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Abstract

If the centre of a group G is trivial, then so is the centre of its automorphism group. We study the structure
of the centre of the automorphism group of a group G when the centre of G is a cyclic group. In particular,
it is shown that the exponent of Z(Aut(G)) is less than or equal to the exponent of Z(G) in this case.
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1. Introduction

Let G be a group and Aut(G) be the group of automorphisms of G. A routine exercise
in group theory states that Z(Aut(G)) is trivial whenever Z(G) is trivial. This result,
correlating the centre of G and Aut(G), was recently extended to a wider class of
invariants by Deaconescu and Walls [2]. Indeed, they showed that if X is any group
invariant satisfying the two properties:

(i) Z(G) ≤ X(G); and
(ii) X(G) ∩ H ≤ X(H) for all subgroups H of G,

then X(G) = 1 implies that X(Aut(G)) = 1. However, not much is known about the
structure of Z(Aut(G)) when Z(G) is not trivial. The only result we are aware of is that
of Formanek [3], which shows that Z(Aut(G)) is nontrivial for a free nilpotent group
G of rank r and class c ≥ 2 if and only if c ≡ 1 (mod 2r).

The aim of this paper is to obtain the structure of Z(Aut(G)) when the centre of G is
a cyclic group. As a result, in Lemma 2.3, it is shown that the exponent of Z(Aut(G))
is bounded above by the exponent of Z(G) provided that Z(G) is a cyclic group. We
note that the order of Z(Aut(G)) may be greater than the order of Z(G) when Z(G) is a
cyclic group. Our main theorems are as follows.

Theorem 1.1. Let G be a group with cyclic centre of finite order n = pa1
1 · · · p

am
m ,

where p1, . . . , pm are distinct primes. Then Z(Aut(G)) � A1 × · · · × Am, where, for
i = 1, 2, . . . ,m, the subgroup Ai is isomorphic with one of the following:
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(a) the trivial group;
(b) an abelian pi-group whose exponent divides pai

i ; or
(c) a cyclic group of order pai−1

i (pi − 1).

Theorem 1.2. Let G be a group with infinite cyclic centre. Then Z(Aut(G)) is
isomorphic with one of the following:

(a) the trivial group;
(b) a cyclic group of order two; or
(c) a nontrivial torsion-free abelian group.

2. Preliminaries

Let G be an arbitrary group and let θ ∈ Z(Aut(G)). Then g−1θ(g) ∈ Z(G) for all g ∈G
and the map θ : G −→ Z(G) given by θ(g) = g−1θ(g) is a homomorphism (see [1]).

Now assume that Z(G) = 〈z〉 is a cyclic group of order n. Then θ(z) = zα for some
integer α. For all g ∈ G,

θ
2
(g) = θ(zk) = zkα = θ(g)α, (2.1)

where θ(g) = zk. Using (2.1) and an induction argument,

θ
i
(g) = θ(g)α

i−1
(2.2)

for all i ≥ 1. Also, since θ(g) = gθ(g), we obtain the following equality:

θk(g) = g(k
0)θ(g)(

k
1) · · · θ

k
(g)(

k
k), (2.3)

by using induction on k for all k ≥ 1.
It is easy to see that |θ| = exp(Im θ) when α = 0. Now assume that α , 0. Then, by

using (2.2) and (2.3),
θk(g) = gθ(g)(1/α)((1+α)k−1) (2.4)

for all g ∈ G and k ≥ 1. Note that in (2.4), the number α depends on the automorphism
θ, and so in what follows we indicate this dependence by denoting it by αθ. Now, by
using the definition of αθ, we prove the following lemmas, which play an important
role in determining the structure of Z(Aut(G)). In what follows, U(Zn) denotes the
multiplicative group of units of Zn, the ring of integers modulo n.

