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Abstract

Let F be a field and (s0, . . . , sn−1) be a finite sequence of elements of F. In an earlier paper [G. H.
Norton, ‘On the annihilator ideal of an inverse form’, J. Appl. Algebra Engrg. Comm. Comput. 28 (2017),
31–78], we used the F[x, z] submodule F[x−1, z−1] of Macaulay’s inverse system F[[x−1, z−1]] (where z
is our homogenising variable) to construct generating forms for the (homogeneous) annihilator ideal of
(s0, . . . , sn−1). We also gave an O(n2) algorithm to compute a special pair of generating forms of such
an annihilator ideal. Here we apply this approach to the sequence r of the title. We obtain special forms
generating the annihilator ideal for (r0, . . . , rn−1) without polynomial multiplication or division, so that
the algorithm becomes linear. In particular, we obtain its linear complexities. We also give additional
applications of this approach.
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1. Introduction

The binary sequence r = (1, 1, 0, 1, 03, 1, 07, 1, 015, 1, . . .) has been studied by a number
of authors. In [11], Rueppel conjectured that r has a perfect linear complexity profile
(PLCP), that is, for any n ≥ 1, the linear complexity of the first n terms is �(n + 1)/2�.
According to Dai [1, page 441], this was verified by Massey for n = 2k − 1 and
n = 2k using his linear-feedback shift register (LFSR) algorithm [5]. The PLCP of
this sequence was first proved in [1] by applying the Euclidean algorithm (EA) to
shift-register synthesis; the essential proposition [1, Proposition 2] is proved in [2,
Lemma 5]. The proof in [1] also uses an unmotivated element ρ in a quadratic
extension of the rational function field GF(2)(x).

The continued fraction algorithm for the power series of r in GF(2)[[x−1]] was used
in [6, Corollary 2], a quadratic algorithm requiring polynomial division. We note that
the methods of [4, page 439] and [3, Example 4.8] do not apply since the first 2b terms
of the sequence are required, where b is an upper bound for the linear complexity (LC)
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of the sequence of length 2b (compare [3, Example 4.8] and [10, Example 3.7]).
A derivation via the LFSR algorithm for n = 2k appeared in [12, pages 46–47].
However, the derivation in [12] assumes that the ‘discrepancy’ Δn = 1 if and only
if n is odd. As far as we know, the PLCP of r has not been established using the
LFSR algorithm.

Let F be any field. Recall that the F[x, z] module F[[x−1, z−1]] of ‘inverse series’ in
variables x−1, z−1 is known as Macaulay’s inverse system (in two variables, z will be our
homogenising variable). Now, F[x−1, z−1] is an F[x, z] submodule of F[[x−1, z−1]]. This
elementary algebraic structure underlies our approach. The sequence (s0, . . . , sn−1) has
a ‘generating form’ sn−1x1−n + · · · + s0z1−n and hence a (homogeneous) annihilator
ideal. In [8], we gave an inductive construction for the generators of such an ideal,
yielding an O(n2) algorithm which is easier to understand, analyse and remember than
the LFSR algorithm.

Here, we specialise to F = GF(2) and r, with (r0, . . . , r9) and its inverse form as a
running example (see Examples 4.2, 4.3). Our main results are Theorem 4.4 and linear
Algorithm 4.7. We conclude by relating Theorem 4.4 to [1] and LFSRs.

Our approach is simpler and more efficient than the previous O(n2) methods in the
literature and: (i) it is inductive, adapting to the next term of the sequence, so we do
not need all of (r0, . . . , rn−1) as in [1]; (ii) it does not use multiplication in F[x, y]; (iii)
we do not use the roots ρ, ρ−1 of Y2 + xY + 1 in an extension of GF(2)(x) as in [1]. In
fact, ρ arises naturally in the solution of a polynomial recurrence (Theorem 4.9); (iv)
we do not assume an upper bound b on LC and 2b terms of the sequence as in [3, 4];
(v) unlike [6], we use no polynomial multiplications or divisions, but work with forms
in F[x−1, z−1], so there are no convergence or irrationality considerations and we work
with denominators only.

