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BEYOND THE ENVELOPING ALGEBRA OF sl3 

DANIEL E. FLATH AND L. C. BIEDENHARN 

0. Introduction. The problem which motivated the writing of this paper 
is that of finding structure behind the decomposition of the sl3 representa­
tion spaces V* ® W = Hom(F, W) for finite dimensional irreducible 
s/3-modules V and W. For sl2 this extends the classical Clebsch-Gordon 
problem. The question has been considered for sl3 in a computational way 
in [5]. In this paper we build a conceptual algebraic framework going 
beyond the enveloping algebra of sl3. 

For each dominant integral weight a let Va be an irreducible 
representation of sl3 of highest weight a. It is well known that, for weights 
a, jit, À, the multiplicity of Vx in Hom(^ , Va+tl) is bounded by the 
multiplicity of /A in Vx, with equality for generic a. This suggests the 
possibility of a single construction of highest weight vectors of weight X in 
Hom(J^, Va+fl) which is valid for all a. 

In order to realize this possibility we introduce an analogue of a Weyl 
algebra, an algebra s/ of endomorphisms of 0 Va which is defined in 
Section 3 of this article. The construction referred to above amounts to the 
explicit decomposition of j ^ a s an .s/3-module. The principal technical tool 
in this program is Theorem 5.5. The main result, the decomposition, is 
stated as Theorem 6.6. 

The analysis of J ^ is facilitated by the fact that there is a generating set 
formas an algebra which spans a lie algebra isomorphic to so%. In Sections 
7 and 8 of this article, we decompose srf as an ^-representation and use 
the result to show that s# has no nonzero proper two-sided ideal. 

1. Representations of sly Let g denote sly the lie algebra of 3 X 3 
traceless complex matrices, and denote by f) the subspace of diagonal 
matrices. 

The group P of weights of g will be identified with Z 3 / ( (1, 1, 1) ) as 
follows: For X = (a]9 a2, a3) = (axa2a3) G P and H = b]Eu + b2E22 + 
b3E33 G fj, define 

MH) = 2 *A-

The group S^ of permutations on three letters acts on P through the 
formula: 
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E N V E L O P I N G A L G E B R A O F 5/3 711 

o(ax, a2, a3) = (aa-\(])9 aa-\{2)9 aa-\{3)). 

A weight X is positive if 

2a, — a2 — a3 = 0 and ax + a2 — 2a3 = 0; 

and it is dominant if ax = a2 ^ tf3. We say X, i^ X2 of two weights if 
X, — X2 is positive. 

An element w of a g-module W is a X vector of W for X G fy* if 
Hw = \(H)w for all 7/ G fy. We say that X is a weight of W if there is 
a nonzero X vector. If W is finite dimensional, this is only possible for 
X G P, and W is spanned by its weight vectors. The dimension of the 
space of X vectors, the multiplicity of X, will be denoted mult^ W). If Wls 

finite dimensional, 

multaX(W0 = multx(W0 for all o G Sr\. 

Every finite dimensional irreducible representation of g has a unique 
highest weight. That weight is dominant and of multiplicity one; it 
determines the isomorphism class of the representation. Every dominant 
weight is the highest weight of a finite dimensional irreducible representa­
tion. The highest weight vectors in a simple g-module are those elements 
which are annihilated by both E]2 and E23. We shall write TTX to denote an 
irreducible representation of highest weight X. 

For X = (pqO) dominant, 

dim TTX = l-(p - q + \)(p + 2X« + 1). 

LEMMA 1.1. Let X, a, P be dominant weights. Then 

dim Homg(77X, Homc(7ra, *$ ) ^ m\i\ip_a(<nx\ 

with equality if a 4- (210) + aX is dominant for all a G «5̂ . 

Proof This is a bit of folklore. One reference is [1]. For convenience, we 
quickly sketch a proof here. 

We prove first the inequality. 
Let u be a nonzero a vector of 77a, and let v* be a nonzero ( — /?) vector of 

flrj!j, the representation of g contragredient to TT̂ . Let C(/? — a) be the one 
dimensional representation of rj on C defined by the formula 

Hz = (fi - a)(H)z 

for H G ij and z G C. 
Define a linear m a p / a s follows: 

/ : HomQ(77X, Homc(77a, TT )̂ ) -> H o m ^ , C(/3 - a) ) 

A \-+f(A):w i-> < (Aw)u, v*>. 
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By using the fact that v* is a vector of lowest weight in 77$ one easily 
shows t h a t / i s injective, which gives the desired inequality. 

We can use a multiplicity formula to establish the equality clause of the 
lemma. 

