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Abstract
Studies with multiple radiocarbon dates often contain useful information on the relative locations of the dated levels.
Such information can be used to obtain robust, integrated site chronologies, with at times more precise ages than
those of the individual dates, where outliers can be identified and downweighted, and where the ages of any undated
levels can also be estimated. Examples include trees with radiocarbon dates separated by exactly known amounts of
yearly tree-rings, or sedimentary sites where ages further down the stratigraphy can be assumed to be older than
ages further up. Here we present coffee, an R package for Bayesian models that apply chronological ordering for
fossils and environmental events. Coffee runs natively within the popular and versatile R environment, with no need
for importing or exporting data or code from other programs, and works with plain-text input files that are relatively
easy to read and write. It thus provides a new, transparent and adaptable educational and research platform designed
to make chronology building more accessible.

Introduction

Chronology-building is an essential part of much research in paleoecology, paleoclimate, geology and
archeology. Although some sites benefit from many dates, other studies have to work with relatively
few dates. Additionally, at times reversals or unexpectedly large dating scatter are encountered, and
often there is a need to combine the dates with additional information in order to arrive at reliable,
informed chronologies. Over the past three decades, Bayesian methods which formally combine
existing knowledge with new data (Bronk Ramsey, 1995; Buck et al., 1996) have become very popular
tools to produce such chronologies. Although these tools are mostly used by the radiocarbon
community, Bayesian methods can also be applied to other types of dates (e.g., De Vleeschouwer and
Parnell, 2014).

Current standalone software tools to build Bayesian chronologies include OxCal1 (Bronk Ramsey,
1995, 2001), BCal2 (Buck et al., 1999), and ChronoModel3 (Lanos and Philippe, 2018). Besides these
stand-alone tools, a range of Bayesian chronology-building packages is available within the Open
Source statistical software environment R, including rcarbon (Crema and Bevan, 2021) to analyse the
densities of dates over time, Bchron (Haslett and Parnell, 2008) and Bacon (Blaauw and Christen, 2011)
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for age-depth modelling of cores with dated depths, and oxcAAR4 which provides an R interface
to OxCal.

R has become a very popular data–handling toolkit in many research communities. Its approach to
providing all code freely promises to be beneficial to science, because it enables higher transparency and
reproducibility, a better long-term usability and more flexibility for analysis than closed-source and/or
standalone alternatives. Given that around 20,000 user-contributed packages are currently available on
R’s CRAN repository, most or all of a research project’s data analysis can now be performed within a
single, transparent and shareable environment. It is in this spirit that we present a new R package that
provides two methods to combine dates with stratigraphical information. The R package is called
coffee – chronological ordering for fossils and environmental events.

Methods

Dates

Samples can be dated using historical information (e.g., when fossils are found of a species that was
introduced to a region at a known historical time), or using radiometric dating where the ratio of certain
radioactive isotopes is measured, with this ratio changing in a predictable manner over time. If the
calendar age θi (in cal BP, calendar years before AD 1950) of a sample xi is estimated by a measurement
yi with a degree of uncertainty σi, it is often assumed that this measurement is distributed normally
around the (unknown) true age,

yi � N θi; σi� �: (1)

If the age of a sample is known exactly, then yi � θi, while in other cases we know that an event took
place before a specific date, θi > θi�1, or after it, θi < θi�1.

For radiocarbon dates, we have a good understanding of how 14C ages relate to cal BP years through
the different calibration curves such as IntCal20 (Reimer et al., 2020), Marine20 (Heaton et al., 2020),
SHCal20 (Hogg et al., 2020) or postbomb curves (Hua et al., 2022). Calibration curves essentially
consist of three columns with the first a range of cal BP ages θ, followed by their associated 14C ages
µ �� � and finally by their uncertainties σ �� �. Then, radiocarbon ages are assumed to be normally
distributed given the calibration curve’s 14C age belonging to the calendar year of interest:

yi � N µ θi� �;ω θi� �� �; (2)

where ω θi� � �
������������������������
σ2 θi� � � σ2

i

p
combines the uncertainties of both the calibration curve and of the date

(e.g., Christen and Litton, 1995).

