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The Brascamp–Lieb Polyhedron

Stefán Ingi Valdimarsson

Abstract. A set of necessary and sufficient conditions for the Brascamp–Lieb inequality to hold has

recently been found by Bennett, Carbery, Christ, and Tao. We present an analysis of these conditions.

This analysis allows us to give a concise description of the set where the inequality holds in the case

where each of the linear maps involved has co-rank 1. This complements the result of Barthe concern-

ing the case where the linear maps all have rank 1. Pushing our analysis further, we describe the case

where the maps have either rank 1 or rank 2.

A separate but related problem is to give a list of the finite number of conditions necessary and

sufficient for the Brascamp–Lieb inequality to hold. We present an algorithm which generates such a

list.

1 Introduction

The Brascamp–Lieb inequality unifies and generalises several of the most central in-

equalities in analysis, among others the inequalities of Hölder, Young, and Loomis–

Whitney. It has the form

(1.1)

∫

H

m
∏

j=1

f
p j

j (B jx) dx ≤ C
m
∏

j=1

(

∫

H j

f j

) p j

where H and H j are finite dimensional Hilbert spaces of dimensions n and n j re-

spectively, B j : H → H j are linear maps, p j are nonnegative numbers, C is a fi-

nite constant and f j are nonnegative functions. We shall refer to ((B j), (p j)) as the

Brascamp–Lieb datum for this inequality.

The inequality was first written down by Brascamp and Lieb in [5] where they

posed two questions. The first one was how to find the necessary and sufficient con-

ditions on the datum ((B j), (p j)) for (1.1) to hold, and the second was to determine

when the best constant for (1.1) is attained by a tuple of centred gaussian functions,

f j(x) = e−〈x,A j x〉, with each A j a symmetric and positive semi-definite linear trans-

formation.

In [7] Lieb showed that gaussians exhaust the inequality in the following sense.

Theorem 1.1 (Lieb’s Theorem) Let C((B j), (p j)) be the smallest constant we can take

in (1.1) so that it holds for all tuples ( f j) of integrable functions, and let Cg((B j), (p j))

be the smallest constant we can take so that it holds for tuples of centred gaussians. Then

C((B j), (p j)) = Cg((B j), (p j)).
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Brascamp and Lieb proved this theorem in the case when each B j has rank one

in [5]. With this theorem, the fundamental question of when C((B j), (p j)) is finite

has been reduced to the question of when Cg((B j), (p j)) is finite. In [3] and [4] the

question is further reduced by showing that the Brascamp–Lieb inequality (1.1) holds

for the datum ((B j), (p j)) if and only if we have

(1.2) dim V ≤
∑

j

p j dim(B jV )

for all subspaces V of H, the scaling condition

(1.3) dim H =
∑

j

p j dim(H j)

holds, and

(1.4) p j ≥ 0

for all j.

Let us fix the maps B j . Then for which tuples (p j) does the Brascamp–Lieb in-

equality hold, that is, which tuples satisfy (1.2), (1.3), and (1.4)?

Since each of the conditions is a linear inequality or equality in the variables (p j)

and since the coefficients in (1.2) are dimensions of spaces which can only range

through a finite set, it is clear that the set of tuples (p j) such that these conditions

hold is a convex set in R
m whose boundary consists of a finite number of hyperplanes.

It is thus a polyhedron, and we shall refer to it as the Brascamp–Lieb polyhedron,

S = S((B j)), for the m-transformation (B j).

The scaling and positivity conditions (1.3) and (1.4) imply that this polyhedron

lies in the intersection of a hyperplane and the first 2m-tant in R
m. What portion of

this intersection the polyhedron occupies can vary greatly. In particular, for Hölder’s

inequality the conditions in (1.2) do not give any restrictions and the polyhedron is

this whole intersection. On the other hand, (1.2) for the Loomis–Whitney inequality

restricts the polyhedron to the one point set (p j)1≤ j≤n = ( 1
n−1

)1≤ j≤n.

Conditions (1.2), (1.3), and (1.4) give a description of S((B j)) in the sense that

if we want to check whether a particular point (p j) belongs to S, then we can do

so by checking (p j) against each one of these conditions and if it satisfies them all,

then the point belongs to the polyhedron. However, it might be beneficial to give an

alternative description for two reasons. First, the shape of the polyhedron can still

seem quite unclear. In particular, we do not have a result that says that the point (p j)

lies in the polyhedron if and only if it is of some prescribed form. Secondly, there

is the question of how many conditions are included in (1.2). Although, as we said

above, it is only a finite number because the dimension of the spaces involved can

only range through a finite set, it remains unclear how to get an exhaustive list of the

conditions, as it would seem to require examining each subspace V of H. In this note,

we will address both of these problems.

For the first problem, it is known by the Weyl–Minkowski theorem that a bounded

polyhedron is a polytope, that is, the convex hull of a finite set of points, so each
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point in the polyhedron can be written as a convex combination of the vertices of the

polyhedron. Here we say that a point (q j) is a vertex of a polyhedron if there exists a

hyperplane such that the intersection of the hyperplane and S is the singleton {(q j)},

and by writing (p j) as a convex combination of the vertices, we mean that (p j) lies in

the polyhedron if and only if we can write p j =
∑s0

s=1 λsqs, j for all j, where λs ≥ 0,
∑

s λs = 1 and qs for s = 1, . . . , s0 is an enumeration of the vertices. For these

standard results in convexity see, for example, [2].

The problem of determining the vertices of S has until now only been resolved in

the rank-one case. There we have the following result.

Theorem 1.2 (Rank-one case, Barthe [1]) Let B jx = 〈v j , x〉 for vectors v j in H. Then

(q j) is a vertex of S if and only if q j = χ J( j) where χ J denotes a characteristic function

of an index set J such that B = {v j | j ∈ J} is a basis for H.

This result is reproved in [6] and [4].

In Section 2 we present a new analysis of the properties of the vertices that has

the benefit that, aside from yielding a new proof of the result of Barthe, it makes it

possible to determine the form of the vertices in several other cases.

Theorem 1.3 (Rank n − 1 case) Assume B j all have rank n − 1, and for each j let

v j be a nonzero element in the kernel of B j . Then (q j) is a vertex of S if and only if

q j =
1

n−1
χ J( j), where J is an index set such that B = {v j | j ∈ j} is a basis for H.

In order to state the main tool for our treatment of these results, we give the fol-

lowing definition.