First note that dim Homfl(77x, Homc(7ra, TT^) ) equals the multiplicity of 
77̂  as a subrepresentation of 7TX ® 7ra. Let m(f$) denote this multiplicity. 

Let Q be the set of weights y of irx for which there is oy e ^ (necessarily 
unique) such that 

ay(a + (210) 4- y) = £ 4- (210). 

In [1, 4] the following formula is proved. 

™(P) = 2 sgn(ay) multy(7rx). 

The hypothesis of Lemma 1.1 is equivalent to the assertion that a 4-
(210) 4- y is dominant for all weights y of 77X. In that case, Q = {/? — a) 
and <Jp_a is the identity. 

If n is a weight of TTX, then X — /A is in the subgroup of weights generated 
by (1, —1,0) and (0, 1, — 1), the roots. Thus every weight of n, ^ can be 
written uniquely in the form (abc) with a + b + c=p + q. 

LEMMA 1.2. The weight (abc) with a + b + c=p + qisa weight 
°f ^(pqO) if and only if there exists a partition a + b = bx + b2 such that 
bx ^ a = b2 andp = bx ^ q ^ b2 = 0. Moreover, the multiplicity of (abc) 
in iT( -v equals the number of such partitions of a 4- b. 

Proof This is essentially equivalent to the branching law of [6]. 

The combinatorial meaning of the inequalities of the previous lemma is 
uncovered by arranging the various integers in a Gel'fand-Weyl pattern 
[3, 7] as follows: 

( *, b2 ) . 
\p q 0 / 

LEMMA 1.3. Let (abc) with a + b + c=p + qbea dominant weight of 
^(pqOy Then its multiplicity is 1 4- inf{/? — a, c, p — q, q}. 

2. Construction of the representation V. Let 

W = C[a]9 av av al2, a23, a3X]9 

a polynomial ring in six independent commuting variables. 
Let Q act on W as a lie algebra of derivations through the following 

formulas: 
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(2.1a) En = a\K2 - «3|3a23 

(2.1b) •^23 = <h?a3 " aiA3, 
(2.1c) £ | 3 = a\^a, - « 1 2 ^ 

(2.1d) E2i = a 2 9 « , - a 2 3 9
a 3 l 

(2.1e) ^ 3 2 = fl39a2 - «319«,2 

(2. If) E3\ = «3 9a, - «23 9
a , 2 

(2.1g) Eu - E22 = : aiKt - alK2 + a319a3l - fl239
a23 

(2.1h) E22 - E33 = ' a2da2 - a39«3 + ai2^an - « 3 ! 9
a 3 1 -

Notice that av a2, a3 span a space isomorphic to the defining 
representation of Q (highest weight (100)), and that an, 023, a3\ s P a n a 

space isomorphic to its antisymmetric square (highest weight (110)): 
aij = ai A ay-

Define three linear transformations M+, M_, M0 on W: 

(2.2a) M + = -0 f l i 3 O 2 3 + dadaj] + 3a38ai2) 

(2.2b) M_ = axa13 + tf2fl3i ~̂~ ̂ 3^12 

(2.2c) M0 = - ( û , 3 a i + a2dai + a ^ 4- tf129„i2 

+ fl23
9a23 + fl3i9a31 + 3)« 

Let V be the kernel of M+. 
Each of M+9 M_, M0 commutes with Q above; because M + does so, Fis 

itself a representation of Q. Our next task is to decompose this 
representation. 

For nonnegative integers j , let Pj be the space of homogeneous 
polynomials of degree j in W. Let HJ be the kernel of M+ in PJ'. 

LEMMA 2.3. PJ = / / 7 0 M^Pj~2. 

Proof. By induction on7. The statement is trivial for7 = 0, 1. Suppose it 
is true for integers j ^ k. To establish its validity for j = k + 2 it will 
suffice to show that M + maps M_Pk isomorphically onto Pk. 

The inductive hypothesis implies that 

Pk = © MJHk~2P. 

Thus all follows from 

LEMMA 2.4. M+M__ acts as scalar multiplication by 

(p + \)(p - k - 3) ¥* 0 <w MJHk~~lp. 

Proof. Calculation shows that M+, M_, M0 span a lie algebra 
isomorphic to sl2: 
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[Af+, Af_] = M0 [M0, Af+] = 2M + [Af0, Af_] = - 2 M _ 

Now establish by induction that for positive integers /, 

M+MJ = IMJ~\M0 - / + i) + MJM+. 

J 
THEOREM 2.5. HJ ~ © ^„m-

Proof. HJ contains a g-subrepresentation isomorphic to flV/7o)> the one 
with highest weight vector a^~lan

l- To show that these subrepresenta-
tions span HJ, we must check that 

J 
2 dim 7r( /0) = dim HJ. 
i = 0 

By Lemma 2.3, 

dim #> = dim PJ - dim P^~2 . 