Outliers

Analysis of material dated through multiple radiocarbon measurements often shows a scatter beyond
what the individual lab errors would suggest (Christen and Pérez, 2009; Scott et al., 2018; Scott, 2023).
This overdispersion can be modelled in several ways (Christen, 1994a,b; Bronk Ramsey, 2009b). The
most common approach to modelling outliers is to enable a shift of the measured mean:

y0i � N µ θi� � � ψiδi;ω θi� �� �; (3)

where ψi � 0; 1� � is a ‘flag’ and δi � N 0;βσ2
i

� �
is a shift on the radiocarbon scale (often, β is set to 2;

shifts on the cal BP scale can also be modelled). If a date is not outlying, ψi is set to 0 and the date is

4 https://CRAN.R-project.org/package=oxcAAR
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treated as usual. If the date is an outlier, ψi is set to 1 and a shift of its age is modelled. This prior outlier
probability is often set to 5% (e.g., Blaauw and Christen, 2005; Haslett and Parnell, 2008; Bronk
Ramsey, 2009b) although Haslett and Parnell (2008) model two types of outliers (moderate outliers with
a 5% prior probability and more extreme outliers with a 1% prior probability). This ‘flag and shift’
approach requires several additional parameters to be modelled for each date in a site. Posterior outlier
probabilities are then calculated as the proportion of times during modelling that the outlier flag had to
be set to 1. It is thus usually not necessary or recommendable to manually remove outliers - they are
downweighted automatically based on the other dates and the modelling constraints.

Another approach to overdispersion is to treat the uncertainty of each date not as a known single
value but as a distribution (Christen and Pérez, 2009). For example, if a lab reports a date to have an
uncertainty of, say, 20 years, the true uncertainty could be lower or higher than the reported value. By
multiplying the lab error by a gamma distribution, in effect we are replacing the normal distribution of
Eq. (2) with a Student-t distribution, with parameters t:a and t:b. Depending on the parameter values
used, the latter distribution will appear very similar to the normal distribution, but will have wider tails.
Bacon (Blaauw and Christen, 2011) uses the Student-t distribution to model dates, as it makes the age-
model robust to dating scatter without the need to model additional parameters (see also Blaauw et al.,
2018). We will be using the Student-t distribution in the approach developed below. Also with this
approach, usually there is no need to manually remove outlying dates.

Stratigraphy

The dates can be integrated with any information regarding the time spans between (dated or undated)
sample positions. For example, if we have radiocarbon samples from a tree with n reliable yearly rings
but no master dendrochronology to align it with, we can still precisely count the exact gaps, or time
spans, between specific (sections of) tree-rings, and combine these with radiocarbon–dated rings to
produce a chronology. If say 10 annual tree-rings were deposited between the older sample 1 and the
younger sample 2, then we know that whatever the known or unknown age is of sample 1, it must be
10 years older than that of sample 2. In statistical terms (e.g., Christen, 1994b; Christen and Litton,
1995), this can be written as there being m dated positions in a tree, with each position xi having an
associated calendar age θi separated by known integer time-spans from other rings within the tree (here
we start counting from the youngest, outermost ring):

δi � θi � θi�1 2 N (4)

Some rings will have one or more radiocarbon dates and some none. We will leave this implicit in the
definition of the likelihood in Eq. (7) to avoid a more cumbersome notation. Other positions of interest,
while not radiocarbon dated, may still require an age estimate. Given θ0 (the age of the outermost ring),
the age of any ring can then be calculated by adding up the gaps:

θi � θ0 �
Xi

j�1

δj: (5)

In sites with less exact information on the time spans between levels, but where we can still safely
assume a chronological ordering of the different levels based on the site’s stratigraphy (e.g., Harris,
1989), often all we know is that between two stratigraphically separated levels xi and xi�1, the time span
θi � θi�1 � δi > 0. Some layers will not have such information and then dates within said layer cannot
safely be assumed to be in chronological order (we will call these layers ‘blocks’). In some cases
however, there could be additional information, say, if two samples are separated by a soil which is
known from other sources to take a certain amount of time to form. These stratigraphical gaps could be
modelled using a range of distributions, e.g., uniform: δi � U ai; bi� � (see Bronk Ramsey, 2000; Steier
and Rom, 2000), normal: δi � N µi; σi� �, gamma: δi � Γ µi; σi� �, or even an exact gap: δi � µi. (For
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sites such as bogs, lakes or marine deposits which can reliably be assumed to have accumulated
approximately continuously over time, age–depth models such as BChron (Haslett and Parnell, 2008),
Bacon (Blaauw and Christen, 2011) or OxCal’s P_Sequence (Bronk Ramsey, 2009b) would be more
appropriate.)