Lemma 2.1. Let G be a group with cyclic centre of finite order n. Then, for all
ϕ, ψ ∈ Z(Aut(G)):

(a) αϕψ + 1 ≡ (αϕ + 1)(αψ + 1) (mod n); and
(b) the map α∗ : Z(Aut(G)) −→ Aut(Z(G)) � U(Zn) given by α∗(ϕ) = αϕ + 1 is a

homomorphism, where αϕ + 1 is identified with the automorphism which sends z
to zαϕ+1.
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Proof. For any ϕ, ψ ∈ Z(Aut(G)) and g ∈ G,
ϕψ(g) = ϕ(ψ(g)) = ϕ(gψ(g)) = ϕ(g)ϕ(ψ(g)) = gϕ(g)ψ(g)ϕψ(g).

Thus, ϕψ = ϕ · ψ · ϕψ, which implies that
ϕψ(z) = ϕ(z)ψ(z)ϕψ(z) = zαϕzαψϕ(zαψ) = zαϕzαψzαϕαψ = zαϕ+αψ+αϕαψ .

Hence, αϕψ ≡ αϕ + αψ + αϕαψ (mod n) or αϕψ + 1 ≡ (αϕ + 1)(αψ + 1) (mod n), which
proves part (a).

To prove part (b), it is enough to show that (αϕ + 1, n) = 1, that is, αϕ + 1 ∈ U(Zn)
for all ϕ ∈ Z(Aut(G)). Assume the contrary. Then there exists ϕ ∈ Z(Aut(G)) such that
(αϕ + 1, n) , 1 and hence

|z| = |ϕ(z)| = |zϕ(z)| = |zαϕ+1| < |z|,
which is a contradiction. �

The result for groups with infinite cyclic centre is proved by similar means, so we
omit the proof.

Lemma 2.2. Let G be a group with infinite cyclic centre. Then, for all ϕ,ψ ∈ Z(Aut(G)):

(a) αϕψ + 1 ≡ (αϕ + 1)(αψ + 1) (mod 2); and
(b) the map α∗ : Z(Aut(G)) −→ Aut(Z(G)) � C2 given by α∗(ϕ) = αϕ + 1 is a

homomorphism, where αϕ + 1 is identified with the automorphism which sends z
to zαϕ+1. (C2 in this context is the multiplicative group with elements 1 and −1.)

Lemma 2.3. Let G be a group with cyclic centre of order n = pa1
1 · · · p

am
m and let

ϕ ∈ Z(Aut(G)). Then
|ϕ|
∣∣∣lcm(d1, . . . , dm),

where di = pai
i when pi | αϕ and di = pai−1

i (pi − 1) when pi - αϕ. In particular,
exp(Z(Aut(G)) ≤ exp(Z(G)).

Proof. Let ϕ ∈ Z(Aut(G)) and g ∈ G. If αϕ = 0, then |ϕ| = exp(Im ϕ) and the result
holds. Now suppose that αϕ , 0. Then, by (2.4),

ϕk(g) = gϕ(g)(1/αϕ)((1+αϕ)k−1)

for all k = 1, . . . ,m. Two cases occur, namely either pi | αϕ or pi - αϕ. In the
first case, αϕ = pb

i t for some 1 ≤ b ≤ ai such that pi - t. Now, using an induction
argument, one obtains that (1 + puw)pv

≡ 1 (mod pu+v) for all u > 0, v ≥ 0 and w ∈ Z.
Thus, (1 + αϕ)pai

i ≡ 1 (mod pb+ai ) and hence (1/αϕ)((1 + αϕ)pai
i − 1) ≡ 0 (mod pai

i ).

On the other hand, if pi - αϕ, then, using (1 + αϕ)pai−1
i (pi−1) ≡ 1 (mod pai

i ), we obtain

(1/αϕ)((1 + αϕ)pai−1
i (pi−1) − 1) ≡ 0 (mod pai

i ). Therefore,
1
αϕ

((1 + αϕ)di − 1) ≡ 0 (mod pai
i )

in either case and consequently
ϕlcm(d1,...,dm)(g) = g,

which proves the assertion. �
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3. Proofs of main theorems

Using the results obtained in the previous section, we are able to determine the
structure of Z(Aut(G)) when the centre of G is a finite cyclic group.