The space of homogeneous polynomials of degree j in n variables has 

dimension I 1. Thus the formula we want is an easy induc­

tion: 

± ! 0 _ ,- + l)(, + 2)(/ + „ . (y • > ) _ ( / + 3). 

COROLLARY 2.6. The ^-representation V is a multiplicity free sum of all 
finite dimensional irreducible representations of g. 

The algebra of operators on V generated by g is isomorphic to the universal 
enveloping algebra of g. 

Proof. Only the second assertion needs proof. It follows from the 
existence for every x ¥* 0 in the enveloping algebra of a finite dimensional 
irreducible representation TT of g such that TT(X) # 0. 

We will denote by V\ the subspace of V which is isomorphic to 7rx. A 
(y'/0)-vector in K / 0 ) is a ax

j~laX2- If A is not dominant, write FA = (0). 
Let Sf6 be the group of permutations on the six symbols 1, 2, 3, 

12, 23, 31. It acts linearly as ring automorphisms on the space W by 

°(ak) = ao(ky 

Let T be the action of S?6 on Endc(W) given by 

T(O)T = o o T o a - 1 for T e Endc(W). 

In particular, 

r(a)ak = am and r(a)8^ = 3 
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Define subgroups K\ K, and L of ^ by listing generators: 

(2.7a) K = < (1 23)(2 31), (1 23)(3 12) >. 

(2.7b) # = (K',(l 23) >. 

(2.7c) L = ( (1 2 3)(23 31 12), (1 3)(23 12) >. 

The isomorphism classes of these groups are easily determined: 

A — Lay X Liy-, A — Lay X /j2 X Z*2, ^ — t^3« 

Because L normalizes K and AT, we can define subgroups G' and G of ^ 
as follows: 

(2.8) G' - A'L G = KL. 

It is not hard to see that Gf ^ ^ and that 

G = G' X <(1 23)(2 31)(3 12) >. 

LEMMA 2.9. For éracA a G G, a(F) = F W a(i/^) = W. 

Proof. Because T(O)M+ = M+. In fact, G is the stabilizer in <Ŝ  of 
M+. 

We will henceforth use T to denote the action of G on End c(F) given 
by 

T(O)T = a o T o a . 

3. Construction of the algebra jtf. Define six operators on W by the 
formulas below. 

( l l a ) (lOoJ = 2 f l | + a '2a«> + ^ ^ + " ' ^ + alfl12a«,2 

+ a l a 3 1 9 « 3 1 - a2a319<,23
 _ a 3 a l 2 9

f l 2 3 

( 3 " l b ) ( l O o ) = a>23«2 - a3i9a 3 

(3..C ( ™ ) - 3 . "23 

( 3 - l d ) ( l i o ) = 2 f l ' 2 + a > 2 2 9 - ^ + fl12a239
fl„ + û 1 2 û 3 l 9

a „ + a l a l 2 9
a '12 «al2 ^ "I2"23"a23 ^ "12"3I%, ^ "l"l2°a, 

+ a2a129<,2
 _ ala239a3 ~

 a2a319<,3 

<3-le> (!îo) - - ^ « 3 , + «29„23 

^ 0 (îJi)-a.-
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Calculations show that each of these operators carries the subspace V 
into itself. Henceforth they will be viewed as linear transformations on V, 
not W. The auxiliary space W will appear no more in this paper. 

Define twelve more operators on V. 
Fore = 100, 010, 001: 

(3.2a) ( o ; 0 ) = h - ' ( l O o ) M o O l ) = [ £ 3 2 . U o ) ] -

F o r / = 110, 101, 011: 

(3-2b> doi) - - W (no)]' (on) - " h " (ioi)]-
The algebra of operators on V generated by the nine ( , I and the 

nine ( i, I will be denoted stf. 

Observe that s? contains g and hence also the enveloping algebra of g. 

<»> *»- [(!")• (2)} * . - [ © • (SIS)] 
E* = Kiiô)' (oio)J En = l(îoî)' (ooî)J-

We can therefore view s# as the space of a g-representation p through 
the formula 

p(x)a = [x, a] for x G g, a e s/. 

The analysis of the g-representation se is the principal object of this 
paper. 

Each of the eighteen generators of J / is written in the form I , I. We 

refer to h and h! as the upper and lower labels. These labels are interpreted 

as g-weights and have the following significance. The operator ( ,, I is 

an /z'-vector in the g-representation p on stf. For each irreducible 
subrepresentation Vx of V, 

(i) (Vx) c Vx+h. 

The next important proposition assures us that s/ is large enough for the 
study of all spaces H o m c ( ^ , Vx). 

