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L? BEHAVIOR OF THE EIGENFUNCTIONS
OF THE INVARIANT LAPLACIAN

E. G. KWON

ABSTRACT.  Let A be the invariant Laplacian on the open unit ball B of C" and let
X, denote the set of those f € C2(B) such that Af = \f. X, counterparts of some known
results on Xj, i.e. on M-harmonic functions, are investigated here. We distinguish those
complex numbers A for which the real parts of functions in X, belongs to X). We dis-
tinguish those A for which the Maximum Modulus Priniple remains true. A kind of
weighted Maximum Modulus Principle is presented. As an application, setting o > %
and A = 4na(a — 1), we obtain a necessary and sufficient condition for a function f
in X), to be represented as

I — [

0= [ (en) FO@©

for some F € L/ (9B).

1. Introduction. Let C" be the n-dimensional complex Euclidean space with the
norm |z| = /% |zj|? and the Hermitian inner product (z, w) = S 4w, 2= (21545 2),s
w = (wy,...,wp). Let B denote the open unit ball of C" and let S be its boundary. Let
Aut(B) denote the Mobius group, i.e. the group of those bijective holomorphic maps of
B onto itself. Let v, denote one such map with 1,(0) = z. For f € C*(B), Af is defined
by

2

n 0
) 36535526 )@

ij=1

(1.1 A2 =4(1 — |z

[R,4.1.3] and is called the invariant Laplacianbecause A(foi) = (Af)ofory € Aut(B)
[R, 4.12]. If f € C*(B) satisfies (Af)(z) = 0, z € B, then f is said to be M-harmonic.
Here M refers to the Mobius group. For a complex number A, X, denotes the set of
those f € C2(B) such that Af = Mf. X, is an M-invariant closed subspace of C2(B)
in the topology of uniform convergence on compact sets. If A\ # )\’ then X, N X, is
trivial. i.e. X, N X,» = {0}. An outstanding feature of X, we need is that if f € X, and
A = 4n’a(a— 1) then f satisfies the weighted mean value property (and conversely) [R,
4.24]:

1.2) [ f(:0)) do(©) = f@) [[Pom.Qdo(), 0<r<1,nES.
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Here index « refers to the principal branch, o denotes the rotation invariant probability
measure on S, and P(z,{) denotes the invariant Poisson kernel:

1— |
11— (0P

See [K], [KK], and [R] for X), theory.
Throughout, two complex numbers « and ) are related to be

(1.3) P(z,oz( ) (€B CES.

(1.4) A= 4n2(x(a -1,

and the radial function [g P*(z,() do(() is denoted by gq(z). The function g, is used both
as a radial function on the ball and as a function on R*.

Iff € Xo, i.e. if f is M-harmonic, then the real part of f, Ref, is also M-harmonic. Our
question in Section 2 is whether this remains true for functions of X,. Theorem 1 and
Theorem 2 distinguish those complex numbers A for which the real parts of functions in
X, also belongs to X,. If f € X then f satisfies the Maximum Modulus Principle, i.e. |f|
can’t obtain a local maximum unless f is a constant. In Section 3, we distinguish those
A for which every function of X, satisfies the the Maximum Modulus Principle. Also,
it is observed that functions of X, « real, satisfy a weighted type Maximum Modulus
Principle with the weight function g, (Theorem 4). As an application to this, in Section 4,
we obtain a necessary and sufficient growth condition for a function f of X, a > % to
be represented as

f@ = [ (P.0) F©do(©),
for some F € I7(S) (Theorem 6).

2. Real parts of X,.

THEOREM 1. If Rea # % then the following are equivalent.
(1) X\ has a nontrivial real function;

(2) Ais real;

(3) ais real;

(4) ga(2) is a real function;

(5) f € X, ifand only if Ref € X and Imf € X,.

THEOREM 2. I[fRea = % then we have

(1) Xis real;

(2) ga(2) is a real function;

(3) f € X, ifand only ifRef € X and Imf € X,.