Proof of Theorem 1.1. Let ϕ ∈ Z(Aut(G)) and let g ∈ G. Then ϕ(g) = gϕ(g), where ϕ
is defined in Section 2. Since ϕ(g) lies in the centre of G, it has a unique expression
as ϕ(g) = ϕ1(g) · · · ϕm(g), where ϕi(g) ∈ Pi, the Sylow pi-subgroup of Z(G). For
i = 1, . . . ,m, consider the map ϕi : G −→ G defined by ϕi(g) = gϕi(g). Then ϕi is a
homomorphism. Also, when i , j and for g ∈ G, we have ϕi(ϕ j(g)) = 1 (the identity
element of G), which implies that ϕ = ϕ1 · · · ϕm. Thus, since ϕ is a bijection, each ϕi

is also a bijection and hence it is an automorphism. On the other hand, if θ ∈ Aut(G),
then ϕθ = θϕ. Hence, for all g ∈ G,

θ(g)ϕ1(θ(g)) · · ·ϕm(θ(g)) = θ(g)θ(ϕ1(g)) · · · θ(ϕm(g)),

so that

ϕi(θ(g))θ(ϕi(g))−1 = θ(ϕ1(g))ϕ1(θ(g))−1 · · · θ(ϕi−1(g))ϕi−1(θ(g))−1

· θ(ϕi+1(g))ϕi+1(θ(g))−1 · · · θ(ϕm(g))ϕm(θ(g))−1.

Note that the left-hand side of the above equality is in Pi and the right-hand side
belongs to P1 · · · Pi−1Pi+1 · · · Pm. Hence, ϕi(θ(g)) = θ(ϕi(g)), which implies that
ϕiθ = θϕi and hence ϕi ∈ Z(Aut(G)). Now put

Ai = {ϕ ∈ Z(Aut(G)) : ϕ(g) ∈ Pi for all g ∈ G}

for all i = 1, . . . ,m. Then Z(Aut(G)) = A1 · · · Am � A1 × · · · × Am.
Let α∗ be the same homomorphism as in Lemma 2.1(b). Since the elements of

Im(α∗) are integers coprime to |Z(G)|, they are also coprime to |Pi|. Hence, α∗i = α
∗|Ai

may be considered as a homomorphism from Ai into U(Pi), the group of units of the
cyclic group Pi. If ϕ ∈ Kerα∗i , then ϕ(zi) = zi, from which it follows that ϕk(g) = gϕ(g)k

for all g ∈ G and integers k. By definition, ϕ(g) ∈ Pi for all g ∈ G, which implies
that ϕ is a pi-automorphism. Hence, Ker α∗i is a pi-group and Im α∗i is a subgroup
of U(Pi) which is a cyclic group of order pai−1

i (pi − 1). Note that in Lemma 2.3, if
Imϕ ⊆ H ≤ Z(G), then we may use H instead of Z(G). Thus, if ϕ ∈ Ai, then the order
of ϕ divides either pai

i or pai−1
i (pi − 1).

If pi = 2, then Ai is an abelian group with exponent dividing pai
i and we are

done. Hence, we may assume that pi , 2. Then, since the exponent of Ai divides
pai

i (pi − 1), either Ai has exponent dividing pai
i , which is one of the types mentioned

in parts (a) and (b) of the conclusion of the theorem, or it contains a nontrivial
element ϕ whose order divides pi − 1. Suppose that the latter case holds. Put α = αϕ,
ni = pa1

1 · · · p
ai−1
i−1 pai+1

i+1 · · · p
am
m and zi = zni , where z is a generator of Z(G). Then Pi = 〈zi〉.