PROPOSITION 3.4. Let U be a finite dimensional vector subspace of V and 
let T e Endc(£/). Then there exists an element of s/whose restriction to U 
equals T 
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Proof. By enlarging U we may assume that U is a sum of V^. Choose a 
basis B of U compatible with the decomposition U = © Vx, and choose v, 
w G B, say 

v G V{m and w G K(/iW)), 

We show that there is a e ^ such that av = w and #v' = 0 for all 
v' ^ v G B. 

Indeed, given endomorphisms 7\ of Fx there is an S in the enveloping 
algebra of Q such that 5 agrees with 7\ on each of the (finitely many) Vx. 
So there exists S G S/ such that 

Sv = a / ^12
7 and SV = 0 for v' ¥= v G B. 

Now 

(uo\k /100V-* /001V /onV"'' 
uio/ vioo/ Vooi/ Ion/ 

maps a^~!al2
l to a nonzero multiple of a]

l~kan
k- Finally there is Q in the 

enveloping algebra of g such that QRSv = w. We take a = (?#S. 

COROLLARY 3.5. i) If T G End c(F) commutes with s# then T is a scalar 
multiplication. 

ii) 77ze center ojstf is C, //je scalar multiplications. 
iii) F w a simple sf-module. 

4. S08. Calculation with the eighteen generators of srf shows that the 
following three useful and easily remembered rules hold. 

4.1.) The three operators with a given upper label commute. 
4.2.) The three operators with a given lower label commute. 

4.3a.) The three I ) commute with the three ( . . . ) and the three 

(!?!)• 
b.) The three ( . . . ) commute with the three ( . . . ) and the three 

n c.) The three ( . . . ) commute with the three ( . . . ) and the three 

n Define six more elements of s/. 

(4.4a) / / , = - 1 -a2dai-a3dar " a23 9« 2 3 

(4.4b) / / 2 = - 1 - a , 3 - a 3 3 f l 3 -- %.9a„ 
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(4.4c) H3 = - 1 - a,8fli - a2daj - andau 

(4.4d) H4 = - 1 - andan - a238û23 - a 3 l3 a 3 | 

(4.4e) X = 1 + fll3fli + a29U2 + Û33U3 

(4.4f) y = -H4. 

Notice that X and Y commute with g. On the subspace K ..0) of K, A" 
acts as scalar multiplication by y — / - h i and Y as scalar multiplication by 
/ + 1. 

The following important theorem summarizes many commutation 
calculations. 

THEOREM 4.5. The eighteen generators of se, g, X, and Y span a 
twenty-eight dimensional lie algebra isomorphic to so%. 

COROLLARY 4.6. stf is isomorphic to a quotient of the universal enveloping 
algebra of so%. 

COROLLARY 4.7. V may be viewed as an irreducible representation of 

We want to give explicitly the isomorphism with so%. 
Let J = (8- 9 •) be the 8 X 8 matrix all of whose entries are zero except 

those on the second diagonal which are equal to one. We will take for so% 
the lie algebra of 8 X 8 complex matrices A such that 

lAJ + J A = 0. 

These are precisely the 8 X 8 matrices which are antisymmetric with 
respect to the second diagonal. 

The identification of matrices in ̂ g with elements of j / i s given in Table 
1, where F-. is the 8 X 8 matrix of all of whose entries are zero except the 
ij which is one. 

One can now ask about subalgebras of sos. Here is an easy result. 

PROPOSITION 4.8. The three ( h the three ( . ), 9, and X — Y 

span a fifteen dimensional lie algebra isomorphic to sl4. 
Each of the subspaces HJ of V is irreducible as a representation of 

this sl4. 

We want next to show that the r-action of G on Endc( V) restricts to an 
action on the algebra stf. 

Let f denote the subspace of diagonal matrices of sos. We continue to 
identify sos and its isomorphic lie algebra in se, so that f is spanned by the 
four //,, 

PROPOSITION 4.9. For each o e G, r(o) preserves f, sl4, and so%. G acts 
Through r as a group of automorphisms ofs/. 
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Table 1 

J ^ a n d 5o8 

E\i = F\i ~~ Fn E2\ = ?2\ - f 87 
E\3 = ^13 ~~ ^68 E3\ = ^31 " ^86 

^23 = ^23 "" ^67 ^32 = ^32 - F76 

V100) = F , 4 ~ F 5 8 (101) = 
Von/ 

- ^ 4 1 + % 

loio/ = FlA " Fsi ( , 0 , ) = 
V101/ 

- ^ 4 2 + ^75 

loo J = Fu~ Fs6 ( . 0 1 ) . . 