2. Preliminaries

We let F be an arbitrary field. For f ∈ F[x]×, we write f ∗ for the reciprocal of f.
We put R = F[x, z]; multiplication in R is written as juxtaposition. For ϕ,ϕ′ ∈ R and
k ∈ N×, xk ϕ + ϕ′ means xkϕ(x, z) + ϕ′(x, z) and similarly for ϕ + zkϕ′. The total degree
of ϕ ∈ R× is |ϕ|, with |x| = |z| = 1. The ideal of R generated by ϕ,ψ ∈ R is written
〈ϕ,ψ〉.

We write 
 for the graded-lexicographic order (grlex) on monomials of R×, with
|x| = |z| = 1 and x 
 z 
 1. The leading term of a form ϕ ∈ R is written LT(ϕ). We
define L to be the set of ‘leading forms’:

L = {ϕ ∈ R× : ϕ is a form and z � LT(ϕ)}.
We also use | | for the degree function on F[x], with |0| = −∞. Recall that the

homogenisation of c ∈ F[x]× is the form c∧ ∈ R given by c(x, z) = z|c|c(x/z) and the
dehomogenisation of f ∈ R[x, z]× ∩ L is f ∨(x) = f (x, 1) ∈ F[x].

Throughout the paper, F ∈ M× = F[x−1, z−1]× denotes a typical nonzero inverse
form of total degree m = |F| ≤ 0. We also order the monomials of M× using grlex,
now written ≺, but with |x−1| = |z−1| = −1 and x−1 ≺ z−1 ≺ 1.
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If F is also a form, that is, an inverse form, we write F =
∑0

j=m Fj,m−jxjzm−j; when
m is understood, we write Fj for Fj,m−j. We will use a restriction of the exponential
valuation v for inverse forms: the order of F is

v = v(F) = max{j : |F| ≤ j ≤ 0, Fj � 0}.

The augmentation of F by a ∈ F is axm−1 + Fz−1, an inverse form of total degree m − 1.
For example, the augmentation of zm by a is axm−1 + zm−1. A form F defines (nonzero)
inverse subforms {F(j) : m ≤ j ≤ v} by F(v) = xv and

F(j) = Fjxj + F(j+1)z−1 = Fjxj + · · · + xvzj−v for m ≤ j ≤ v − 1.

Throughout, n ≥ 1, (s0, . . . , sn−1) is a nonzero sequence (of elements of F) and
F = F(s0,...,sn−1) = sn−1x1−n + · · · + s0z1−n is the inverse form of (s0, . . . , sn−1); s−v(F)
corresponds to the first nonzero term of the sequence, axm−1 + Fz−1 corresponds to
the augmented sequence (s0, . . . , sn−1, a) and the inverse subforms of F correspond to
(nonzero) initial subsequences of (0, . . . , 0, s−v(F), . . . , sn−1).

We recall the R submodule M = F[x−1, z−1] of inverse polynomials.

DEFINITION 2.1. For nonnegative integers p, q, u, v,

xpzq ◦ x−uz−v =

{
xp−uzq−v if p − u ≤ 0, q − v ≤ 0,
0 otherwise. (2.1)

The R module structure of M is obtained by linearly extending (2.1) to all of R and M.

By linearity and without loss of generality, we can assume that an inverse form F
satisfies Fv = 1, that is, F = Fmxm + · · · + Fv−1xv−1zm−v+1 + xvzm−v.

The annihilator ideal of an inverse form F is IF = {ϕ ∈ R : ϕ ◦ F = 0}.

PROPOSITION 2.2 [8, Proposition 3.7]. The ideal IF is homogeneous.

PROPOSITION 2.3 [8, Lemma 3.1]. For forms ϕ ∈ R and F ∈ M with d = |ϕ| + |F|
either (i) d > 0 and ϕ ◦ F = 0 or (ii)

ϕ ◦ F =
0∑

j=d

[ϕ · F]j xjzd−j.

Thus, we trivially have xn ∈ IF if n > −|F|.

2.1. A bijection. Next, we detail the bijection between characteristic polynomials of
a sequence and the leading annihilating forms of its inverse form.

We use polynomial coefficients in their natural order, not the reversed order of
‘feedback coefficients’ and without using ‘shift registers’ as in the engineering litera-
ture. This definition enables us to exhibit a bijection between the set of ‘characteristic
polynomials’ of a sequence and the leading forms of the homogeneous ideal IF of R.
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We say that c ∈ F[x]× is a characteristic polynomial of (s0, . . . , sn−1) if c is monic,
l = |c| and either: (i) l ≥ n or (ii)

clsk+l + · · · + c0sk = 0 for 0 ≤ k ≤ n − l − 1 (2.2)

and χ(s0, . . . , sn−1) = {c ∈ F[x]× : c is a characteristic polynomial of (s0, . . . , sn−1)}.

