1)}.
It follows that

E eγ S∞ = lim
t→∞ E eγ St

= lim
t→∞ exp{λt (E eγXe−δtU − 1)t}

= exp

{
lim
t→∞ λ

∫ t

0
(E eγXe−δs − 1) ds

}

= exp

{
λ

δ

∫ γ

0

E esX − 1

s
ds

}
. (4.5)
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We then calculate the probability Pr(XY > x + c/δ) in (3.4). Since F ∈ R−∞, by [26,
Lemma 3.1(i)], it holds that, for every ε > 0,

Pr(XY > x) ∼
∫ ε

0
F(xeδs)λe−λs ds

and that ∫ ε

0
F(xeδs) ds ∼

∫ ∞

0
F(xeδs) ds.

By the arbitrariness of ε > 0, it follows that

Pr(XY > x) ∼ λ

∫ ∞

0
F(xeδs) ds.

Note that the distribution ofXY still belongs to the class S(γ ) according to Lemma 4.4. Hence,

Pr

(
XY > x + c

δ

)
∼ e−γ c/δ Pr(XY > x) ∼ λe−γ c/δ

∫ ∞

0
F(xeδs) ds. (4.6)

Substituting (4.5) and (4.6) into (3.4) yields relation (3.5).
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