Vno/ 
~F4i + F65 

Vioo/ = Fl5 " FA% 
(no) . 
Von/ -F$i + ^84 

loio) = F25 " FAI ( u o ) - -
V101/ 

" * 5 2 + ^74 

V00J = F35 " F46 ( . 1 0 ) . . 

Vno/ 
-Fi3 + FM 

(100/ = F 6 2 ~ F ? 3 ( 0 , 1 ) = 
Von/ 

-Flb + F37 

(010) = F M " F61 ( 0 , , ) = 
V101/ 

- ^ 3 8 + Fl6 

(001) = F1] ~ F g 2 ( o n ) - -
vno/ 

- / r i 7 + f 28 

//, = Fn -F9-i9-, 1 = 1, 2,3, 4. 

Proof. One must check the first assertion explicitly for generators a of G. 
The last assertion follows because sos generates s/. 

The actions of G on f and on f n s/4 are faithful. Indeed, the subgroup 
G' acts as the full permutation group of the set of Hi9 and the element 
(1 23)(2 31)(3 12) e G acts as scalar multiplication by —1 on ! Pi sl4. 

Denote by R the root system of sl4 associated to the cartan subalgebra 
f n sl4. 

Denote by Aut(i?) the automorphism group of R, a finite subgroup of 
linear automorphisms of (! Pi sl4)*. Let W(R) be the Weyl group of R, a 
subgroup of index 2 in Aut(i^). 

For a e G, let e(o) be the contragredient of the restriction of T(O) to 
! n s/4. The previous proposition shows that t(o) e Aut(i^). 

PROPOSITION 4.10. i) The map e:G —> Aut(#) /s tf« isomorphism. 
ii) €(<7) = ^ ( # ) . 

Proof. See the explicit description of WXR) in [2]. 

5. The commutant 38 of {EX1, E23} in J / . We want to decompose the 
representation p of g on stf. Because stf is a sum of finite dimensional 
representations, this amounts to the determination of the space of a in stf 
such that 
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p{En)a = p(E23)a = 0. 

This is precisely the commutant of EX2, E23 in J?/. 
It is easily verified that the commutant of E]2, E23 in so% is the nine 

dimensional lie subalgebra spanned by the following: 

(SU X Y F (U0) I101) (°U) I100) I010) I001) 
p.i) A, r, £13, yUQj, ymj, ym), ymj, ym), ymj. 

Let & be the subalgebra of stf generated by the nine operators above. 
The nine generators of 3& are not independent. We note two relations in 

addition to the commutation rules. 

LEMMA 5.3. The vector space Se is spanned by elements of the form SXeY* 
where 

,-.. c _ -, a(\o\\^(o\oY^(\\o\^(oo\Y(o\\\^(\ooY2 p.4) 6 - hX3 ymj ymj ym) ymj ymj ymj , 

with cxc2 = dxd2 = 0. 

Proof. Use the relations. 

THEOREM 5.5. ̂  is the commutant of {EX2, E23} in s/. 

Proof Let U be the g-module generated by ^ . The theorem is equivalent 
to the equality: U = s/. Because X and Y commute with çj, we have UX, 
UY c U. 

Let o = (1 12)(2 31)(3 23) e G. Because a (^ ) = Si and a(g) = fl, we 
have that a(U) = U. 

L E M M A 5 . 6 . ^ . g ) ^ . ( j j ; ) c f / . 

Proof. The proof consists of tedious calculations, mainly consisting of 
finding enough relations in s? amongst the elements of so%. Only an outline 
will be given. 

We list three equalities in s/. 

.<_ , _. /ooi\ „ /ooi\ , ZoiA/ioA 
(5-7a) M l O o ) = M o i o J + l l l o A l l o J 

.<_,. ZoioVooA ZoioUooA , , v ,Jou\ 
(57b ) UoAiooJ = liooJUioj + ( y - 'W 
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.<_. AooWooA /ioo\/ooi\ , ,v , v n/ioi\ (57c) UoAiooJ = UoAoioJ + iX + Y - lA\\oJ-
Using these relations one shows that 

K " s(?oo) ] ^ (« + t>2 + c2 + d2 + i)s(™l) + a, 

whence 

^ /00 l \ 

Moio] c l / -
Quite similarly, one proves that 

By applying a, one deduces that also 

»-(îi!)-*-(i!!!)-»-(!iî)-*-^ = ''-
Next by considering both [£21, S£12] and [£21, S£12] + [£31, S i ^ ] + 

[£32, S£23] one shows that 

&- Hx,@- H2, &- H3 c U. 