Also, ni divides α and, since ϕ , I (the identity automorphism of G) has order dividing
pi − 1, we get α , 0 and so pi - α by the proof of Lemma 2.3. Hence, we can choose
0 < β < pai

i in such a way that 1 + αβ is a primitive root modulo pai
i . Define the maps
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ϕβ : G −→ Pi and ϕβ : G −→G by ϕβ(g) = ϕ(g)β and ϕβ(g) = gϕβ(g), respectively. Then
both ϕβ and ϕβ are homomorphisms. Moreover, ϕβ is one-to-one, for, if ϕβ(g) = 1, then
gϕ(g)β = 1 and hence g = ϕ(g)−β ∈ Pi. If g , 1, then, for some 0 < u < pai

i , we have
g = zu

i and therefore zu(1+αβ)
i = 1, which is impossible by the choice of β. Therefore,

ϕβ is one-to-one. Moreover, Pi ∩ Ker ϕ = {1} and G = Pi Ker ϕ. Now, for g ∈ G, there
exists an integer u with 0 ≤ u < pai

i and k ∈ Kerϕ such that g = zu
i k. Let 0 ≤ v < pai

i be
such that v(1 + αβ) ≡ u (mod pai

i ). Then

ϕβ(zv
i k) = ϕβ(zv

i )ϕβ(k) = (ziϕβ(zi))vkϕβ(k) = zv(1+αβ)
i k = zu

i k = g,

which implies that ϕβ is onto and hence it is an automorphism. It is easy to see that
ψ ∈ Z(Aut(G)) if and only if ψ commutes with every automorphism of G. Since
ϕ ∈ Z(Aut(G)), we see that ϕ and hence ϕβ commutes with every automorphism
of G. Thus, ϕβ ∈ Z(Aut(G)) and so it is in Ai. Now we have ϕβ(z) = zαβ and so
αϕβ ≡ αβ (mod n). Thus, by using (2.4),

ϕk
β(zi) = ziϕβ(zi)(1/αβ)((1+αβ)k−1)

= ziz
(1+αβ)k−1
i

for all k ≥ 1.
If k = |ϕβ| is the order of ϕβ, then ϕk

β(zi) = zi and hence z(1+αβ)k−1
i = 1. This implies

that (1+αβ)k≡1 (mod pai
i ), so that pai−1

i (pi−1) divides k. Therefore, |ϕβ|= pai−1
i (pi−1).

It is easy to see that an automorphism ψ ∈ Ai has order two if and only if αψ ≡
−2 (mod n). From the preceding paragraph, it follows that Ai has an element ψ of
order two and hence αψ ≡ −2 (mod n). Now, for θ ∈ Kerα∗, we have αψθ ≡ −2 (mod n),
from which it follows that |ψθ| = 2. Since Kerα∗ is a p-group, the orders of ψ and θ are
coprime and we have |ψθ| = |ψ| |θ|. Hence, θ = I. Thus, Kerα∗ = 〈I〉 and Ai is a cyclic
group of order pai−1

i (pi − 1). The proof is complete. �

Corollary 3.1. Let G be a finite nilpotent group with cyclic centre of order n =
pa1

1 · · · p
am
m . Then either the Sylow pi-subgroup of G is cyclic or the subgroup Ai defined

in Theorem 1.1 is isomorphic to:

(a) the trivial group; or
(b) an abelian pi-group whose exponent divides pai

i .

Proof. As in the proof of Theorem 1.1, if Ai is not isomorphic to the groups in
parts (a) or (b), then G = Pi Ker ϕ for some ϕ in Ai. Now let Qi be the Sylow pi-
subgroup of Ker ϕ. Then Ri = PiQi � Pi × Qi is a Sylow pi-subgroup of G and hence
Pi = Z(Ri) � Pi × Z(Qi), which implies that Qi = 〈1〉. Therefore, Ri = Pi is a cyclic
group. �

Using a similar method, we obtain the structure of Z(Aut(G)) when Z(G) is an
infinite cyclic group.
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Proof of Theorem 1.2. Let ϕ be in Z(Aut(G)) and let α∗ be the homomorphism in
Lemma 2.2(b). By Lemma 2.2(a),

1 = αI + 1 = (αϕ + 1)(αϕ−1 + 1).

