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If BEHAVIOR OF THE EIGENFUNCTIONS 
OF THE INVARIANT LAPLACIAN 

E. G. KWON 

ABSTRACT. Let A be the invariant Laplacian on the open unit ball B of C1 and let 
Xx denote the set of those/ € C2(B) such that Âf = Xf. Xx counterparts of some known 
results on XQ, i.e. on M-harmonic functions, are investigated here. We distinguish those 
complex numbers A for which the real parts of functions in Xx belongs to Xx. We dis­
tinguish those A for which the Maximum Modulus Priniple remains true. A kind of 
weighted Maximum Modulus Principle is presented. As an application, setting a > \ 
and A = 4«2a(a — 1), we obtain a necessary and sufficient condition for a function/ 
in Xx to be represented as 

for some F e LP(dB). 

1. Introduction. Let Cn be the «-dimensional complex Euclidean space with the 
norm \z\ = yjj2j \ZJ\2 and the Hermitian inner product (z, w) = TJ- ZjWj, z = (zi , . . . , zn), 
w = (w\,...,wn). Let B denote the open unit ball of Cn and let S be its boundary. Let 
Aut(2?) denote the Môbius group, i.e. the group of those bijective holomorphic maps of 
B onto itself. Let ^z denote one such map with I/JZ(0) = z. For / G C2(B), Âf is defined 
by 

(1.1) (A/)(z) = 4(1 - |z|2) £ (6ij - ZiZj)(j^~f)(z) 

[R, 4.1.3] and is called the invariant Laplacian because Âffox/j) = (À^o^for^ G Aut(B) 
[R, 4.1.2]. Iff e C2(B) satisfies (A/)(z) = 0 , z 6 f i , then/ is said to be M-harmonic. 
Here M refers to the Môbius group. For a complex number A, Xx denotes the set of 
those/ e C2(B) such that Â/ = Xf. Xx is an M-invariant closed subspace of C2(B) 
in the topology of uniform convergence on compact sets. If A ^ X' then X\ nX\> is 
trivial, i.e. Xx PlXy = {0}. An outstanding feature of X\ we need is that if/ G X\ and 
A = An2a(a— 1) then/ satisfies the weighted mean value property (and conversely) [R, 
4.2.4]: 

(1.2) J/{^z(K))dcT(0=f(z)JsP
a(rr]X)dcj(Cl 0 < r < I, 77 G S. 
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Here index a refers to the principal branch, a denotes the rotation invariant probability 
measure on S, and P(z,Q denotes the invariant Poisson kernel: 

See [K], [KK], and [R] forXA theory. 
Throughout, two complex numbers a and À are related to be 

(1.4) \ = 4n2a(a- 1), 

and the radial function Js P
a(z, Q da(Q is denoted by ga(z). The function ga is used both 

as a radial function on the ball and as a function on R+. 
If/ G XQ, i.e. iff is M-harmonic, then the real part off, Re/, is also Af-harmonic. Our 

question in Section 2 is whether this remains true for functions of X\. Theorem 1 and 
Theorem 2 distinguish those complex numbers A for which the real parts of functions in 
X\ also belongs to X\. Iff G Xo then/ satisfies the Maximum Modulus Principle, i.e. |/| 
can't obtain a local maximum unless/ is a constant. In Section 3, we distinguish those 
A for which every function of Xx satisfies the the Maximum Modulus Principle. Also, 
it is observed that functions of Xx, a real, satisfy a weighted type Maximum Modulus 
Principle with the weight function ga (Theorem 4). As an application to this, in Section 4, 
we obtain a necessary and sufficient growth condition for a function/ of X\, a > | , to 
be represented as 

f(z) = jdB(P(z,Q)aF(Qda(0, 

for some F G LP (S) (Theorem 6). 

2. Real parts of X\. 

THEOREM 1. If Re a ^ \ then the following are equivalent. 
(1) X\ has a nontrivial real function; 
(2) A is real; 
(3) a is real; 
(4) ga(z) is a real function ; 
(5) f G X\ if and only ifRtf G X\ and Im/ G X\. 

THEOREM 2. If Re a = \, then we have 
(1) X is real; 
(2) ga(z) is a real function ; 
(3) feXx if and only (f Re/ G Xx and Im/ G Xx. 

PROOF OF THEOREM 1. ( 1 ) =̂> (2): From ( 1.1 ), we have A/ = Â/. Let/ be a nontrivial 
real function of X\. Then 

\f = Sf = £f = £f = Xf=\f. 

Thus A = A. i.e. A is real. 
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(2) => (3): Let A be real and let a = a + ib, a, b real. Then 0 = Im A = 4n2b(2a - 1). 
Since a = Re a ^ ^, b — 0. i.e. cc is real. 