As xn is (vacuously) a characteristic polynomial of (s0, . . . , sn−1), χ(s0, . . . , sn−1) is
nonempty and

λ = λ(s0, . . . , sn−1) = min{|c| : c ∈ χ(s0, . . . , sn−1)}

is well defined. Thus, minimal polynomials of (s0, . . . , sn−1), that is, characteristic
polynomials of minimal degree λ = λ(s0, . . . , sn−1) ∈ N are well defined; λ is the LC
of (s0, . . . , sn−1). We note that in [1], a characteristic polynomial of (s0, . . . , sn−1) is
written cn, that is, it is indexed by the length of the sequence, not its last term.

Recall that L is the set of monic, leading forms in R, that is, ϕ such that z � LT(ϕ).
If F is an inverse form, then x1−|F| ∈ I×F ∩ L. Thus, I×F ∩ L � ∅ and we can consider
forms in I×F ∩ L of minimal total degree. So we define

λ(F) = min{| f | : f ∈ I×F ∩ L}

and call λ(F) the LC of F.

THEOREM 2.4. Let (s0, . . . , sn−1) be a sequence with inverse form F ∈ M×. Then,

∧ : χ(s0, . . . , sn−1)� I×F ∩ L : ∨

given by ∧(c) = c∧ and ∨( f ) = f ∨ are mutual, degree-preserving bijections so that
for c ∈ χ(s0, . . . , sn−1), | ∧ (c)| = |c| and for f ∈ I×F ∩ L, | ∨ ( f )| = | f |. Therefore,
λ(s0, . . . , sn−1) = λ(F).

PROOF. We have |F| = 1 − n and |c∧| = |c| = l. From Proposition 2.3, c∧ ◦ F = 0 if and
only if [c∧ · F]j = 0 for l + |F| ≤ j ≤ 0. Now, c ∈ χ(s0, . . . , sn−1) if and only if c satisfies
(2.2), and substituting k for −j, one sees that (2.2) is equivalent to [c∧ · F]j = 0 for
l + |F| ≤ j ≤ 0, that is, equivalent to c∧ ∈ IF ∩ L. So c ∈ χ(s0, . . . , sn−1) if and only if
c∧ ∈ I×F ∩ L, we have the required bijections and hence, λ(s0, . . . , sn−1) = λ(F). �

REMARK 2.5. Instead of (2.2), the LFSR algorithm uses the equivalent l and
‘connection’ polynomial γ ∈ F[x]× satisfying

γ0sj + · · · + γlsj−l = 0 for l ≤ j ≤ n − 1,

where γ0 = 1 and γl may be zero (put j = k + l and γ(x) = c∗(x) = xl · c(x−1), the
reciprocal of c, made monic). Then the LFSR synthesis algorithm returns l and γ.
Unfortunately, the formulation using reciprocal polynomials vitiates our algebraic
approach.
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3. Viable ordered pairs (VOPs)

3.1. The inductive construction and algorithm. We recall from [8] how to con-
struct a ‘leading generator’ f of IF in L which gives a minimal annihilator of F
and, hence, a minimal polynomial f ∨ of (s0, . . . , sn−1). Then we give some additional
properties and discuss LC profiles.

This construction is iterative, with a simple inductive basis (Proposition 3.1) and an
undemanding inductive step (Theorem 3.3).

Let F be an inverse form. We say that an ordered pair of forms ( f , g) ∈ R2 is a viable
ordered pair (VOP) for IF if:

(i) f , g are nonzero monic forms, f ∈ L and z | g;
(ii) IF = 〈 f , g〉 (we call f a leading generator and g a cogenerator of IF);
(iii) | f | + |g| = 2 − |F|.

PROPOSITION 3.1 [8, Proposition 3.8]. If F = xm, then IF = 〈x1−m, z〉.

The reader may check that ( f , g) = (x1−m, z) is a VOP for I xm . If f ∈ IF ∩ L, we
call f a leading form for IF. Given a VOP ( f , g) for IF and G = axm−1 + Fz−1 for
some a ∈ F, we need to know how to construct a VOP (ϕ,ψ) for IG. This requires
a notion of ‘discrepancy’ that shows how a and IF affect IG. It is our analogue of
‘discrepancy’ introduced in [5]; it is the obstruction to extending f to a leading form
of IG.