Definition 1.4 Let V be a proper subspace of H which is not the space {0}. As in

[4] we say that V is a critical subspace if dim V =
∑

j p j dim(B jV ), that is, if there is

equality in (1.3) for V .

We define a critical flag to be a flag V1 $ V2 $ · · · $ Vs of subspaces of H, where

each space is critical or each space except Vs is critical and Vs = H.

Theorem 1.5 Let (q j) be a vertex of S. Then the support of (q j), { j | q j 6= 0}, can

have at most n elements where n is the dimension of H.

Furthermore, there will exist a critical flag U and an index set J such that the equa-

tions

p j = 0 for j /∈ J;(1.5)

dim U =
∑

j

p j dim(B jU ) if U ∈ U(1.6)

have a unique solution (p j) = (q j).

Finally, we will also push the analysis further to give a description of the vertices

in the case when each B j has rank either 1 or 2.

In Section 3 we address the second problem mentioned above, that is, how we can

know which conditions are included in (1.2). To state the result we give the following

definition.
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Definition 1.6 Let (Vk)k∈K be a family of subspaces of a common space. Then the

lattice of (Vk), denoted L(Vk), is defined as the smallest set of subspaces such that the

following holds.

(i) Vk ∈ L(Vk) for each k ∈ K;

(ii) V1 ∩V2,V1 + V2 ∈ L(Vk) for any V1,V2 ∈ L(Vk).

In other words, the lattice of a given family of spaces is the smallest set of spaces

that contains each member of the family and is closed under the operations of set

intersection and vector space addition. We say that the lattice is generated by the

family.

We neither require {0} nor the whole space to be elements of the lattice.

Definition 1.7 For the m-transformation (B j), we let L(B j ) denote L(ker(B j )), the

lattice generated by the kernels of B j .

In Section 3 we prove the following theorem.

Theorem 1.8 Let ((B j), (p j)) be a Brascamp–Lieb datum. Then a necessary and

sufficient condition for the the Brascamp–Lieb constant C((B j), (p j)) to be finite is that

(1.3) and (1.4) hold, and (1.2) holds for each subspace in L(B j ).

However, even with Theorem 1.8 there remain some questions. Firstly, do we

know that the number of elements in L(B j ) is finite? The answer to this seems to

be no in general; see [8] for an overview discussion on lattice theory, to which this

question belongs. However, it is clear that the number of elements is countable and

it is straightforward to generate a list of elements on which we can check (1.2) in

sequence. So for computational purposes, a more important variant of this question

is: how do we know when to stop, that is, when can we be sure that we have a list of

all the conditions included in (1.2)? We will address this question towards the end of

Section 3.

Remark 1.9 Michael Christ comments via personal communication that by work-

ing through the induction proof of the Brascamp–Lieb inequality in an algorithm

that gives necessary and sufficient conditions for C((B j), (p j)) to be finite can be

found. The proof we give of Theorem 1.8 is along these lines. The proof also estab-

lishes that the lattice L(B j ) is sufficient.

2 The Vertices of S

Lemma 2.1 Let U and W be critical subspaces of H for a Brascamp–Lieb datum

((B j), (p j)). Then U ∩ W and U + W are also critical, and for all j such that p j > 0,

we have that

(2.1) dim(B jU ) + dim(B jW ) = dim(B j(U ∩W )) + dim(B j(U + W )).
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Proof Since U and W are critical, we get that

∑

j

p j dim(B jU ) +
∑

j

p j dim(B jW )

=
∑

j

p j(dim(B jU ) + dim(B jW ))

=
∑

j

p j(dim(B jU ∩ B jW ) + dim(B jU + B jW ))

≥
∑

j

p j(dim(B j(U ∩W )) + dim(B j(U + W )))

≥ (dim(U ∩W ) + dim(U + W ))

= (dim U + dim W ),

(2.2)

where we have twice used the fact that dim E+dim F = dim(E+F)+dim(E∩F) for any

subspaces E and F. Also for the first inequality, we have used that dim(B jU +B jW ) =

dim(B j(U + W )) and dim(B jU ∩ B jW ) ≥ dim(B j(U ∩W )). The second inequality

follows since (p j) belongs to the polyhedron S((B j)), and therefore the condition

(1.2) holds with (p j) and both U ∩W and U + W .

Since we are assuming that the beginning and the end of this chain are equal, we

must in fact have equality all the way. This tells us that we have equality in inequal-

ity (1.2) for U ∩W and U + W and that (2.1) holds for all j such that p j > 0.

Proof of Theorem 1.5 If (q j) is a vertex of S, then we will have a set of indices J such

that

(2.3) q j = 0 for j 6∈ J

and a collection of subspaces V consisting of the critical subspaces together with H

and {0} such that

(2.4) dim V =
∑

j

q j dim(B jV ) if V ∈ V.

A vertex of a polyhedron is the unique solution of the set of linear equations which the

facets adjacent to the vertex satisfy. Thus, the system (2.3), (2.4) of linear equations

determines the vertex (q j) uniquely.

Let us now apply row operations to this system to simplify it. By subtracting the

appropriate multiples of (2.3) from (2.4), we can substitute (2.4) with

(2.5) dim V =
∑

j∈ J

q j dim(B jV ) for V ∈ V.

Now, take U ,W ∈ V. By Lemma 2.1, we have U ∩ W,U + W ∈ V as well. (This

is obvious if either U or W is {0} or H.) Furthermore, the equality for W can be
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deduced from the equality for U ∩W , U and U + W as follows:

(

dim(U ∩W ) =
∑

j∈ J

q j dim(B j(U ∩W ))
)

+
(

dim(U + W ) =
∑

j∈ J

q j dim(B j(U + W ))
)

−
(

dim U =
∑

j∈ J

q j dim(B jU )
)

=
(

dim W =
∑

j∈ J

q j dim(B jW )
)

We have used (2.1) to simplify the right-hand side. This shows that we may remove

the equation coming from W from (2.5) by row operations and thus without affect-

ing the solution set.

Let us try to remove as many equations from (2.5) as we can without affecting

the solution set to the system (2.5) and (2.3). First of all, (2.5) is content free for

V = {0}, so we may throw that space out of V. Let us then take a U1 ∈ V such that

no proper subspace of U1 is in V. Clearly such a space exists as we cannot have an

infinite chain of nested subspaces in H. Define VU1
:= {W ∈ V : U1 ⊂ W}. Then

all the equalities for the subspaces in V can be deduced from the equalities for the

subspaces in VU1
. To see this we note that if W ∈ V \ VU1

, then W ∩ U1 = {0}, so

the equality for W can be deduced from the equalities for U1 and U1 + W which are

elements of VU1
.