(3) => (4): Since P(z, 0 is real, ga(z) is real if a is real. 
(4) => (5): Let/ G XA. Supposingg^ real, from (1.2), we have 

jf (Re/ o ̂ ) « ) dtr(0 = Re/(z)*«(r), 0 < r < 1, z G B. 

Hence it follows from [R, 4.2.4] that Re / G X\. Similar arguments give us that Im/ G X\ 
also. Conversely, if Re / G XA and Im/ G X\ then it obviously follows that/ G XA. 

(5) => (1): Suppose (5). Since ga(z) G XA [R, 4.2.2], Rcga G XA. Since #a(0) - 1, 
real part of ga is a non-trivial real function of X\. 

PROOF OF THEOREM 2. (1) Let a = \ + ifc, fe real. Then A = 4n2a(a - 1) = 
4«2( | + b2), so that A is real. 

(2) Since â = 1 - a, from [R, 4.2.3 Corollary] it follows that 

ga = g[-a = gâ = g^-

Hence ga is real. 
(3) Let / G XA, then (1.2) holds. Taking real parts, we conclude that Re/ G XA as in 

the proof (4) =̂> (5) of Theorem 1. Similarly, Im/ G XA. 

3. On maximum modulus principle. We will say that/ defined on B satisfies Max­
imum Modulus Principle (abbreviated as MMP) if |/| cannot have a local maximum in 
B unless/ is a constant function. M-harmonic functions satisfy MMP. But MMP is no 
longer true for functions of Xx in general even when A is real. 

THEOREM 3. Let a — a+ib, a, b real. Then the following (1) and (2) are equivalent. 
(1) Every function of X\ satisfy MMP. 
(2) a(a- l)>b2or\ = 0. 

PROOF. (1) => (2): Consider the radial function ga(z). Note that 

(3.1) ga(r) = (1 - ^)n aF(na, na, n\ r2) 

[KK, Corollary 2.4], where F is the Gaussian hypergeometric function: 

m u * ^ («)*(*)* ** F(a, b, c; t) = > 

o (c)k k\ 

[S].Let 

(3.2) ya(t) = (1 - t)nocF(na,na,n\t), -I <t<\. 

Then it follows from differentiating (3.2) that 

(3.3) ( | |y a |2)(0) = 2n(fl( f l-l)-fc2) 
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and 

d2 

(3.4) ifa(a-l) = b2 then — |;ya|
2(0) = -2a(4n2a(a - \f+n2a-n2). 

Now if a(a - 1) - b2 < 0 then by (3.3) we know jt\ya\
2<0 near t = 0. That is, the 

radial function \ya\ is decreasing near the origin, so that |ga(0)| = 1 is a local maximum 
of \ga\. Hence ga(z) = ya(|z|2) is a function of X\ for which MMP fails. If a(a —l) = b2 

and A ^ O , then by (3.3) and (3.4) we have 

^|y a |2(0) = 0 a n d ^ | v « | 2 ( 0 ) < 0 , 

so that \ya\ has a local maximum at 0. Hence MMP fails for ga. 
(2) =̂> (1): Let/ G X\. Suppose \f\ has a local maximum, say at a. Take ro sufficiently 

small so that \f(a)\ > \f(z)\, z G 0fl(D(O,ro)). Here D(0,r0) denotes the open ball of 
radius r centered at 0. Then by the maximality of \f\ and (1.2), we have 

\f(a)\> L\foUrQ\da(Q 

> |jf5/o 4>a(<)dcr(0\ = \f(a)\ |ya(^)|, 0 < r < r0. 

Now if a(a - 1) - b2 > 0 then, by (3.3), jt\ya\
2 > 0 in a neighborhood of 0, so that 

ba(^2)| > b«(0)| = 1 for sufficiently small r. Thus, from (3.5),/(a) = 0. Since any local 
maximum of \f\ is zero, we have/ = 0. If A = 0 then ^«(r2)! = 1, so that equality 
holds in (3.5), which implies that \f\ = 7/ for some constant 7, on D(a, ro). Thus, 7/ 
is a nonnegative function of X0 having local maximum in D(a, ro). This is impossible 
by the Maximum Principle of nonnegative M-harmonic functions [R, 4.3.2] unless/ is a 
constant function. 

Though MMP failed for some real A, there is a MMP of weighted type in case a is 
real. Note that if a is real then ga is nonzero and positive. 

THEOREM 4. Let a be real Then g~xu has MMP for every uEX\. 