DEFINITION 3.2. If f ∈ I×F is a form and G = axm−1 + z−1F, then the discrepancy
Δ( f ; G) of f and G is 0 if | f | + |G| > 0 and [ f · G](| f |+|G|,0) ∈ F otherwise.

The inductive step is given by the following result.

THEOREM 3.3 [8, Proposition 4.6, Theorem 4.12]. Let ( f , g) be a VOP for IF, a ∈ F
and G = ax|F|−1 + Fz−1. Suppose that g � IG and put Δ′ = Δ(g; G) ∈ F×, d = |g| − | f |,
Δ = Δ( f ; G) ∈ F. If Δ = 0, set (ϕ,ψ) = ( f , zg) and d = d + 1. However, if Δ � 0, put
q = Δ/Δ′ and

(ϕ,ψ) =
{

( f − q x−dg, z g) if d ≤ 0,
(x+d f − q g, z f ) otherwise.

Then, (ϕ,ψ) is a VOP for G and manifestly |ϕ| = | f | if d ≤ 0 and |ϕ| = |g| otherwise. In
particular, |ϕ| = max{|g|, | f |}.

For the next iteration:

(i) e = |ψ| − |ϕ| = 1 if Δ = 0 and e = 1 − |d| if Δ � 0;
(ii) if d > 0, b ∈ F and Δ(ϕ; b x|G|−1 + Gz−1) � 0, we put Δ′ = Δ, otherwise Δ′ is

unchanged.

PROPOSITION 3.4 [8, Proposition 3.5]. If ( f , g) is a VOP for F, then λ(F) = | f |.
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We will often write dk = |g(k)| − | f (k)| and Δk = Δ( f (k); F(−k−1)). We will refer to xdk

(if Δk � 0 and dk > 0) and x−dk (if Δk � 0 and dk ≤ 0) as the intermediate shifts in the
construction. The following O(m2) algorithm is based on Theorem 3.3.

ALGORITHM 3.5 (VOP)

Input: Inverse form F ∈ M×.
Output: VOP ( f , g) for IF.

(* Inductive basis: find F(v) and a VOP for IF *)
�j← 1; repeat j← j − 1 until (Fj � 0); v← j;
( f , g)← (x1−v, z);

(* Inductive Step *)
Δ′ ← 1; G← xv; d ← v;
for j← v − 1 downto |F| do
�G← Fjxj + Gz−1; Δ← Δ( f ; G); q← Δ/Δ′;
if (Δ � 0) then if (d ≤ 0) then f ← f − q x−d g;

else �t ← f ; f ← x+d f − q g; g← t;
Δ′ ← Δ; d ← −d; �

g← zg; d ← 1 + d; �

return ( f , g).�

We note that homogenising (μ, ν) ∈ F[x]2 of [7] also yields a VOP (see [8,
Theorem 6.15]).

3.2. Some additional properties. If F = xm, then IF = 〈x1−m, z〉 by Proposition
3.1 and gcd(x1−m, z) = 1. The next result shows that a VOP ( f , g) always satisfies
gcd( f , g) = 1.

PROPOSITION 3.6. If ( f , g) is a VOP for IF, gcd( f , g) = 1 and ϕ,ψ are as constructed,
then gcd(ϕ,ψ) = 1.

PROOF. If Δ = 0 and h | gcd( f , zg), then h = z or h | g. However, if z | f , then z | LT( f )
which is impossible, so h | gcd( f , g). Suppose that Δ � 0 and d ≤ 0. Then, gcd(ϕ,ψ) =
gcd( f , zg) = gcd( f , g) = 1 as before. However, suppose that d > 0. If h | z f and h | g,
then either: (i) h = z and h | ϕ or (ii) h | f and h | (xd f − q g). However, item (i) is
impossible since z � LT(ϕ) so item (ii) is obtained and h | gcd( f , g) = 1. �

We know that (x1−m, z) is a VOP for IF and x1−m is a leading form of minimal
degree. However, so is x1−m + ϕ z for any form with |ϕ| = −m. More generally, we have
the following result.
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COROLLARY 3.7 (Compare [6, Theorem 1]). LetΘ=ΘF = {θ ∈ IF ∩L : |θ| is minimal}.
If ( f , g) is a VOP for IF, then

Θ =

{
{ f } if |g| > | f |,
{ f } ∪ { f + ψ · g : ψ is a form and |ψ| = | f | − |g|} otherwise.