Next, let U2 ∈ VU1
, U2 6= U1 be such that no subspace W ∈ VU1

lies properly

between U1 and U2. Then, as in the last paragraph, we see that all equalities for

subspaces in VU1
can be deduced from the equalities for the subspaces in VU2

and the

equality for U1. Continuing this process, we get a critical flag U1 $ U2 $ · · · $ Us

such that all the equalities for the subspaces in V can be deduced from the equalities

for the spaces in this flag.

Thus we have seen that by using row operations we can remove all the equations

from (2.5) except the ones coming from this flag, which we shall refer to as U, and

still have the linear system

q j = 0 for j /∈ J;(2.6)

dim U =
∑

j

q j dim(B jU ) if U ∈ U(2.7)

which is equivalent to the original one. Since H is n-dimensional, U can have at most

n elements, so the number of equations in (2.7) is at most n. However, since the

system (2.6), (2.7) is a linear system which has a unique solution in R
m, there must

be at least m equations in the system. Therefore, there must be at least m−n elements

not in the set J, and so the solution to the system (q j) can have at most n nonzero

elements.

The next lemma can be useful when checking that the Brascamp–Lieb inequality

is satisfied.
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Lemma 2.2 Let a Brascamp–Lieb datum ((B j), (p j)) be given and assume that U =

(U1, . . . ,Us) is a critical flag in H and that Us = H. Assume also that the inequality

(1.2) holds for any space W̃ which can be added into the flag.

Then inequality (1.2) holds for any subspace W of H, so (p j) ∈ S((B j)).

Proof Take a subspace W of H. If we reexamine the calculations in (2.2), we see that

if U is a subspace of H and we assume that (1.2) holds for U ∩W and U + W and it

holds with equality for U , then we get that (1.2) holds for W .

Let us now define t0 ∈ {0, . . . , s} such that Ut0
⊂ W but Ut0+1 6⊂ W . To ensure

that t0 is well defined, we allow it to take the value 0 in which case we define U0 = {0}.

We see that if (1.2) holds for W ∩ Ut0+1 and W + Ut0+1, then it holds for W . Since

Ut0
⊂ W ∩ Ut0+1 ⊂ Ut0+1, we see that (1.2) holds for W ∩ Ut0+1 by assumption. For

W + Ut0+1, we argue inductively. We note that W + Ut0+1 ⊃ Ut0+1, so we can repeat

this process for that space, that is, find a t1 > t0 such that Ut1
⊂ W + Ut0+1 but

Ut1+1 6⊂ W + Ut0+1, and then (1.2) for W + Ut0+1 will follow from the condition for

(W +Ut0+1)∩Ut1+1 which lies between Ut1
and Ut1+1 and the condition for W +Ut1+1.

This process will terminate since all of the spaces are subspaces of H and equality in

(1.2) holds for H. In the end we will get a flag Ut0
⊂ · · · ⊂ Utr

which is a subflag of

the flag U and can therefore contain no more than s elements. Furthermore, this flag

has the property that to confirm that (1.2) holds for W , we need only to check that

(1.2) holds for spaces V such that Ut ⊂ V ⊂ Ut+1 with t ∈ {t0, . . . , tr}. Since W was

arbitrary, we have proved the lemma.

Remark 2.3 To verify that a point (q j) ∈ S(B j) is a vertex, it is enough to determine

that the facets of S((B j)) which (q j) lies on have a unique point of intersection. In

other words, for (q j) some of the inequalities from (1.2) and (1.4) will be equalities

and it is enough to show that those equalities together with the scaling condition

(1.3) have a unique solution, namely (q j).

We are now in a position to list all the possible vertices in several cases. First let us

assume that all the maps B j have the same rank and prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2 As before, we let (q j) be a vertex of the polyhedron and J be

the set of indices j such that q j > 0. If the vectors v j for j ∈ J do not span H, then

we do not have a solution to the system (1.2), (1.3), and (1.4). To see this, let V be a

subspace of codimension 1 which contains v j for all j ∈ J. Then, since B j = 〈v j , x〉,
we see that V⊥ lies in the kernel of all the relevant B j . Therefore, testing (1.2) on

V⊥ gives 1 = dim V⊥ ≤
∑

j q j dim(B jV
⊥) = 0, which is impossible. This shows

that B = {v j | j ∈ J} as defined in the theorem is a spanning set for H, and then

Theorem 1.5 shows that | J| = n so B is in fact a basis for H.

Furthermore, testing (1.2) on ker B j gives that n − 1 ≤
∑

j ′∈ J\{ j} q j ′ , and, to-

gether with the scaling condition (1.3)
∑

j ′∈ J q j ′ = n, we get that q j ≤ 1 for each

j ∈ J, so considering that | J| = n we see that in fact q j = 1 for each j ∈ J. This

shows that the vertices of S must have the form prescribed by the theorem.

Conversely, let (q j) be a point of the form prescribed by the theorem. As before,
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let J be the set of indices such that

(2.8) q j = 0 if j 6∈ J.

For each j ∈ J, take a nonzero u j ∈ ∩ j ′ 6= j ker B j ′ and note that B ju j 6= 0 since

otherwise u j could not be a linear combination of the elements of B. Then {u j | j ∈ J}
forms a basis, and if we define

U j =

∑

j ′∈ J

j ′≤ j

span(u j ′),

then U = (U j) j∈ J is a maximal flag in H. Let s j = |{ j ′ ∈ J| j ′ ≤ j}|. Then

dim U j = s j , and for j ′ ∈ J we get that dim B j ′U j = 0 if j ′ > j and dim B j ′U j = 1

if j ′ ≤ j. The inequality (1.2) for U j thus becomes

(2.9) s j ≤
∑

j ′∈ J

j ′≤ j

p j ,

so with the choice p j = q j , there is clearly equality here for each U j ∈ U. Thus,

U is a critical maximal flag, so Lemma 2.2 says that (q j) ∈ S. Furthermore, (q j) is

the unique solution to the system (2.8), (2.9) with equality sign, so (q j) is a vertex

of S.