Combining dates and stratigraphy

Trees with their exactly known time-gaps between 14C-dated rings are relatively easy to model.
Combining Equations (2) and (5), we can calculate the likelihood of a calendar age for each
14C-dated tree-ring yi � N µ θi� �;ω2

i

� �
where, as before, θi � θ0 �

Pi
j�1 δj and ω2

i �
������������������������
σ2 θi� � � σ2

i

p
.

For any chosen calendar year θ0, the likelihood of each 14C-dated ring is calculated as p�xijθi�, and
we can use the formula for the normal distribution:

p�xijθi� �
1

ωi θi� � ������
2π

p exp � �xi � µ θi� ��2
2ω2

i θi� �
� �

: (6)

Here, the vertical bar means ‘given’, so, we calculate the probability of a chosen age xi given the
(unknown) true age θi (e.g., Christen and Litton, 1995). As outlined above, instead of the normal distribution,
the Student-t distribution could also be used. Now, we calculate the product of all likelihoods,

p�xjθ� �
Ym
i�1

p�xijθi�; (7)

where x � x1; x2; . . . ; xn� � and θ � θ1; θ2; . . . ; θn� �.
Bayes’ Theorem (Buck et al., 1996; Bronk Ramsey, 2009a) states that

p�θjx�∝ p�xjθ�p θ� �: (8)

In words, the posterior probability (our distribution of interest, here the age of a sample given the
data) is proportional to the probability of the data given the age (see above), times the prior. This brings
us to the prior information.

Prior information is any knowledge we have that could help interpreting the data — information
that existed prior to obtaining or seeing the dating results. In the case of producing chronologies, this
is the relative information between the dated levels, such as Eq. (5) for tree-rings, or any knowledge
about the stratigraphical ordering of sites (e.g., Harris, 1989; Buck et al., 1991; Christen and Litton,
1995; Bayliss, 2009). A very basic prior could be to constrain the ages to be within a certain
timeframe, e.g., if we know that a site is of Holocene age, then we do not need to consider pre-
Holocene ages, and radiocarbon-derived ages should be within the 14C dating limit (< 55,000 cal BP).

For trees with year-rings, the prior information could take either of two values (Christen and Litton,
1995):

p�θ� � 1 0 < θ0 < ∞ ; θi � θ0 �
Pi

j�1 δj8i � 1; 2; :::;m
0 otherwise:

�
(9)

So, if a proposed modelling solution lies within a timeframe and has the correct exact time-gaps
between all 14C-dated rings, then all prior information is obeyed, and the prior becomes 1. If however
any of these constraints are violated, the prior becomes 0.

For stratigraphical deposits, as outlined above, we usually assume chronological ordering (unless
other information is available). For this, we measure the timespans δi between all neighboring ages θi and
θi�1, check that they are positive (i.e., in chronological order or θi�1 < θi), and calculate the corresponding
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probability pi θi � θi�1� �, where pi is some prior distribution for the (positive) length of time-span δi.
The joint prior is calculated by multiplying all individual probabilities (i.e. a priori independent):

p�θ� �
Qn

i�1 pi�θi � θi�1� for θ0 < θ1 < ::: < θn
0 otherwise:

�
(10)

The prior gap probabilities pi depend on both the gap length and on the chosen distributions. Most
commonly used in stratigraphies are uniform priors where any gap length between certain limits has the
same prior probability. Since Jones and Nicholls (2002) show that uniform prior densities favour a span
of 2δ over that of δ by a factor of c. 2M�1, the uniform distributions are weighted by the amount of events
within the time-span (see Bronk Ramsey, 2000; Steier and Rom, 2000; Jones and Nicholls, 2002):

pi�δi� �
1

�R�δi�
1

�δi�M�1 ; if 0 < δi < R
0 otherwise;