PROOF. Let u G X\ and/ = g~xu. From (1.2) we have 

(3.6) ga(r)u(z) = jsu o </>,«)d<r(Q, z G B, 0 < r < 1. 

Hence 

ga(r)ga(z) 

<supl/ ,o0z(f<)|, zGJ5, 0 < r < 1, 
CG5 
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where we used (3.6) once more with ga instead of u in the last inequality. We conclude 
from (3.7) that |/| can't have a local maximum unless/ = l\f\ = constant for some 
constant 7. 

COROLLARY 5. Let a be real and let Q. be an open subset of B. Let u G X\ and 
f = g~lu G C(B). If\f\<M on d£l then \f\<Mon Q. 

PROOF. The proof is typically routine. Suppose \f(z)\ < M on 3Q but \f(z)\ > M for 
some z G Q . Then the set E of the points in Ù on which \f\ takes its maximum is nonempty 
closed. Since/ G C(Q), we can take zo G £1 such that dist(zo, £2) = dist(£, Q). But for 
zo in place of z we have the strict inequality in (3.7): 

\f(zo)\< sup [/o(/>zo«)|, 0 < r < l . 
Ces 

This contradicts the maximality of |/(zo)|» and so completes the proof. 

4. LP behavior of functions in X\. Throughout this section, we let a be real and 
(3 — a — 1. For 1 < p < oo, Lp(a) norm of an F G LP {G) is denoted by ||F||P. For / 
continuous on B and 0 < r < 1, we denote 

Mp(rJ)=(js[f(rQ\Pda(0)l/P 

if p < oo, and 

Moo(r,/) = supl/XO|. 

For a complex Borel measure //, Pa[/x] is defined by 

where P(z,Q is the invariant Poisson kernel defined in (1.3). Note that Pa[a] = ga. 
We define the function spaces hp,\ 1 < /? < oo, — oo < t < oo, by 

/!"•' = {/: s u p ( l - ^ y A f p ( r , / ) < o o } . 
0<r<l 

and 

^ ? - = {/ : sup ?{\ - Syiogil - r2)M/?(r,/) < oo}. 
0<r<l 

It is well-known that if/ E X0 n/zp0, 1 < p < oo, then there is a function F G LP {a) such 
that/ = P[F], and conversely [R, 4.3.3]. The goal of this section is in a generalization 
of this fact. Since, as a function of a, A defined by (1.4) satisfies X(a) — A(l — a), we 
confine ourselves to a > j . 
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THEOREM 6. Let a>\. If F G C(S) and if we define 

(4.2) / f e ) =(£'fe)/*[TO. zeB 
{F(z), z£S 

thenf(z) G C(B). Conversely, ifu(z) G X\ and g(z) = g^X(z)u(z) is continuous up to S 
so thatg(z) G C(B) then u(z) = Pa[G](z), where G(Q = l im^, g(rQ, (£S. 

PROOF. Let F G C(S) and let/(z) be defined as (4.2). Consider 

Kr)= " R \ jr, 0<r<l. 
F(—n/3, — n(5,n\rl) 

If a > \, then £(r) is dominated by ( 1 - r2)n(or+^), so that it tends to 0 as r —» 1. If a = £, 
then a + /? = 0; but since F(n/2, n/2, n\ r2) ~ — log(l — r2) as r —> 1, k{r) also tends to 
0 as r —> 1. Now set 

K(z9ri) = —^f-9 ZEBRES, 

and 

Q = G(C«) = {T/ G 5 : |1 - <C,i|>| < «}, S>0. 

Then 11 — (n£, rj)\ > 8 — (1 — r) on S — Q, so that by (3.1) and above argument on 

(4. 3) / s ^ * ( < . , ) * * , ) = « r ) / ^ J ^ ^ - ( K r - 1). 

From (4.3) and the fact Js K(z, f])drj — 1, we conclude that 

f(K) -f(Q = j£ * « , r/)(F(r/) - F(0) d<r(0 

tends to 0 uniformly on ( G 5 as r —> 1. Therefore/ G C(#). 
Conversely, suppose w(z) G X^ and g(z) = g ^ ^ M ^ ) is continuous up to S so that 

g(z) G C(£). Let v(z) = Pa[G](z\ where G(0 = l inwi g « ) , C e 5. We will show that 
u(z) = v(z), z G B. Define 

/ ( 2 ) = ( ^ M z ) , ^ 
I G(z), z G 5. 

Then /(z) and g(z) have the same boundary function G(z), and by what we have just 
proven (the first part of this theorem),/(z) — g(z) G C(B). Therefore we can conclude 
u = v by Corollary 5. 

THEOREM 7. Letl <p<oo and let F G L^(a). / / a > | then Pa[F] GXxn hP^ 
and if a = \ then PXI2\F\ G X_ni H W^l1'. 