Proof of Theorem 1.3 Let (q j) be a vertex of the polyhedron and J as before. We

first note that if the spaces ker B j for j ∈ J do not span H, then we do not have a

solution to the system (1.2), (1.3), and (1.4) as can be seen from testing (1.2) on a

space V such that
∑

j∈ J ker B j ⊂ V and dim V = n − 1. This gives

n − 1 = dim V ≤
∑

j

q j dim(B jV ) = (n − 2)
∑

j

q j ,

whereas the scaling condition (1.3) gives n =
∑

jq j(n − 1). From this and Theo-

rem 1.5, we see that | J| = n. Thus, if we pick a nonzero vector v j from each ker B j ,

then B = {v j | j ∈ J} is a basis for H.

Testing (1.2) on ker B j gives that 1 ≤
∑

j ′∈ J\{ j}q j ′ , and, together with the scaling

condition (1.3) (n − 1)
∑

j∈ Jq j = n, we get that q j ≤ 1/(n − 1) for each j ∈ J, so

considering the scaling condition again and that | J| = n, we see that in fact q j =

1/(n − 1) for each j ∈ J. This shows that the vertices of S must have the form

prescribed by the theorem.

Conversely, let (q j) be a point of the form prescribed. Define

U j =

∑

j ′∈ J

j ′≤ j

ker B j ′
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then U := (U j) j∈ J is a maximal flag in H. The set of inequalities (1.2) for this flag

becomes

(2.10) s j ≤
∑

j ′∈ J

j ′≤ j

(s j − 1)p j ′ +
∑

j ′∈ J

j ′> j

s j p j ′ j ∈ J

where s j := |{ j ′ ∈ J| j ′ ≤ j}|. Since the number of terms in the first sum is s j and

the number of terms in the last sum is n − s j , it is evident that with q j =
1

n−1
for

j ∈ J, each inequality in (2.10) is satisfied with equality. Moreover, these resulting

equalities together with the equations p j = 0 for j 6∈ J have (q j) as a unique solution,

so (q j) is a vertex of the polyhedron.

2.1 Mixed Rank One and Two

We can push this analysis further and examine the mixed rank case when each B j has

rank 1 or 2.

Theorem 2.4 (Mixed rank 1 and 2) The point (q j) is a vertex of S if and only if the

following holds. There is a set of indices J which can be decomposed as J = J1 ∪ J2,

where B j for j ∈ J1 is a rank 1 linear transformation from H and B j for j ∈ J2 is a rank

2 linear transformation such that the following hold:

(i) q j = 0 for all j 6∈ J.

(ii) q j = 1 for all j ∈ J1.

(iii) The set J2 can be divided into two sets J2,1, and J2,2 such that

• q j =
1
2

for all j ∈ J2,1,
• q j = 1 for all j ∈ J2,2.

(iv) There exists a graph G = ( J2,1, E) with each element of J2,1 belonging to exactly

two edges so that the graph consists of disjoint cycles which must furthermore be of

odd length.

(v) There exists an ordering of the edges E = {e1, . . . , es1
} with the following proper-

ties. Take any ordering of J2,2 = { j1, . . . , js2
} and of J1 = {i1, . . . , is3

}. Then

(2.11) {0} = U0 $ · · · $ Us1
= V0 $ · · · $ Vs2

= W0 $ · · · $ Ws3
= H

is a critical flag, where

• Uk−1 = (Uk ∩ ker B j1
) + (Uk ∩ ker B j2

) where ek = { j1, j2} ∈ J2,1 and

dim(Uk/Uk−1) = 1 for every k = 1, . . . , s1,
• Vk−1 = Vk ∩ ker Bik

and dim(Vk/Vk−1) = 2 for every k = 1, . . . , s2,
• Wk−1 = Wk ∩ ker B jk

and dim(Wk/Wk−1) = 1 for every k = 1, . . . , s3.

Proof Again, we begin by assuming that (q j) is a vertex of S and J and U = (U1 $
U2 $ · · · $ Us) are such that (1.5) and (1.6) have a unique solution, namely

(p j) = (q j). Furthermore, it will be convenient to assume that no critical subspace

can be added into the flag. Our first goal will be to determine what the equations of

criticality can look like or rather the equations (2.12) below. Then we will convert
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this flag into the flag (2.11) showing that criticality is maintained at each step and

that the solution set to the equations of criticality is unchanged.

By subtracting the equation for Uk−1 from the equation for Uk, we see that we can

replace (1.6) with

(2.12) dim(Uk/Uk−1) =
∑

j

q j(dim(B jUk) − dim(B jUk−1))

for Uk ∈ U, k ≥ 1 and with U0 = {0}. In this set of equations we note that the

coefficients multiplying q j sum up to the rank of B j and the constant coefficients

sum up to dim H. Therefore, if we let m1 and m2 be the number of elements in

J1 and J2, then the sum of the elements in the coefficient matrix of (2.12) equals

m1 +2m2. Furthermore, since the set of equations (2.12) uniquely determines (q j) j∈ J

and | J| = m1 + m2, we get that s ≥ m1 + m2.

We note that the coefficients on the right hand side of (2.12) must all be non-

negative integers and in each equation at least one must be non-zero since the left

hand side is never zero.

There are now two cases. Either there is an equation in (2.12), all of whose coeffi-

cients are zero except one, for q j with j ∈ J2, which is 1, or we can give a bound on

the number of equations in (2.12) as follows. For each j ∈ J1 the coefficients of q j in

(2.12) must all be 0 except one, which must be 1. Let n1 be the number of equations

that contain a nonzero coefficient for an element q j with j ∈ J1. Then n1 ≤ m1.

Let t be the sum of the coefficients multiplying q j for j ∈ J2 in these n1 equations.

Say that there are n2 equations remaining. Then the coefficients multiplying q j for

j ∈ J2 in these remaining equations sum up to 2m2 − t . In the case we are looking at,

each of these equations must contain at least two nonzero coefficients so we get that

n2 ≤ m2 − t/2. From this we get the chain of inequalities

s = n1 + n2 ≤ m1 + m2 − t/2 ≤ m1 + m2 ≤ s,

so we must in fact have equality all the way, that is, there are exactly m1 of the equa-

tions which have a nonzero coefficient for an element q j with j ∈ J1 and these equa-

tions have only these nonzero coefficients and there are exactly m2 equations left

which have all of the nonzero coefficients for the q j with j ∈ J2 which sum up to

2m2. Moreover, each of these m2 equations must have either one coefficient equal to

2 and all others 0 or two coefficients equal to 1 and all others 0.

Let us show that we can pick off, one by one, the indices j ∈ J2 that force us into

the first case and be left with a residual index set J̃ = J1 ∪ J̃2 that fall into the second

case.