Finally, consideration of \E3], ^ ( i n n ) "*" I ̂ 32> ^ I n i n ) e s t ab-

lishes the inclusion 

' • C ) = ». 
and consideration of \E3], . S L ^ J + £32, 5 L J establishes 

The lemma is proved. 

We now quickly prove the theorem. 
By applying a, 

Because E2X, E32 commute with I I and ! „ . . ), and since 

U = p{g) • B 
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where S is the enveloping algebra of span{£21, £32* ^31 }> w e conclude 
that 

u Vooi/'^ vooi/' voii/'^ von/ Um 

Next, apply £13, £12, E23 to these last inclusions to show that U - %> a U 

where ^ i s the subalgebra of sigenerated by the twelve operators I . ), 

/ 0 0 l \ / l l O \ / 0 1 l \ 

It remains but to observe that <€ = si. 

D e f i n e ^ 0 to be the algebra of all T in si such that T(VX) c Fx for all 
dominant weights À. 

LEMMA 5.8. si0 n ^ w generated as an algebra by X, Y, £13, 

/IOIWOKA /oio\/ooiWioo\ . / i o i \ / i i o \ / o n \ 
Viio/uoo/' ViooAioo/Vioo/' Viio/Viio/Viio/" 

Proof. The condition on a member of the spanning set (5.4) of 3S to be in 
si° is that 

bx + c, + d2 = &2
 + cl + ^1 = ^1 + c2 + </j. 

Consideration of the four cases arising from the condition c]c2 = d{d2 = 0 
shows that the elements meeting this condition can be written in terms of 
the six operators given in the lemma and the elements 

T = fioiWoioV 
V110/ WOO/ • 

That the Tn are unnecessary is shown by the calculation: 

w.-,((.-'*,3+ (!?;)(?£))• 
PROPOSITION 5.9. si° is the subalgebra of si generated by g, X9 and Y. 

Proof si° is the g-module generated by si° n ad. To show that si° is 
contained within the algebra generated by g, X, and Y we need only show 
that si° n ^ is so contained. Combine Lemma (5.8) and the following 
identities. 

"•«*> (Z)(Z) 

— > (!ÏJ)G!!!)(?iJ) - « , * 

^12^23 + j ^ 1 ~~ H2 ~*~ H2 ~ ^4)^13 

J = ^23^12 ~~ ^32^13 ~~ V^2 ~" H3)EX2EX3 

1 = EX2E23 — E2lEl3 + (//, — H2)E23El3. 
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( ! ) 
6. Structure of ^ . For weights X, JU, of g, define ^1 C I to be the set of 

T e & such that the following two conditions are satisfied: 
6.1a) T is a X vector of the g-representation p o n j / . 
6.1b) T(Va) c Va+ll for all dominant weights a of g. 
Because the generators of & are all dominant weight vectors, unless X is 

dominant, M^)= (0). 

One has a grading of ^ : 

' - •Hi) ™d -feM?M££)-
PROPOSITION 6.2. W j j j = C[*, 7]. 

Proof. The algebra ^ H n ) is spanned by those monomials in the six 

generators from Lemma 5.8 of s/° n & which actually lie in ^ ( n ) . 

Thus it is spanned by monomials in X and Y. 

For weights /A and X and dominant weight a of g denote by 9S\ ̂  1(a) 

the space of all T e Homc(Fft, Va+^) which are restrictions of elements of 

LEMMA 6.3. (i) For JH, X, a weights of g with X and a dominant, 

dim «^(^J(a) = dim Homfl(7rA, Homc(7ra, <na+li) ). 

(ii) The space 3ô\ {* I is nonzero if and only if X is dominant and fx is a 

weight of TT^. 

Proof (i) The elements of ^1 ^ 1(a) are X vectors of the g-representa-

tion Homc(J^, Va+Il) which are highest weight vectors. By Proposition 3.4 

we find all such in £%\ ^ 1(a). 

(ii) This is a trivial consequence of (i) and Lemma 1.1. 

Let $ be the set of S in ai as in (5.4). 

Let * ( j ) e q u a l s n # ( j M . 

For dominant weights a, denote by Ol ^ 1(a) the set of restrictions to 
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Va of the elements of $ ( ^ 1. 

LEMMA 6.4. The set $ ( ^ J (a) is a basis of sA ^ 1 (a) for each dominant 

weight a such that a + (210) + oX is dominant for every a e S/\. 

Proof. By Lemma 5.3 it is seen that the set 4>( ̂  )(a) spans ^ ( H ( a ) 

for all a. 
To establish linear independence we must show that the cardinality of 

4>( ^ J equals dim ^?( ^ 1(a) for a as in the lemma. 

Let 

feK'î S) 
with (/? g 0) dominant, ( a k ) a weight of "•(/,4o), and a + b + c = p + q. 