�
(11)

where R � P � A is the total possible time span based on the upper and lower bounds, and M is the
number of phases within the gap. If the gap length is assumed to be normally distributed as µi ± σi,
we use

pi�δijµi; σi� �
1

σi

������
2π

p exp � �δi � µi�2
2σ2

i δi� �
� �

: (12)

A Gamma distribution ensures that δi > 0:

pi�δijαi;βi� �
β
αi
i

Γ αi� � δ
αi�1
i e�βiδi (13)

with mean µi � αi
βi
and variance σ2

i � αi
β2i
. For exact gaps, we use a Dirac’s delta:

pi�δi� � 1 δi � µi

0 otherwise

�
(14)

Implementation

Let θ0;j be a calendar age assigned to the outermost, youngest ring x0 of a 14C-dated tree. Since this
youngest ring now has an assigned age, all of the 14C-dated levels x1; x2; . . . ; xm too have their
corresponding ages θ1; θ2; . . . θm (after Eq. 5, which ensures the correct exact time gaps), and these ages
are used to calculate the ‘fit’ of the 14C ages (Eq. 6) given the age θ0;j . The product (Eq. 7) gives the ‘fit’
of the entire 14C-dated tree. Now the same calculations are repeated for a sufficiently wide and dense
range of calendar ages θ0;j, providing a ‘wiggle-matched’ age distribution for the 14C-dated tree
(Christen and Litton, 1995; Bronk Ramsey et al., 2001).

For sedimentary sites, we resort to Markov Chain Monte Carlo (MCMC) (Robert and Casella, 2004;
Christen and Fox, 2010). The process starts with a simulated set of ages through Monte Carlo simulation
of parameters from the prior distribution. Namely, initially an age θ0;j is assigned to the topmost,
youngest level x0. This age is sampled from a uniform prior distribution with very wide boundaries (e.g.,
across the entire range of 14C dating). Then, an age gap δi;j is simulated between levels x0 and x1 (this
will provide a simulated age θ1;j � θ0;j � δ1;j for x1). This process is repeated for all levels in the site,
providing gap and age estimates for all levels. For most levels, the gaps will be uniform with δi;j > 0 to
ensure chronological ordering, but levels within ‘blocks’will allow for δi;j ≤ 0, and other gaps will need
sampling from a normal or gamma distribution or require an exact gap. This series of ages and gaps then
provides the first of j � 1 : k iterations of modelled years θ0:n;k — but many more will be needed.
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Table 1. A selection of the Pazyryk cultural complex (Kuzmin et al., 2004) dates that were used to
produce Fig. 1. Only the first 10 lines are shown. The first column shows labels, the second and third
show the uncalibrated radiocarbon ages and their (1σ) uncertainties. The fourth column indicates the
rings (in this case, the midpoints of multiple rings), starting with the youngest, outermost ring and
working down backwards in time toward the date of the oldest, innermost ring. The fifth column
shows which calibration curve is to be used for each date: cc = 1 for IntCal20 (Reimer et al., 2020),
cc = 2 for Marine20 (Heaton et al., 2020), cc = 3 for SHCal20 (Hogg et al., 2020) or cc = 4 for a
tailor-made curve. Dates that are already on the cal BP scale get cc = 0. Commas are printed to
highlight the formatting as a .csv file

Lab ID, C14 age, error, ring, cc
U-35(rings 341–350), 2310, 43, 345.5, 1
U-34(rings 331–340), 2260, 38, 335.5, 1
U-33(rings 321–330), 2230, 34, 325.5, 1
U-32(rings 311–320), 2205, 34, 315.5, 1
U-31(rings 301–310), 2280, 36, 305.5, 1
U-30(rings 291–300), 2280, 46, 295.5, 1
U-29(rings 281–290), 2260, 40, 285.5, 1
U-28(rings 271–280), 2270, 40, 275.5, 1
U-27(rings 261–270), 2340, 41, 265.5, 1
U-26(rings 251–260), 2450, 41, 255.5, 1