PROOFOF THEOREM 1. (1) = (2): From (1.1), we have A_f = Af.Let f be anontrivial
real function of X,. Then

M =& = =4 ==
Thus A = \. i.e. \is real.
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(2) = (3): Let A be real and let & = a + ib, a, b real. Then 0 = Im A = 4n’b(2a — 1).
Sincea = Rea # 1, b= 0. i.e. ccis real.
(3) = (4): Since P(z,() is real, gq(z) is real if « is real.

(4) = (5): Let f € X),. Supposing g, real, from (1.2), we have
JRef 000 do(0) = Ref(Dgal), 0<r <1, z€B.

Hence it follows from [R, 4.2.4] that Ref € X,. Similar arguments give us that Imf € X,
also. Conversely, if Ref € X, and Imf < X, then it obviously follows that f € X.

(5) = (1): Suppose (5). Since g4(z) € X, [R, 4.2.2], Reg, € X,. Since g,(0) = 1,
real part of g, is a non-trivial real function of X).

PROOF OF THEOREM 2. (1) Let @ = 1 +ib, b real. Then A = 4n’a(a — 1) =
4n2(§ +b?), so that X is real.
(2) Since @ = 1 — «, from [R, 4.2.3 Corollary] it follows that

8a = 8l-a = && = &a-

Hence g, is real.
(3) Let f € X,, then (1.2) holds. Taking real parts, we conclude that Ref € X, as in
the proof (4) = (5) of Theorem 1. Similarly, Imf € X,.

3. On maximum modulus principle. We will say that f defined on B satisfies Max-
imum Modulus Principle (abbreviated as MMP) if |f| cannot have a local maximum in
B unless f is a constant function. M-harmonic functions satisfy MMP. But MMP is no
longer true for functions of X, in general even when \ is real.

THEOREM 3.  Let ox = a+ib, a, b real. Then the following (1) and (2) are equivalent.
(1) Every function of X), satisfy MMP.
(2) aa—1)>b*or A =0.

PROOF. (1) = (2): Consider the radial function g,(z). Note that
(3.1) ga(r) = (1 — P)"*F(na, na, n; %)
[KK, Corollary 2.4], where F is the Gaussian hypergeometric function:

& (@y(b) *

F(a,b,c;t) =
; ) k!
[S]. Let
3.2) yo) = (1 — D"*F(na,na,n;t), —1<t<]l1.

Then it follows from differentiating (3.2) that

(3.3) (%lyatz)w) = 2n(a(a — 1) — b?)
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and
dZ
(3.4) ifa(a — 1) = b” then 21-t5|ya]2(0) = —2a(4n’a(a — 1)* + n’a —n?).

Now if a(a — 1) — b? < 0 then by (3.3) we know £|y,|?> < O near t = 0. That is, the
radial function |y,| is decreasing near the origin, so that |g,(0)| = 1 is a local maximum
of |ga|. Hence g4(z) = ya(|z|?) is a function of X, for which MMP fails. If a(a — 1) = b?
and A\ # 0, then by (3.3) and (3.4) we have

ily |(0) = 0 and £i|y 120y <0
"’ c a2 ’

so that |y,| has a local maximum at 0. Hence MMP fails for g,.

(2)= (1): Letf € X,. Suppose |f| has a local maximum, say at a. Take r sufficiently
small so that |f(a)| > |f(z)|,z € ¢>a(D(0, ro)). Here D(0, rp) denotes the open ball of
radius r centered at 0. Then by the maximality of |f| and (1.2), we have

f@)| 2 [ If o ¢alr0)] do(c)

(3.5)
>| [ £ 26400 do©)| = @Iyl 0 <7 <10,

Now if a(a — 1) — b* > 0 then, by (3.3), £|y,|> > 0 in a neighborhood of 0, so that
[ya(r?)| > |y«(0)] = 1 for sufficiently small r. Thus, from (3.5), f(a) = 0. Since any local
maximum of |f| is zero, we have f = 0. If A = 0 then |y,(?)| = 1, so that equality
holds in (3.5), which implies that |[f| = 7f for some constant ¥, on D(a, rg). Thus, Vf
is a nonnegative function of X, having local maximum in D(a, rp). This is impossible
by the Maximum Principle of nonnegative M-harmonic functions [R, 4.3.2] unless f is a
constant function.

Though MMP failed for some real A, there is a MMP of weighted type in case « is
real. Note that if « is real then g, is nonzero and positive.