So, assume one of the equations in (2.12) is of the form 1 = q j with j ∈ J2. Since

the sum of the coefficients in front of q j equals 2, there must be another equation

with the term q j . Let us show that this other equation also takes the form 1 = q j .

If it does not, then it must be of the form t = q j + Q, where t > 1 is an integer

and Q stands for terms with q j ′ , j ′ ∈ J2 \ { j}. Assume that it comes from (2.12)

with Uk j
/Uk j−1, where the codimension of Uk j−1 in Uk j

is t . Since the coefficient

multiplying q j is 1, we get that there are t − 1 independent vectors in the intersection
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of ker B j/Uk j−1 and Uk j
/Uk j−1. Let Ũ denote the vector sum of the span of these and

Uk j−1. By testing (1.2) on Ũ and subtracting (1.2) on Uk j−1 which we know gives an

equality, we get that t − 1 ≤ Q ′, where Q ′ denotes the contribution to this sum from

terms q j ′ , j ′ ∈ J2 \ { j}. Now we get the chain of inequalities

t = 1 + (t − 1) ≤ q j + Q ′ ≤ q j + Q = t,

and so we must have equality all the way, and, in particular, this shows that Ũ is

critical, contradicting our assumption that no critical subspace could be added to the

flag.

Furthermore, we see that the equations determining the q j discussed in the pre-

ceeding paragraph are completely separate from the equations determining q j ′ for

j ′ ∈ J̃ = J \ { j}. We can therefore repeat the preceding analysis with J̃ instead of J

and with the two equations 1 = q j removed from (2.12). The conclusion is that we

will get a set of indices J2,2 such that the equations in (2.12) involving q j for j ∈ J2,2

take the form 1 = q j and a residual set J̃ = J1 ∪ J2,1.

Let us determine what the equations involving j ∈ J̃ look like. For each j ∈ J1,

the relevant equation from (2.12) takes the form 1 = q j since the left-hand side must

be 1, as we know that 0 < q j ≤ 1 for each j ∈ J. The equations for q j with j ∈ J2,1

must all be of the form t j, j ′ = q j + q j ′ .

If j = j ′, then the equation must have the form 2 = 2q j . We see this since the

left-hand side cannot be larger than 2 as q j is at most 1 and since we must always have

dim(Uk/Uk−1) ≥ dim(B jUk) − dim(B jUk−1),

so the coefficient on the left-hand side must be as large as any coefficient on the

right-hand side. However, if the equation 2 = 2q j comes from Uk/Uk−1 and Ũ is

any subspace which fits into the flag between Uk and Uk−1, then Ũ is also a critical

space contradicting the assumption that no critical space could be added to the flag.

If j 6= j ′, then t j, j ′ can equal 1 or 2. If

(2.13) 2 = q j + q j ′ ,

then we must have q j = q j ′ = 1 as neither can be greater than 1. Let us say that this is

the equation in (2.12) coming from the quotient Uk/Uk−1. Then dim(Uk/Uk1
) = 2

and dim B jUk = 1 + dim B jUk−1, so (ker B j ∩Uk) \Uk−1 is nonempty. Take a vector

v j in this set and let Ũ = Uk−1 + 〈v j〉. Then dim(Ũ/Uk−1) = 1, but dim B jŨ =

dim B jUk−1. Thus, testing (1.2) on Ũ and subtracting the equation coming from the

criticality of Uk−1 gives 1 ≤ σq j ′ , where σ ∈ {0, 1} since the coefficients on the

right-hand side must be less than those of (2.13) and the coefficient of q j must be 0

due to how Ũ is constructed. This inequality forces σ = 1, and thus, since q j ′ = 1,

we get that Ũ is a critical subspace contradicting our assumption that no critical space

could be added to the flag.

Thus, we must in fact have that all the equations from (2.12) involving q j with

j ∈ J2,1 are of the form 1 = q j + q j ′ , where j, j ′ are distinct elements of J2,1. Define a

graph G on J2,1 with j, j ′ connected by an edge if they appear together in an equation
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like this. Since each q j will appear in exactly two equations, it is clear that this graph

will consist of disjoint cycles. Let us examine one of these cycles. We can write all of

the equations relating to the vertices in this cycle in the form

q j1
+ q j2

= 1

q j2
+ q j3

= 1

. . .
...

q jl−1
+ q jl

= 1

q j1
+ q jl

= 1.

The number of equations in this list is the same as the number of variables. How-

ever, if there is an even number of equations, then the sum we get by adding the

even numbered equations is the same as the sum we get by adding the odd numbered

equations. So this system does not have a unique solution, contrary to our assump-

tions. Therefore, the number of equations in each cycle is odd and in that case the

system has a unique solution, which is clearly q j =
1
2

for all j ∈ J2,1.

With this, we have proved the first four parts in the statement of the theorem.

For the final part, we wish to rearrange the flag U into a flag of the form (2.11),

but we must ensure that the flag remains critical at each step. So, consider i1, the

first element of J1. Exactly one of the equations in (2.12) contains qi1
, and it has no

other nonzero coefficients for any q j . So say that equality comes from subtracting

the equality for Uk from the equality for Uk−1. Then we see that Uk−1 ⊂ ker Bi1
and

Uk ∩ ker Bi1
= Uk−1. Let us consider the flag

Ũ = (U1 ( · · · ( Uk−1 ( Ũk ( · · · ( Ũs−1 ( Us),

where we have defined Ũl = Ul+1 ∩ ker Bi1
for k ≤ l ≤ s − 1. We will show that this

is a critical flag.

Note that dim(Ũl) ≥ dim(Ul+1) − 1 since the codimension of ker Bi1
in H is 1

and dim(Ũl) 6= dim(Ul+1) since Uk ⊂ Ul and Uk ∩ ker Bi1
6= Uk. Thus, dim(Ũl) =

dim(Ul+1) − 1. We get the chain of inequalities

dim(Ul+1) − 1 = dim(Ũl) ≤
∑

j

q j dim(B jŨl) ≤
∑

j 6=i1

q j dim(B jUl+1)

≤
(

∑

j

q j dim(B jUl+1)
)

− qi1
= dim(Ul+1) − 1.

(2.14)

Here the first inequality is simply (1.2) applied to Ũl; the second follows from the

inclusion Ũl ⊂ Ul+1 together with dim(Bi1
Ũl) = 0, and the third follows from

dim(Bi1
Ul+1) = 1. We must therefore have equality all the way, and that implies

that Ũl is critical. We also note that Ũs−1 = ker Bi1
∩Us and dim(Us/Ũs−1) = 1.