Hence, αϕ = αϕ−1 = 0 or αϕ = αϕ−1 = −2.
If ϕ ∈ Kerα∗ , 〈I〉, then αϕ = 0, which implies that ϕ2(g) = 1 for all g ∈ G. Hence,

ϕk(g) = gϕ(g)k for all k ∈ N, and so ϕ is of infinite order, that is, Kerα∗ is a torsion-free
abelian group. Suppose that Z(Aut(G)) is none of the groups in parts (a), (b) or (c).
Then Z(Aut(G))/Kerα∗ is isomorphic to C2 with Kerα∗ nontrivial. Hence, Z(Aut(G))
contains two elements ϕ and ψ, say, with αϕ = −2 and αψ = 0. It is easy to see that
αθ = −2 if and only if |θ| = 2 for each θ ∈ Z(Aut(G)). Now, since αϕψ = −2, it follows
that |ϕψ| = 2, which is impossible, for ϕψ is of infinite order. �

The following examples, together with the finite cyclic p-groups, show that all parts
(a), (b) and (c) in Theorem 1.1 may occur and so the results in Theorem 1.1 cannot be
further improved.

Example 3.2. Let p be an odd prime number and G = 〈a, b | ap = bp = [a, b]p = 1,
[a, b]a = [a, b]b = [a, b]〉 be a p-group of order p3 and exponent p. It can be easily
verified that for all 0 ≤ u, v, w, u′, v′, w′ < p, the map given by a 7→ aubv[a, b]w

and b 7→ au′bv′[a, b]w′ defines a homomorphism of G. This homomorphism is an
automorphism if and only if ∣∣∣∣∣∣u u′

v v′

∣∣∣∣∣∣ ≡ 0 (mod p),

which implies that |Aut(G)| = p3(p2 − 1)(p − 1). Let ϕ ∈ Z(Aut(G)); then ϕ(a) = azs

and ϕ(b) = bzt for some s, t. If ψ is the automorphism which sends a to a2b and b to
ab, then, from the equalities ϕ(ψ(a)) = ψ(ϕ(a)) and ϕ(ψ(b)) = ψ(ϕ(b)), it follows that
s = t = 0. Hence, Z(Aut(G)) = 〈I〉.

Example 3.3. Let G = 〈a, b | ap2
= bp = 1, ba = ap+1b〉 be a p-group of order p3 for

any prime number p. An easy manipulation shows that for all 0 ≤ u, u′ < p2 and
0 ≤ v, v′ < p, the map given by a 7→ aubv and b 7→ au′bv′ is a homomorphism if and
only if p | u′ and p | u(v′ − 1), and it is an automorphism if and only if p | u′, p - u and
v′ = 1. From these facts, it follows that |Aut(G)| = p3(p − 1). Also, ϕ ∈ Z(Aut(G)) if
and only if ϕ(a) = akp and ϕ(b) = 1, where 0 ≤ k < p. Hence, Z(Aut(G)) � Cp.

The following example, together with the infinite cyclic group, shows that both
parts (a) and (b) in Theorem 1.2 may occur. We have no example yet of a group with
infinite cyclic centre such that the centre of its automorphism group is a nontrivial
torsion-free abelian group.

Example 3.4. Let G = 〈a, b, c | [a, c] = [b, c] = 1〉 be a group with infinite cyclic centre.
Assume that ϕ ∈ Z(Aut(G)) and take ψ1 and ψ2 to be automorphisms given by ψ1 : a 7→
ab, b 7→ b, c 7→ c and ψ2 : a 7→ a, b 7→ ab, c 7→ c. Now, since ϕ(a), ϕ(b) ∈ Z(G) = 〈c〉
and ϕ commutes with both ψ1 and ψ2, it can be easily seen that ϕ(a) = ϕ(b) = 1 and so
ϕ = I. Therefore, Z(Aut(G)) = 〈I〉.
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We conclude this paper by posing two problems.

Question 3.5. Is there a group G with infinite cyclic centre such that Z(Aut(G)) is a
nontrivial torsion-free abelian group?

As we have shown in Lemma 2.3, exp(Z(Aut(G)) ≤ exp(Z(G)) for groups with a
cyclic centre. Thus, we may ask the following question.

Question 3.6. Is it true that exp(Z(Aut(G)) ≤ exp(Z(G)) for any group G?
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