PROOF. If |g| > | f | and then f is the only monic leading annihilating form of
minimal degree | f | since IF = 〈 f , g〉. However, if |g| ≤ | f | and ψ ∈ R× is a form with
|ψ| = | f | − |g|, then h = f + ψ · g ∈ IF is a monic leading form since LT(h) = LT( f )
and |h| = | f | is minimal. �

In [8, Example 4.24], we obtained ( f , g) = (x4 + x3z + x2z2, x3z + x2z2 + xz3 + z4)
for the inverse form F = x−6 + x−4z−2 + x−3z−3 + z−6. Here, f (0, 1) = 0. However,
h = f + g ∈ IF satisfies h(0, 1) = 1. (In fact, h ∈ Iz−1F.)

More generally, if we have an inverse form F and begin iterating with (x1−|F|, z),
then the construction provides a VOP ( f , g) with gcd( f , g) = 1. Hence, if f (a, b) = 0
for some a, b ∈ F, then g(a, b) � 0 and if |g| ≤ | f |, then h = f + x| f |−|g|g is a leading
form in IF such that h(a, b) � 0. However, if |g| > | f |, then h = x|g|−| f | f + g ∈ IF is a
leading form such that h(a, b) � 0, but of increased degree |g|.

3.3. LC profiles. An inverse form F has subforms F(j) for m = |F| ≤ j ≤ v = v(F),
with F(v) = xv and F(m) = F. We write λ(F(j)) for the LC of the subform F(j).

We call the sequence (λ(F(v)), . . . , λ(F(m))) of integers the LC profile of F and say
that F has a PLCP if v = 0 and λ(F(−k)) = �(k + 1)/2� for 0 ≤ k ≤ −m. From Theorem
2.3, this agrees with the usual notion of the LC profile of a sequence. Next we relate
the notion of PLCP to the intermediate shifts occurring in Theorem 3.3.

PROPOSITION 3.8. Let F be an inverse form with F0 = 1. For 1 ≤ k < −m, let
( f (k), g(k)) be a VOP for IF(−k) and F(−1−k) be the (−1 − k)th subform of F. Put
Δk = Δ( f (k); F(−1−k)). The following are equivalent:

(i) F has a PLCP;
(ii) the intermediate shift is x if and only if k is odd.

PROOF. The quantity �(k + 1)/2� is 1 for k = 1, and increases by 1 if and only if k
is odd. Since F0 = 1, ( f (0), g(0)) = (x, z), that is, | f (0)| = 1 and d0 = 0. Thus, either
( f (1), g(1)) = (x, z2) or ( f (1), g(1)) = (x − z, z2). Next, the degree | f (k)| increases by 1
if and only if k is odd, and is equivalent to f (k+1) = x f (k) − qkg(k) if k is odd and
f (k+1) = f (k) − qkg(k) if k is even. �

Proposition 3.8 is an analogue of [6, Theorem 2] without an irrationality hypothesis
and our intermediate shifts are analogous to the partial quotients of [6].

Moreover, Δk is arbitrary when k is even. The average LC of a random binary
(s0, . . . , sn−1) is n/2 + an, where 0 ≤ an ≤ 5/18 [12, Ch. 4]. Thus, a binary sequence
with s0 = 1 and si chosen so that Δk = 1 when k is odd and randomly when k is even
will: (i) have a PLCP and (ii) be a good approximation to a random binary sequence.
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4. The sequence r and its inverse forms

From now on, F = GF(2) and r = (1, 1, 0, 1, 03, 1, 07, 1, 015, 1, . . .), where ri = 1 ∈ F
if i = 2k − 1 for some k ≥ 0 and ri = 0 otherwise.

DEFINITION 4.1. For n ≥ 1, the inverse form of (r0, . . . , rn−1) is

R(1−n) = R(1−n)(x−1, z−1) =
0∑

j=1−n

r−jxjz1−n−j ∈ F[x−1, z−1].