Furthermore, the effect of replacing the system of equalities (2.12) based on U

with the corresponding system based on Ũ amounts to a reordering of the equalities.
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The equality 1 = qi1
is moved from the k-th place to the last. This follows from the

equalities 1+dim(Ũl) = dim(Ul+1) and qi1
+

∑

j q j dim(B jŨl) =
∑

j q j dim(B jUl+1)

from (2.14).

By carrying out the above procedure for each Bik
for k = 2, . . . , s3, we can reorder

the flag so that it becomes

U1 = (U1 ( · · · ( Ut = W0 ( · · · ( Ws3
)

and Wk−1 = Wk ∩ ker Bik
and dim(Wk/Wk−1) = 1 for every k = 1, . . . , s3.

The same analysis can be carried out for each ker B jk
for the elements of J2,2. Thus,

consider j1, the first element of J2,2. Exactly two of the equations in (2.12) for U0

contain q j1
, and they have no other nonzero coefficients for any q j . This follows since

the equations from U1 are simply a reordering of the equations from U. Say that these

two equalities come from subtracting the equatity for Uk1
from the equality for Uk1−1

and from subtracting the equality for Uk2
from the equality for Uk2−1. Assume that

k1 < k2. Then we see that Uk1
∩ker B j1

= Uk1−1 and Uk2
∩ ker B j1

= Uk2−1 ∩ ker B j1
.

We consider the flag

Ũ1 = (U1 ( · · · ( Uk1−1 ( Ũk1
( · · · ( Ũt−2, ( Ut )

where we have defined Ũl = Ul+1 ∩ ker Bi1
for k1 ≤ l ≤ k2 − 2 and we have defined

Ũl = Ul+2 ∩ ker Bi1
for k2 − 1 ≤ l ≤ t − 2. We will show that this is a critical flag.

For k1 ≤ l ≤ k2 − 2, we see that Ũl is critical in exactly the same way as above

using the chain of inequalities (2.14). The only change is that instead of relying on

the codimension of ker Bi1
in H being 1, we rely on the codimension of ker B j1

∩Uk2−1

in Uk2−1 being 1.

For k2 − 1 ≤ l ≤ t − 2, we note that dim(Ũl) ≥ dim(Ul+2) − 2 since the codi-

mension of ker B j1
in H is 2, and dim(Ũl) ≤ dim(Ul+2) − 2 since Ul+2 contains two

linearly independent vectors which are not in ker B j1
, one from Uk1

\ Uk1−1 and the

other from Uk2
\Uk2−1. We get the chain of inequalities

dim(Ul+2) − 2 = dim(Ũl) ≤
∑

j

q j dim(B jŨl) ≤
∑

j 6= j1

q j dim(B jUl+2)

≤
(

∑

j

q j dim(B jUl+2)
)

− 2q j1
= dim(Ul+2) − 2.

As before, we deduce from this that Ũl is critical. We also note that Ũt−2 =

ker B j1
∩Ut and dim(Ut/Ũt−2) = 2.

Furthermore, the effect of replacing the system of equalities (2.12) based on U1

with the corresponding system based on Ũ1 amounts to grouping together the two

equalities 1 = q j1
and replacing them with 2 = 2q j1

, which is then placed last on the

list.

By carrying out this procedure for each B jk
for k = 2, . . . , s2, we can reorder the

flag so that it becomes

Ũ1 = (U1 ( · · · ( Us1
= V0 ( · · · ( Vs2

= W0 ( · · · ( Ws3
)

https://doi.org/10.4153/CJM-2010-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-045-2


The Brascamp–Lieb Polyhedron 883

and Vk−1 = Vk ∩ ker B jk
and dim(Wk/Wk−1) = 2 for every k = 1, . . . , s2.

The spaces Uk in the flag Ũ1 are s1 in number since the equation in (2.12) associ-

ated with Uk/Uk−1 is 1 = q j1
+ q j2

, where ek = { j1, j2} is an edge of the graph G.

From the look of this equality and where it comes from, we see that Uk ∩ ker B j1
⊂

Uk−1 and Uk ∩ ker B j2
⊂ Uk−1. We also note that dim(Uk ∩ ker B j1

) ≥ dim Uk − 2

since the codimension of ker B j1
in H is 2. The codimension of Uk−1 in Uk is 1, so

there are now two possibilites, either

(2.15) Uk ∩ ker B j1
+ Uk ∩ ker B j2

= Uk−1

or Uk ∩ ker B j1
= Uk ∩ ker B j2

= K, where K is a subspace of codimension 2 in Uk.

Assume the second possibility. Then K ( Uk−1 ( Uk. Let r be the index such that

Ur−1 ⊂ K but Ur 6⊂ K. Then r < k and dim(B jηUr−1) = 0, but dim(B jηUr) > 0 for

η = 1, 2. We know from previous discussion that for Ur/Ur−1, (2.12) is of the form

1 = q j̃1
+ q j̃2

for some { j̃1, j̃2} ∈ E. From this it is clear that { j̃1, j̃2} = { j1, j2},

but this contradicts our previous conclusion concerning the graph G. It would imply

that G was not a proper graph but rather a multigraph where the edge { j1, j2} was

repeated, and this repeated edge would constitute a cycle of even length.

Therefore (2.15) must hold and that completes the proof of one direction of the

theorem.

For the other direction, we note that if (q j) is a point of the form prescribed and

U is the flag (2.11), then each of the spaces of U is critical. To see this, note that

dim(H) − 2 = dim(Ws3−1) ≤
∑

j

q j dim(B jWs3−1) ≤
∑

j 6= js3

q j dim(B jH)

=
∑

j

q j dim(B jH) − 2q js3
= dim(H) − 2,

so Ws3−1 is critical and the criticality of the other elements of U follows in the same

way.

The only spaces which can be added into the flag are spaces of the form W̃ =

Wk−1 + 〈wk〉, where wk ∈ Wk \Wk−1. Then

dim(Wk) − 1 = dim(W̃ ) ≤
∑

j 6= jk

q j dim(B jW̃ ) + q jk

≤
∑

j 6= jk

q j dim(B jWk) + q jk
=

∑

j

q j dim(B jWk) − 1,

and from this we see that W̃ is in fact critical. Therefore, (q j) lies in the Brascamp–

Lieb polyhedron S((B j)).

Finally, it is clear that the equations associated with the criticality of the flag U

have (q j) as a unique solution. This shows that (q j) is a vertex of the polyhedron.