30
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Figure 1. Wiggle-match dating of a tree from the Pazyryk cultural complex (Kuzmin et al., 2004). Blue
distributions on top panel show the unmodelled calibrated distributions for each of the 14C-dated rings.
Grey histograms show the ‘wiggle-matched’ age distributions for each ring. Bottom panel show the fit
of the uncalibrated 14C dates (blue) against the IntCal20 calibration curve (Reimer et al., 2020, green),
and the age distribution for the oldest ring of the tree. The mean offset of the dates from the calibration
curve is 0.85 standard deviations, ranging from 0 (date 24) to 3.23 (date 1).
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From this initial set, randomly one of the ages will be chosen and changed somehow. This becomes a
‘proposal’. For this proposal, the ‘energy’will be calculated as the product of the likelihoods of the dates
given the assigned ages (according to Eq. 6), times the product of all priors (the gaps, according to
Eq. 11-13 as required). The proposal will also be checked to ensure that it still obeys all constraints (e.g.,
no reversals). Now, this proposed iteration may either be accepted as the next iteration, or it may be
rejected (in which case, the previous iteration is copied to be the next iteration) using a Metropolis-
Hastings acceptance probability (Robert and Casella, 2004).

Over time, the MCMC process provably approximates the underlying distribution of all parameters
involved (Robert and Casella, 2004) — that is, the ages and gaps. Since each iteration depends on the
previous iteration, there is a large degree of ‘memory’ between neighbouring iterations. To remove this
memory, after running a few hundreds of thousands to millions of iterations, ‘thinning’ is carried out,
storing only 1 every say few dozen iterations (depending on the number of parameters that are
estimated). Additionally, since the first iteration is simulated from the prior, it represents sub-optimal
‘ballpark’ values, and commonly the first dozens of MCMC iterations often fit poorly – therefore, this
‘burn-in’will have to be removed as well (by default the first 100 iterations). It is important to check that
after removing the burn-in and thinning, the time-series of iterations (e.g., any of the parameters, or, the
energy), does not exhibit an initial clear jump (too short burn-in) or clear auto-correlation. Several
implementations of the MCMC approach are available, and here we use the t-walk (Christen and Fox,
2010) as it runs natively within R and is flexible enough to work with many parameters without the need
for expert tuning.

To evaluate the effectiveness of our model in enhancing the accuracy of dating, either in
dendrochronology or stratigraphy, a ‘fit’ measure is calculated for each date, by finding the percentage
of modelled ages that fall within any of the highest posterior density (hpd) ranges of the unmodelled

Table 2. Simulated stratigraphical sections for Fig. 2 (top 6 rows) and Fig. 3 (bottom 13 rows). An
undated position is indicated by cc= 10; also shown are an exact (cc = 11) and normal (cc = 12) gap.
A block of 4 unordered dates is indicated with repeated entries for the position (5). Commas are printed
to highlight the formatting as a .csv file

Lab ID, C14 age, error, position, cc
sim1, 3946, 39, 1, 1
sim1, 3724, 36, 2, 1
undated, , , 3, 10
sim3, 4258, 46, 4, 1
sim4, 4151, 43, 5, 1
sim5, 4441, 49, 6, 1
sim1, 3946, 35, 1, 1
sim2, 3924, 34, 2, 1
exactgap, 20, , 2.5, 11
sim3, 3834, 37, 3, 1
normalgap, 100, 10, 3.5, 12
sim4, 4014, 39, 4, 1
block1.1, 4200, 41, 5, 1
block1.2, 4338, 41, 5, 1
block1.3, 4003, 47, 5, 1
block1.4, 4250, 45, 5, 1
sim5, 4220, 38, 6, 1
sim6, 4124, 42, 7, 1
sim7, 4121, 45, 8, 1
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date. By default, this is done on the 95% hpd ranges. For the tree, a goodness-of-fit is also calculated as
the standardized offset (z-score) between the dates and the calibration curve’s 14C ages (at the assigned
‘best’ calendar age for each date).

Case studies

Tree

Kuzmin et al. (2004) 14C-dated 35 blocks of a tree at the Pazyryk cultural complex in the Altai
Mountains, Russia (Table 1). Each of the 35 blocks of rings covered 10 annual rings worth of wood, and
the midpoints of neighboring blocks were separated by 10 rings. Ideally, one would sample a single year
worth of wood, but this was not possible with the techniques available at the time. Re-modelling with
coffee using IntCal20 (Reimer et al., 2020) results in a best estimate for the start of the tree growth at
2625 cal BP, with a 9-year 95% range (Fig. 1). This is a much higher precision than that of the individual
calibrated dates, some of which span several centuries. Note also the scatter of the 14C dates around the
calibration curve – although the mean standardized offset is only 0.85 (so, less than 1σ), three dates (8%
of the total) are offset from the calibration curve by > 2σ.