We write In−1 for IR(1−n) . Note that R(1−n) and In−1 are indexed using the last
index of (r0, . . . , rn−1) rather than the length of the sequence. We have |R(1−n)| = 1 − n,
R(1−2k) =

∑0
j=k x1−2j

z2j−2k
for k ≥ 0, and if k ≥ 1, then R(1−2k) = x1−2k

+ R(1−2k−1)z−2k−1
. In

addition, if 2k − 1 < n < 2k+1 − 1, then R(−n) = R(1−2k)z2k−1−n ∈ z−1M.

EXAMPLE 4.2. The inverse forms R(j) for −9 ≤ j ≤ 0 are given in Table 1.

Recall that Δk−1 = Δ( f (k−1); R(−k)) = [ f (k−1) · R(−k)](| f (k−1) |−k,0) and qk−1 = Δk−1 for
0 ≤ k − 1 ≤ n − 1.

EXAMPLE 4.3 (Example 4.2 continued). Since R(0) = 1, I0 = 〈 f (0), g(0)〉 = 〈x, z〉
from Proposition 3.1. However, we can and will take ( f (0), g(0)) = (x + z, z) so that
f (0)(0, 1) = 1. The key ingredients for the construction are the degree increment
dk = |g(k)| − | f (k)| and the discrepancy Δk, so that we know how to update ( f (k), g(k)).
We obtain the results shown in Table 2. For 0 ≤ k ≤ 9, f (k) = �(k + 2)/2� = λk+1 (recall
that f (k) ◦ (r0, . . . , rk) = 0 where there are k + 1 terms of r). From Corollary 3.7, f (k) is
the unique leading annihilating form of minimal total degree if k is odd and f (k) + g(k)

is the only other leading annihilating form of minimal total degree when k is even.
The significance of the underlined terms will become clear in the proof of

Theorem 4.4.

We now come to our main result.

THEOREM 4.4. Let ( f (0), g(0)) = (x + z, z) and for k ≥ 0, let ( f (k+1), g(k+1)) be as
constructed in Theorem 3.3.

(A) If k is even, then Δk = 0; otherwise, Δk = 1 and dk = 1.
(B) We have

( f (k+1), g(k+1)) =
{

( f (k), zg(k)) if k is even,
(x f (k) + g(k), z f (k)) otherwise.

(C) | f (k+1)| = �(k + 3)/2�.
(D) f (k+1)(0, 1) = g(k+1)(0, 1) = 1.
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TABLE 1. Inverse forms R(j) for Example 4.2.

j R(j)

0 1 = R(0)

−1 x−1 + z−1 = R(−1)

−2 x−1z−1 + z−2 = R(−1)z−1

−3 x−3 + x−1z−2 + z−3 = R(−3)

−4 x−3z−1 + x−1z−3 + z−4 = R(−3)z−1

−5 x−3z−2 + x−1z−4 + z−5 = R(−3)z−2

−6 x−3z−3 + x−1z−5 + z−6 = R(−3)z−3

−7 x−7 + x−3z−4 + x−1z−6 + z−7 = R(−7)

−8 x−7z−1 + x−3z−5 + x−1z−7 + z−8 = R(−7)z−1

−9 x−7z−2 + x−3z−6 + x−1z−8 + z−9 = R(−7)z−2

TABLE 2. Calculations for the VOP algorithm for Example 4.2.

k dk−1 Δk−1 f (k) g(k)

0 − − f (0) = x + z z
1 0 0 f (0) z2

2 1 1 x f (1) + g(1) = x2 + xz + z2 f (0)z
3 0 0 f (2) f (0)z2

4 1 1 x f (3) + g(3) = x3 + x2z + z3 f (2)z
5 0 0 f (4) f (2)z2

6 1 1 x f (5) + g(5) = x4 + x3z + x2z2 + z4 f (4)z
7 0 0 f (6) f (4)z2

8 1 1 x f (7) + g(7) = x5 + x4z + x2z3 + xz4 + z5 f (6)z
9 0 0 f (8) f (6)z2

PROOF. We have ( f (0), g(0)) = (x + z, z), where Δ0 = 0, | f (0)| = 1 = �2/2� and
f (0)(0, 1) = 1 = g(0)(0, 1). Suppose inductively that the result is true for k.