Remark 2.5 From the proof of the theorem it is clear that we may rearrange the flag

so that the equations for q j with j ∈ J2,2 ∩ J1 come in any order. However, this is not

the case for Us1
. In fact, there might be only one way of choosing this maximal flag
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for Us1
. An example of such a configuration is where dim H = 5 and for j = 1, . . . , 5

B j is the rank two projection onto 〈e1, e2 + e3〉, 〈e1, e4〉, 〈e2 + e1, e4 + e3〉, 〈e2, e5〉
and 〈e3, e5 + e4〉, respectively (here {ei}i=1,...,5 is an orthonormal basis for H and the

angled brackets denote the span of the listed vectors). Then the only maximal flag for

which we have equality is

〈e5〉 ⊂ 〈e4, e5〉 ⊂ 〈e3, e4, e5〉 ⊂ 〈e2, e3, e4, e5〉 ⊂ 〈e1, e2, e3, e4, e5〉.

Remark 2.6 In the cases we have looked at, all of the vertices have had associated

with them critical flags of maximal length. However, this is not the case in general as

can be seen from the following example. We take H of dimension 8 with an orthonor-

mal basis (ei)i=1,...,8. For j = 1, . . . 4, we take B j to be the orthogonal projections

onto the spaces 〈e1, e2, e5〉, 〈e2, e4, e7〉, 〈e1 + e2, e6, e8〉, and 〈e3 + e4, e5 + e6, e7 + e8〉,
respectively. Then we have the flag

〈e1, e2〉 ⊂ 〈e1, e2, e3, e4〉 ⊂ 〈e1, e2, e3, e4, e5, e6〉 ⊂ 〈e1, e2, e3, e4, e5, e6, e7, e8〉

for which (2.12) becomes

p1 + p2 + p3 = 2

p1 + p2 + p4 = 2

p1 + p3 + p4 = 2

p2 + p3 + p4 = 2

which has the solution p1 = p2 = p3 = p4 =
2
3
. It is straightforward to confirm

that the inequality (1.2) is satisfied for any subspace V of H, as, from Lemma 2.2,

we know that we need only to check it for subspaces which can be placed into the

flag. However, no linear combination of the p j with nonnegative integer coefficients

can equal 1, so there can be no one-dimensional subspace of H which has equality in

(1.2).

Remark 2.7 If all the maps B j have rank k, then (1.3) gives that

(2.16)
∑

j

p j = n/k,

and we can rewrite (1.2) as

dim V ≤
∑

j

p j dim(B jV ) =
∑

j

p j(dim V − dim(ker B j ∩V )),

which says

(2.17)
∑

j

p j dim(ker B j ∩V ) ≤
n − k

k
dim V.

We can carry out the analysis of this section with conditions (1.4), (2.16), and (2.17),

and in particular, we can recover a theorem similar to Theorem 2.4 for the case when

all B j have rank n − 2.
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3 The Facets of S

We begin this section with a proof of Theorem 1.8.

Proof The necessity of the conditions follows immediately from [4] as they are a

subset of the necessary conditions established there.

To show that the conditions are sufficient, we use induction on n + m, where n =

dim H and m is the degree of multilinearity of the form. For the base case we consider

m = 1. Then testing (1.2) on ker B1 gives that dim ker B1 = 0 so B1 is surjective and

then the scaling condition gives dim H1 = dim H and p1 = 1. We see then that the

inequality evidently holds with equality if we take C(B1, p1) = (det B1)−1.

For the inductive step we take a datum ((B j), (p j)) and assume that the result

holds for each datum for which the quantity m + n is smaller.

As before, the conditions (1.3), (1.4) along with (1.2) for V ∈ L(B j ) define a

bounded convex polyhedron in R
m. To show that the result holds everywhere in this

polyhedron, by multilinear interpolation it is enough to establish it at each vertex. As

we have already dealt with the case m = 1, we may assume m > 2 and then we get

that at a vertex, aside from the scaling condition, at least one of the linear inequalities

defining the polyhedron must be satisfied with equality.

There are now two cases. Either we have p j0
= 0 for some j0, or there is a space

U ∈ L(B j ) \ {{0}, H} such that dim U =
∑

j p j dim(B jU ). In the first case we

see that we may write the Brascamp–Lieb inequality without referring to j0, and the

result follows from the induction hypothesis since the degree of multilinearity has

been reduced.

In the second case we can factor the Brascamp–Lieb form. Define

B̃ j : U → B jU : x 7→ B jx

˜̃B j : U⊥ → (B jU )⊥ : x 7→ Π(B jU )⊥B jx

Γ j : U⊥ → B jU : x 7→ ΠB jU B jx,

where Π(B jU )⊥ and ΠB jU denote the orthogonal projections onto the relevant spaces.

Then we can calculate

∫

H

m
∏

j=1

f
p j

j (B jx) dx =

∫

U⊥

∫

U

m
∏

j=1

f
p j

j (B̃ j x̃ + B j
˜̃x) dx̃ d˜̃x

≤ C((B̃ j), (p j))

∫

U⊥

m
∏

j=1

(

∫

B jU

f j( ỹ + B j
˜̃x) dỹ

) p j

d˜̃x

= C((B̃ j), (p j))

∫

U⊥

m
∏

j=1

(

∫

B jU

f j( ỹ + Γ j
˜̃x + ˜̃B j

˜̃x) dỹ
) p j

d˜̃x

= C((B̃ j), (p j))

∫

U⊥

m
∏

j=1

(

∫

B jU

f j( ỹ + ˜̃B j
˜̃x) dỹ

) p j

d˜̃x
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≤ C((B̃ j), (p j))C(( ˜̃B j), (p j))
m
∏

j=1

(

∫

B jU⊥

∫

B jU

f j( ỹ + ˜̃y) dỹ d ˜̃y
) p j

= C((B̃ j), (p j))C(( ˜̃B j), (p j))
m
∏

j=1

(

∫

H j

f j(y) dy
) p j

.

Here we have used for the first inequality that, for almost any ˜̃x ∈ U⊥, the tuple

( f j(· + B j
˜̃x)) consists of non-negative integrable functions defined on B jU , and we

can therefore use the Brascamp–Lieb inequality for the datum ((B̃ j), (p j)). For the

next equality we use the definitions of Γ j and ˜̃B j , and for the one below that we use

the translation invariance of the inner integral and the fact that Γ j
˜̃x ∈ B jU for any

˜̃x ∈ U⊥. For the second inequality we use the fact that for any j the inner integral

defines a nonnegative function of ˜̃B j
˜̃x with domain (B jU )⊥, and we can therefore use

the Brascamp–Lieb inequality for the datum (( ˜̃B j), (p j)).