An easy calculation enumerates the elements of 01 , I : 

(6.5) *^j = (£l3(110j (m) {mj 

x (mY~q] 
V100/ /0ërfSinf{«,5 + / . - ? } 

- . „ / 1 0 0 \ ~ " /Oi l V j / 0 0 l \ ~ " 
where: 1) For n ^ 0 we have written I „ „ I for I . I and I .„_ I 

f o r l n o j -
ii) We compute S from the table below: 

S q ^ a q ^ a 

q ^ c P - b c 

q ^ c a q 

On the other hand, the dimension of &i £ )(a), which equals m u l t ^ x ) 

by Lemmas 1.1 and 6.3 for a as above, can also be computed explicitly. 
Choose a e 6^ such that o\x is dominant. Then muiy> x ) equals 
multa/I(7rx), and the latter is given by Lemma 1.3. 

It is now a simple matter to conclude the proof by showing the two 

numbers card $ ( f ) and dim ^ ( ^ 1(a) to be equal. 
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THEOREM 6.6. M^j is a free C[X, Y]-module of rank equal to muly> x ) . 

The set $ ( ^ ) is a basis. 

Proof By Lemma 5.3, the set $ ( M generates ^ ( M as a C[X, Y]-

module. 

Let the elements of <ï>( ̂ 1 be denoted Sr 

Suppose given polynomials f(X, Y) in C[X, Y] such that 

2 SAW Y) = 0. 

Recall ihdiifiX, Y) acts as scalar multiplication byf(r — s + 1, s + 1) on 

A dominant weight a = (r s 0) satisfies the condition of Lemma 6.4 with 
\ = (p q 0) if s 4- 1 ^ /? and r - 5 4- 1 ^ p. The restriction of Sj^X, Y) 
to J^ for such a must be zero, and hence also each/j(r — s 4- 1, s 4- 1) 
must equal zero. This implies that each/) is zero. 

COROLLARY 6.7. Let <% be the universal enveloping algebra of the nine 
dimensional lie algebra spanned by the nine generators of 38. Let <j>:W—>&be 
the canonical surjection. 

The kernel of 4> is the ideal I of °ll generated by the two elements below. 

XEl3 
/ 0 1 l W l 0 0 \ _ / 1 0 1 \ / 0 1 0 \ 

uioAioo/ uioAioo/ 
/ioi\/oio\ _ ZiioVooA _ 
Vi IO A loo; ViioAioo/ 13 

Proof By Theorem 6.6 the elements SXeY^ of Lemma 5.3 which span 
°ll/l are linearly independent in 38. 

As an illustration of what can be done with Theorem 6.6, we find 
explicitly a basis for the space of (210) vectors in the 7r(210)-isotypic 
subrepresentation of each g-module Homc(P^, Va). 

Observe that 

•G!J)-MM}-
The conditions of Lemma 6.4 are met for a = (r s 0) if r > s > 0. For 

such a, $ ( 9 i n ) is the sought for basis. 

Next notice that KrQ0) is the space of homogeneous polynomials of 
degree r in the variables ax, a2, a3 and that ^ r r0 ) is the space of 
homogeneous polynomials of degree r in an, #23> a3\-

https://doi.org/10.4153/CJM-1985-038-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-038-9


726 D. E. FLATH AND L. C. BIEDENHARN 

VlloAlOo) v a n i s h a n d S° H o m c^ooo)^ v(0 ° n v(000y b o t h E\3 a n d V110/ V100/ Vttllia11 a i l u *u llull lcV(ooo)' '(ooo); 

contains no subrepresentation isomorphic to 77(210). 
Calculations show that £ , 3 is nonzero on Kr00) and on Vrr0) if r > 0, and 

that on each of these spaces . L - is linearly dependent upon 

£13. Thus for r > 0, E]3 is a highest weight vector in the unique irreducible 
subrepresentation of H o m ^ ^ , ^ o ) ) o r °^ Homc(^ r /<)), (̂rrO)) w n i c n ls 

isomorphic to 77"(210). 

7. The ^-representation s/. The action p of g on s/ extends to an 
action, also denoted p, of so% on stf\ 

p(x)a = [x, a] for x e SO%, a e s#. 

We want to decompose explicitly the representation p of so%. 
The group of weights of so% will be identified with Z4 4- (|, {, |, |)Z as 

follows: For 17 = (P1P2P3P4) a weight and i / = 2 £,-#,• G f, define 

A weight 77 is dominant if 

Pi = Pi= P3 = I M 

An element w of an sc>8-module is an 77 vector if 

#w = 7](H)w for all i / G f . 