Conversely, suppose eitherf G Xx Hhp^, a>\, orf G X_ni H hp^nl2-. If 1 < p < 
oo //^rc f/zere is an F G / / (a) swc/i / t o / = /**[/<]. //"/? = 1 then there is a measure [i 
such thatf — Pa[/i]. 

p — 2 case of Theorem 7 appeared at [KK] by an approach using orthogonality in 
L2(<J). In proving Theorem 7 all we need now are, as in the proof of XQ case [R, 4.2.4], 
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an equicontinuity argument of D. Ullrich [R, 4.2.4], MMP (Corollary 5), and duality. 
We include here the equicontinuity as a lemma, and give a proof of Theorem 7 for the 
completeness. 

Let 11 denote the unitary group on S, and let dU denote the Haar measure on ZL. ZL 
is compact subgroup of 0(2n) (See [R 1.4.6]). For G(z) defined on B and for 0 < r < 1, 
let us denote the dilation by Gr(z) = G(rz), z G B. 

LEMMA 8 [R, PP. 56-57]. Let 1 < p < oo. Let v\ ZL —> [0, oo) be continuous such 
that Ju v{U) dU=l. IfG(z), z <E B, is defined by 

G(z)= f u(UzMU)dU 
JU 

for some u G hp,° then we have 
(4.4) {Gr : 0 < r < 1} is equicontinuous subset ofC{S), 

(4.5) G(z) is uniformly bounded by \\u\\Pto(Su vq(U) din , where q is the conjugate 
exponent ofp, and 

(4.6) M,(r,0<MU>. 
PROOF OF THEOREM 7. Note first that if a > \ then (1 - r)n(3ga(r) = (9(1) and that 

- l o g ( l - r ) $ i ( r ) = 0 ( l ) a s r î l . 
If F G IP {a) and/ = Pa[F] then it follows from Holder's inequality that 

ll/IU* < C{!s \gaXf\Pdcj)llP < \\F\\p < oo, 

so that/ G hp,nP. On the other hand, àf(z) = À/(z). This proves the first half of Theorem 7. 
For the converse, let 1 < p < oo and suppose either/ G X\ Pi hp,n^, a > ^, o r / G 

X_ni (lhp,i~. We assume ||^«VlU,o = 1 without loss of generality. Let vy. Z1-* [0, oo), 
j — 1,2,... be continuous such that Su VAU) dU — 1 and the support of i/j shrink to the 
identity of Ud&j-^ oo. Apply Lemma 8 with g'a

l(z)f(z) and i/j(z) in places of u(z) and 
i/(z). Let Gj be the corresponding G. We ûxj for a moment. Then by (4.4) and (4.5) there 
is a sequence rt = r(/, /) tending to 1 (as / —»• oo) such that (G/)r. converges to a function 
g; G C(5) uniformly. 

Let 

Pa[gj](nO\ 
(4.7) e/,/ = sup G7(r,0 -

gainQ 

By Theorem 6, gâl(z)Pa[gj](nO tends to §/(0» uniformly as / —> oo. Thus e7,/ —> 0 as 
i —* oo. By Corollary 5 and (4.7), 

Pa[gj)(z)\ 
Gj(z)- < eu, \z\ < n, 

ga(z) 

for every i. Hence Gj(z) = g~l(z)Pa[gj](z\ z G B. Now, letting 7 —+ 00, G/(z) —»> 
g"1^)/^) pointwise. On the other hand, since \\gj\\p < 1 by (4.6), there is a subsequence 
of {gj} that converges to some F G LP (a) in the weak*-topology of Lp(a). In particular, 

Pa[gj](z)-Pa[F](z\ zeB. 

https://doi.org/10.4153/CMB-1993-061-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-061-2


INVARIANT LAPLACIAN 465 

Therefore we have/(z) = Pa[F](z). 
When/? = 1, the proof is same except using the dual of C(S). 

COROLLARY 9. Let a > j . Iff is positive andf G X\, then there is a positive 
measure /i on S such thatf — Pa[/iJ. 

PROOF. Iff is positive and/ e Xx, then by (1.2), g~l(r) Jsf(K) da(Q = /(0). Thus, 
by Theorem l,f — Pa[fji] for some /x. This /i is positive being weak*-limit of the positive 
function hr = gâl(r)fr> In fact, for g G C(5), 

jhrgda=-\- fg(ri)da(ri) fp^Qd^Q 
Js gain JS JS 

= - 4 T [ptt[g]('QdKQ. 
ga(r) Js 

and this last integral tends to Js g(Q dfi(Q by Theorem 6. 
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