Since we can perform this calculation for any tuple of nonnegative integrable func-

tions ( f j) defined on H j , we have established the inequality

C((B j), (p j)) ≤ C((B̃ j), (p j))C(( ˜̃B j), (p j)).

In particular this shows that if both C((B̃ j), (p j)) and C(( ˜̃B j), (p j)) are finite, then

C((B j), (p j)) is finite. Since dim U < dim H and dim U⊥ < H, we may use the

induction hypothesis to establish that this is the case. The positivity condition (1.4)

clearly holds since the tuple (p j) is inherited unchanged from the original datum.

The scaling condition (1.3) for B̃ holds by the assumption that U is critical and by

subtracting that condition from the scaling condition for H we see that (1.3) holds

for ˜̃B j .

So the only conditions that remain to be checked are (1.2) for any space in L(B̃ j )

and L
( ˜̃B j )

.

First of all, we note that L(B̃ j ) is a subset of L(B j ). To see this we note that it is

enough to show that the building blocks of L(B̃ j ), the sets ker B̃ j , lie in L(B j ). Since

B̃ j = B j |U , we get that ker B̃ j = ker B j ∩U and the inclusion follows as both the sets

on the right-hand side are elements of L(B j ). Now, for any W ∈ L(B̃ j ), we have that

W ⊂ U and therefore dim B̃ jW = dim B jW . Therefore, the inequality

dim W ≤
∑

j

p j dim B̃ jW

is in the list of inequalities coming from L(B j ).

Secondly, we study L
( ˜̃B j )

. Let us take an element W from this set. Note that W ⊂

U⊥. Our aim is to establish that the inequality dim W ≤
∑

j p j dim ˜̃B jW follows

from the inequalities in L(B j ) together with the hypothesis of criticality of U . Since U

is critical and the elements in the pairs U , W , and B jU , ˜̃B jW are orthogonal to each

other, we see that we may equivalently establish the inequality

dim(W + U ) ≤
∑

j

p j dim( ˜̃B jW + B jU ).
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We note that the sets ˜̃B jW + B jU and B j(
˜̃W + U ) are the same. To see this take an

element x from the former set. Then x has the form Π(B jU )⊥B j y + B jz with y ∈ W

and z ∈ U . Now there is an element y ′ ∈ U such that Π(B jU )⊥B j y = B j y + B j y ′.

Then x = B j(y + (y ′ + z)) with y ∈ W and y ′ + z ∈ U . For the other direction we

take x ∈ B j(W + U ). Then we can write x = B j(y + z) with y ∈ W and z ∈ U . We

take y ′ as before and then x =
˜̃B j y + B j(z − y ′) with y ∈ W and z − y ′ ∈ U .

Therefore, it is enough to show that W + U ∈ L(B j ). To establish this we note

first of all that ker ˜̃B j + U = ker B j + U . To see this take x ∈ ker ˜̃B j . This means, by

definition, that B jx ∈ B jU , so x ∈ ker B j +U . On the other hand, if we take x ∈ ker B j

and write x = y + z with y ∈ U and z ∈ U⊥, then B jz = B jx − B j y = −B j y ∈ B jU

so ˜̃B jz = 0 so z ∈ ker ˜̃B j . We also note that for any W1,W2 ∈ L
( ˜̃B j )

we have that

(W1 +U )∩ (W2 +U ) = (W1 ∩W2) +U and (W1 +U ) + (W2 +U ) = (W1 +W2) +U .

The first of these follows from the fact that both W1 and W2 lie in U⊥, and the second

is self-evident.

From this we see that if W ∈ L ˜̃(B j )
, then W + U lies in the lattice generated by

{ker B j + U , j = 1, . . . , m}, and, since U ∈ L(B j ), this is a sublattice of L(B j ). This

completes the proof of the theorem.

By examining the above proof we can give a procedure that tells us when we have

found all the conditions included in (1.2).

We will need an enumeration of the elements of L(B j ). Call the generators of

L(B j ), namely ker B j , level 0 elements. Then for each s ≥ 1 let level s elements be

those elements of L(B j ) that are not of any lower level and which can be written as a

vector space sum or as an intersection of two elements of level less than s. Clearly, this

will assign a unique level to each element of L(B j ), and there are only finitely many

elements of any given level. Thus, we can enumerate the elements by first assigning

numbers to the elements of level 0 then those of level 1 and so on.

We take this enumeration and look for necessary conditions by going through

it and decide (arbitrarily) to pause when we have found the necessary conditions

(1.2) for V ∈ V, where V ⊂ L(B j ). At this stage we wish to determine whether we

have found all the necessary conditions for the Brascamp–Lieb inequality to hold.

Conditions (1.2) for V ∈ V, together with conditions (1.3) and (1.4), restrict the set

of tuples (p j) for which the Brascamp–Lieb inequality holds to a polyhedron S̃(B j ),

and we wish to determine whether S̃(B j ) = S(B j ) where S(B j ) is the Brascamp–Lieb

polyhedron for (B j). This will be the case if and only if each vertex of S̃(B j ) is in S(B j ).

There exists an algorithm that lists all of the vertices of S̃(B j ). For each vertex (q j) in

this list we know that m of conditions (1.2) for V ∈ V, (1.3), and (1.4) are satisfied

with equality. If none of these equalities comes from (1.2), then the support of (q j)

can only contain one element q j0
, and we know from above that the Brascamp–Lieb

inequality holds at this vertex if and only if q j0
= 1 and ker B j0

= {0}. Otherwise

there is a space U ∈ V which lies strictly between {0} and H such that (1.2) holds

with equality for U . By the proof above we see that the Brascamp–Lieb inequality

holds at (q j) if and only if it holds for the data ((B̃ j), (q j)) and (( ˜̃B j), (q j)), that is, if

(q j) ∈ S(B̃ j ) and (q j) ∈ S
( ˜̃B j )

.

To determine whether this is the case we run through the above algorithm for both

S(B̃ j ) and S
( ˜̃B j )

. This recursion can only have n levels of depth and will therefore be
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completed in a finite number of steps. When it is completed we know whether (q j) is

in S(B j ) in which case we move on to the next vertex, or whether (q j) is not in S(B j ) in

which case we break the pause and continue looking for necessary conditions in the

list of L(B j ) until we decide again (arbitrarily) to pause and check whether we have

now found all of the necessary conditions.
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