(A) For f (k+1), we have to determine Δk = [ f (k) · R(−1−k)](| f (k) |−1−k,0). Let P = 2p − 1 ≤
k + 1 < 2p+1 − 1 for some p ≥ 1. Put e = | f (k)| and l = e − 1 − k. Then,

S = R(−1−k) =

( 0∑
j=p

x1−2j
z2j−2p

)
zP−1−k and Δk = [ f (k) · S](l,0).

We consider three cases.

Case (i): k even, P = k + 1. We have to show that Δk = 0. Since k − 1 is odd, the induc-
tive hypothesis gives Δk−1 = 1, dk−1 = 1 and ( f (k), g(k)) = (x f (k−1) + g(k−1), z f (k−1)).
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Also, | f (k)| = | f (k−1)| + 1 = k/2 + 1 = 2p−1, so l = | f (k)| − k − 1 = 2p−1 + 1 − 2p =

1 − 2p−1. By part (A), f (k)(0, 1) = 1, so we can write f (k) · S as

(xe + α + ze) · (x1−2p
+ x1−2p−1

z−2p−1
+ β).

Then xe · x1−2p
= xl, and one checks that (α + ze) · (x1−2p−1

z−2p−1
+ β) = xl plus terms in

z−1M, so Δk = [ f (k) · S](l,0) = 0 and f (k+1) = f (k).

Case (ii): k even, P < k + 1 < 2p+1 − 1. Here, P − k − 1 < 0 and S ∈ z−1M. As in case
(i), ( f (k), g(k)) = (x f (k−1) + g(k−1), z f (k−1)) and e = | f (k)| = | f (k−1)| = 2p−1. Then,

f (k) · S = (xe + ( f (k) + xe)) · R(−P)zP−k−1.

However, xe · R(−P)zP−k−1, ( f (k) + xe) · x−P, ( f (k) + xe) · (R(−P) + x−P)zP−k−1 ∈ z−1M, so
Δk = 0 and again f (k+1) = f (k).

Case (iii): k odd and P≤ k < 2p+1−1. For k = 1, Δ1 = [(x+ z) · (x−1z−1+ z−2)](1−2,0) = 1;
the term z of f (1) has triggered Δ1 = 1. The reader may easily verify that xz = αz
triggers Δ3 = 1 and that z3 = βz triggers Δ5 = 1. Now let k be odd and p ≥ 3,
P = 2p − 1 ≤ k < 2p+1 − 1. Define maps α, β : R→ R by (α f )(x, z) = x · f (x, z)
and (β f )(x, z) = z2 · f (x, z). Since k − 1 is even, the inductive hypothesis gives

f (k) = f (k−1) = x f (k−2) + g(k−2) = α f (k−2) + β f (k−4),

e = | f (k)| = | f (k−1)| = (k + 1)/2 and l = e + |S| = (k + 1)/2 − 1 − k = −(k + 1)/2.
Put tk = xuk zvk , where uk = P − (k + 1)/2, vk = k + 1 − P. Then, |tk | = (k + 1)/2 =

| f (k)| and tk = αukβ(vk−1)/2z. Since z is a term of f (1), tk is a term of f (2uk+2vk−1) = f (k).
Let L = LT(S), where S = R(−P)zP−k−1 ∈ z−1M. Then,

f (k) · S = f (k) · (L + S) + f (k) · L = f (k) · (L + S) + tk · L + ( f (k) + tk) · L

and tk · L = x(k−1)/2z · x−kz−1 = xl. It is straightforward that f (k) · (L + S) ∈ z−1M and
( f (k) + tk) · L ∈ z−1M. Thus, Δk = [ f (k) · S](l,0) = [tk · L](l,0) = 1, the term tk of f (k)

triggers Δk = 1 and ( f (k+1), g(k+1)) = (x f (k) + g(k), z f (k)).
(B) This is a simple consequence of part (A).
(C) Suppose that | f (k)| = �(k + 2)/2�. From part (B), if k is even, then | f (k+1)| =

| f (k)| = (k + 2)/2 = �(k + 3)/2� and if k is odd, then | f (k+1)| = | f (k)| + 1 = �(k + 2)/2� +
1 = (k + 1)/2 + 1 = (k + 3)/2 = �(k + 3)/2�.