Stratigraphical sections

A stratigraphy was constructed by simulating an ordered site with 5 dates (the top 6 rows of Table 2;
Fig. 2), accompanied by an age estimate for one undated level which is constrained by the ages of its
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Figure 2. A simulated stratigraphy with 5 chronologically-ordered dated positions, and one undated
level which is constrained by the ages of the second and third dates (top 6 rows of Table 2). Dark-grey
‘swimming elephants’ or ‘volcanic arc islands’ show the modelled ages taking into account
chronological ordering, light-grey ‘reflections’ show the individually calibrated ages. Note that the
undated level has no reflection. This run of 400,000 iterations took around 4 minutes on a 7-year old
laptop. The top panel shows the ‘energy’ of the 5,121 remaining MCMC iterations, with the pattern
indicating a well-mixed run.
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neighbouring positions. Note that several of the individually-calibrated dates show reversals. However,
after taking into account the prior information that the ages of the positions should be in chronological
order (i.e., the lowermost date should be the oldest, the fourth date should be younger than the fifth, but
older than the third, and so on), the modelled, posterior distributions are indeed in chronological order.
For this simulation, 400,000 MCMC iterations were run. After thinning and removal of the burn-in,
5,121 iterations remained. The mean fit between the unmodelled and modelled ages was 72.46%,
ranging from 47.2% for date 1 to 87.01% for the bottommost date.

Instead of modelling the undated position as done in Table 2, we could also have modelled its age
using the MCMC output — for each iteration taking the age estimates of the second and third date and
modelling a random age from a uniform distribution bounded by the two age estimates.

Fig. 3 shows a more complex simulated stratigraphy, with a block of dates (within which no
chronological ordering is assumed), as well as two levels indicating either exact or normally–distributed
gaps. This more complex example was run using 2 million MCMC iterations, storing 1 in every 45
iterations. The mean fit between the unmodelled and modelled dates was 78.3%, ranging from 0%
(date 6) to 100% (date 2).

Discussion

The R package presented here uses methods developed over decades (Buck et al., 1991; Christen,
1994a,b; Bronk Ramsey, 1995, 2001; Christen and Litton, 1995; Christen and Pérez, 2009; Christen and
Fox, 2010). However, its availability within the R environment makes it a versatile and flexible new tool
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Figure 3. A more complex simulated stratigraphy, including a ‘block’ (highlighted in blue) within
which the dates cannot be assumed to be chronologically ordered but where the block itself is modelled
to be older than the dates above it and younger than the dates below it. Also included are an exact gap
of 20 years (Ex 20� �) and one that is assumed to be normally distributed (N 100; 10� �) (see Table 2). This
run of 2 million iterations took c. 27 minutes – the remaining 3,417 MCMC iterations (top panel) show
some minor areas with structure, suggesting that a longer run might be advisable. For further details,
see the caption of Fig. 2.
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to producing chronologies for trees and stratigraphies, given the possibility to link with R code written
by users. For example, the MCMC iterations of the ages and gaps could be used as input for further
analysis using other R packages. Note that oxcAAR can import OxCal output into R, but that R package
still depends on running OxCal outside of R, whereas all calculations of coffee are done within R.

A potential advantage of coffee is that it uses relatively basic commands (e.g., require(coffee);
rings(); strat()) and that the .csv files are straightforward to write and read (much like Bacon’s
.csv files, which have become popular for age–depth modelling of sedimentary deposits). Its
R-based operation could enable its usage for non-interactive, batch-based chronology-building, e.g., for
databases. A disadvantage of running the MCMC iterations within R is that it is relatively slow, taking
minutes to hours to run. We are planning to implement the MCMC run as faster c�� code in the future,
if there is interest in this from the community.

Further information about coffee including versions, development history, a tutorial (‘vignette’),
news about features and bug fixes is available at https://CRAN.R-project.org/package=coffee.
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