We say that 77 is a weight of a representation if there is a nonzero 77 vector 
and refer to the dimension of the space of T7 vectors as the multiplicity 
of 77. 

Every finite dimensional irreducible representation of so% has a unique 
weight 77, called its highest weight, for which there is a nonzero 77 vector 

annihilated by E]2, E23, ( ftft- I, and ( o m I. It is a dominant weight and 

of multiplicity one; it determines the isomorphism class of the representa­
tion. We shall write 77̂  to denote an irreducible representation of highest 
weight 77. 

THEOREM 7.1. i) C L J is the commutant of \ El2, £23' \nm ) ' 

( 0 0 ! ) j " 2 ^ -
ii) There is an isomorphism of so^-representations: 

0 0 

f - ®0 "(ppooy 
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Proof. The commutant is surely contained within <%, the commutant of 
£1 2 and E2i injtf. 

We list the nine generators of Se and their sos weights. 

X ( 0 , 0 ,0 ,0 ) / l l 0 \ (0,0, - 1 , - 1 ) 
V110/ 

Y ( 0 ,0 ,0 ,0 ) fOOA (1,0, 0, 1) 
)/ V100; 

/ 0 1 l \ (1, 1,0,0) 
Vi io / 

/ l 0 l \ ( 0 , 0 , - 1 , 1 ) f l 0 0 \ (0, - 1 , - 1 , 0 ) 
VI10/ V100/ 
(010\ 
Vioo; 

£ n (1,0, - 1 , 0 ) 

(1 ,0 ,0 , - 1 ) 

An eigenvector of t in the commutant of En, £23, I I and I „„. I 

must be a dominant weight vector. The list above shows that it can be 
written in the form 

where a, b, and the polynomial / are uniquely determined. 
To facilitate computations we will change variables. Let W = X -f Y — 

2, and let Z = Y — 1. A dominant weight vector is uniquely expressible in 
the form: 

(7-3) r = l i o o J l i o o J l n o j ^ ( ^ Z ) -
We first show that a must be zero. This follows from explicit 

calculation, for all a, y i? a, of both sides of the equality (7.4). The right 
hand side is always zero. 

(7.4) [m)T - a2 a3\J = T[QQl) - a2 a3
ba 

We next show that the polynomial g(W, Z) must be independent of Z. 
This can be done by calculating explicitly, for all a ^ b and /? = 0, both 
sides of the equality (7.5). 

(7*5) Vooir 'a^ av = r\ooi/ ' ia3 3l 

At last, calculations for all a è i of (7.6) shows that g(W) is 
constant. 

( 7 - 6 ) ( o o ! ) r ' ( a ' 2 a 3 " - a û 3 a _ V 3 . ) 

Y 
23 ' 
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iOOl\ a a - 1 x 

8. Simplicity of JS/. 

THEOREM 8.1. The algebra stf contains no nonzero proper two-sided 
ideal. 

Proof. Letjtf(p) denote the irreducible stfg-submodule of s/with highest 
/ O l l V 

weight (ppOO) and highest weight vector I n n I • 

A two-sided ideal J is an ^8-submodule of J / , hence must be a sum of 
/Oil V s/(p). If s/(p) is contained in J, then I n n I is contained in J for all 

n ^ p. Thus 

J = e s/(p), 

where TV is the smallest integer for which s/(N) c / . We see thus that the 
nontrivial two-sided ideals, if any, form a chain and that each is of finite 
codimension in s/. 

Let J be a nontrivial ideal of s#. 
The quotient algebra J ^ / / , being a finite dimensional quotient of ^(sos), 

the universal enveloping algebra of so%, is semisimple; that is, it is 
isomorphic to a finite product of full matrix algebras. Since the ideals in 
ssf/J form a chain, there can be at most one factor in the product. We 
deduce that J is maximal. 

Let / be the inverse image of / in <%(sos). There is a finite dimensional 
irreducible representation 7rv of so% such that / equals the kernel of *rr in 
<V(so%). 

Let Z be the center of <%(sos)9 and let x r ' Z —» C be the central character 
of 7rr Let x-Z -^ C be the central character of the representation of sos 

on V. 
It is clear that x = Xv- We will show that this equality leads to a 

contradiction. 
The representation of sos on V is irreducible with highest weight ( — 1, 

— 1, —1, — 1). Indeed the element 1 e F i s a ( — 1 , —1, — 1, — l)-vector 

which is annihilated by El2, E23, I m i I, and ( n m 1. 

The equality x = Xv implies the existence of an element w in the Weyl 
group of f such that 

Tj 4- (3, 2, 1, 0) = w( ( - 1 , - 1 , - 1 , - 1 ) + (3, 2, 1, 0) ). 

But this is impossible for a dominant weight TJ. 
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