(D) We know that f (k)(0, 1) = g(k)(0, 1) = 1 for k = 0, 1, so suppose that the result
is true for k. If k is even, f (k+1)(0, 1) = f (k)(0, 1) = 1 and g(k+1)(0, 1) = 1, whereas if k
is odd, f (k+1)(0, 1) = g(k)(0, 1) = 1 and g(k+1)(0, 1) = f (k)(0, 1) = 1. �

REMARK 4.5. In Example 4.3, the underlined terms trigger a discrepancy of 1: for odd
k and 2p − 1 ≤ k < 2p+1 − 1, uk+1 = uk − 1, vk+2 = vk + 2, so that the tk in the proof of
Theorem 4.4 take the values xpz1, xp−1z3, xp−2z5, . . . , x0z2p−1.

The next result is immediate from Proposition 3.8, Theorem 4.4 and Corollary 3.7.
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COROLLARY 4.6.

(i) The sequence (r0, r1, . . .) has a PLCP.
(ii) If n is odd, (r0, . . . , rn−1) has a unique leading form of minimal degree, namely

f (n−2), or the leading forms of minimal degree are precisely the two forms f (n−2)

and f (n−2) + g(n−2).

From Theorem 4.4, no multiplications in R are required to compute a VOP, giving
the following linear algorithm.

ALGORITHM 4.7 (VOP algorithm specialised to R(1−n)).

Input: Integer n ≥ 1.
Output: Viable ordered pair ( f , g) for In−1.
�( f , g)← (x + z, z);
for j← 0 downto 1 − n do
� if j is odd then �t ← f ; f ← x f + g; g← t; �
g← z g; �;

return ( f , g).�

For additional properties of In−1, for example, its codimension and how to compute
its (unique) reduced grlex Groebner basis, see [8, Corollary 5.18, Algorithm 5.24] and
[9, Section 4].

4.1. Relating Theorem 4.4 to [1] and LFSRs. We next give a closed-form expres-
sion for f (2k−1) dehomogenised; this also motivates the use of the roots Y2 + xY + 1 in
an extension of F(x), which were unmotivated in [1].

LEMMA 4.8. Let h(k) ∈ F[x] be given by h(0) = x, h(1) = x + 1, h(2) = x2 + x + 1 and
h(k) = x h(k−1) + h(k−2) for k ≥ 3. Then,

x h(k) = (1 + ρ)ρk + (1 + ρ−1)ρ−k,

where ρ = Y ∈ F(x)[Y]/(Y2 + xY + 1) = K.

PROOF. The given recurrence has characteristic polynomial Y2 + xY + 1 ∈ F(x)[Y],
which is irreducible. (One easily shows that if Y2 + xY + 1 = (Y + u)(Y + v) for some
u, v ∈ F(x), then x = 0.) So let ρ = Y ∈ K. Solving h(k) = Aρk + Bρ−k for A, B ∈ F(x)
subject to h(1) = x + 1, h(2) = x2 + x + 1 gives the required expression. �

We note that the 2 × 2 matrix ( 1 0
0 x ) much used in [1] has characteristic polynomial

Y2 + xY + 1.
We now set ρ = Y ∈ F(x)[Y]/(Y2 + xY + 1).

THEOREM 4.9. For k ≥ 1, x f (2k−2)(x, 1) = x f (2k−1)(x, 1) = (1 + ρ)ρk + (1 + ρ−1)ρ−k.

PROOF. Theorem 4.4 implies that we may take h(k) = f (2k−2)(x, 1) in Lemma 4.8;
f (2k−2) = f (2k−1) and |g(2k−1)| = | f (2k−1)| + 1, so f (2k−1) is unique. �
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COROLLARY 4.10 (See [1, Lemma 5]). Let η = (1 + ρ)ρk + (1 + ρ−1)ρ−k ∈ K as in
Lemma 4.8. Then, η ∈ F[x], x | η and |η| = k + 1.

COROLLARY 4.11. For k ≥ 1, let ck be the minimal polynomial for (r0, . . . , r2k−1) as in
[1]. Then, ck(x) = f (2k−1)(x, 1).

PROOF. Reference [1, Lemma 3] implies that ck satisfies the recurrence of
Lemma 4.8. �

COROLLARY 4.12. The LFSR algorithm applied to (r0, . . . , r2k−1) returns k and the
reciprocal polynomial f (2k−1)(x, 1)∗.

PROOF. From Remark 2.5 and Theorem 4.4, | f (2k−1)(x,1)|= k and f (2k−1)(0,1)= 1. �
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