THEOREM 4.  Let o be real. Then g,;'u has MMP for every u € X,.
PROOF. Letu € X, andf = g 'u. From (1.2) we have

3.6) go(u@) = [uod(r)doQ), z€B 0<r<1.

Hence

)l = u© 9(r0)do(¢)

1
ga(r)ga(z) ‘/

3.7 ga<r)ga<z) |/ ga(9:(rO)f 0 ¢z(roda<<)|

< g hse(#0) 0 8001 o0
<suplfo¢(rQ)], z€B, 0<r<1,
¢es
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where we used (3.6) once more with g, instead of u in the last inequality. We conclude
from (3.7) that |f| can’t have a local maximum unless f = 7V|f| = constant for some
constant 7.

COROLLARY 5.  Let o be real and let ) be an open subset of B. Let u € X, and
f=2g3'ue CB).IfIf| <M ondQthen|f| <M onQ.

PROOF. The proof is typically routine. Suppose [f(z)| < M on dQ but |f(z)| > M for
some z € Q. Then the set E of the points in Q on which |f] takes its maximum is nonempty
closed. Since f € C(Q), we can take zo € Q such that dist(z9, Q) = dist(E, Q). But for
20 in place of z we have the strict inequality in (3.7):

If (zo)| < S(“Elf°¢'z<;("<) , 0<r<l.
(S

This contradicts the maximality of |f(zo)|, and so completes the proof.

4. I? behavior of functions in X,. Throughout this section, we let « be real and
B =a—1.Forl < p < oo, [’(0) norm of an F € LF(0) is denoted by ||F||,. For f
continuous on B and 0 < r < 1, we denote

‘ /
M) = ([ reorrdo)) "

if p < 00, and
Mo (r.f) = sup V(I“O|
ces

For a complex Borel measure p, P*[p] is defined by

P@ = [[(P@0)" du©,

where P(z,() is the invariant Poisson kernel defined in (1.3). Note that P*[c] = gq.
We define the function spaces #”', 1 < p < 0o, —00 < t < 00, by

W' = {f : sup (1 = P)My(r,f) < oo}.

0<r<li
and
W= {f: sup P(1=P)log(l = PIMy(r.f) < oo},

0<r<1

It is well-known that if f € XoMAP0, 1 < p < 00, then there is a function F € L”(o) such
that f = P[F], and conversely [R, 4.3.3]. The goal of this section is in a generalization
of this fact. Since, as a function of «, X defined by (1.4) satisfies AM(a) = A\(1 — &), we
confine ourselves to o > %
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THEOREM 6.  Let o > 5. If F € C(S) and if we define

_ [ &' @P°[FI(z), z€B
*-2) U Vo zeS

then f(z) € C(B). Conversely, if u(z) € X, and g(z) = g;l(z)u(z) is continuous up to S
so that g(z) € C(B) then u(z) = P*[G](z), where G(C) = lim,_,; g(r(), (€ S.
PROOE. Let F € C(S) and let f(z) be defined as (4.2). Consider
(1 _ ’_2)n(a+ﬁ)

k() = F(—npB,—np,n;r?)’

0<r<l1.
If o > 7, then k(r) is dominated by (1 — r)"®*?, so that it tends toOas r — 1. If « = 1,
then a + 3 = 0; but since F(n/2,n/2,n;*) ~ —log(1 — r*) as r — 1, k(r) also tends to
Oasr— 1. Now set po
Ken =8 epyes
8a(2)

and
0=0¢oH={nes:[1-({n)] <é}), 6>0.

Then |1 — (r{,n)] > 6 — (1 —r) on S — Q, so that by (3.1) and above argument on
k(r),

_ do(1)
(4.3) ) K¢ mdotn) = ko) )k T —0(r— 1).

(rg,m)| 2
From (4.3) and the fact [s K(z, 1) dn = 1, we conclude that

F0O=FQ = [[KGGn(F — FQ) dot0)

tends to 0 uniformly on ¢ € S as r — 1. Therefore f € C(B).

Conversely, suppose u(z) € X) and g(z) = g;l(z)u(z) is continuous up to S so that
8(2) € C(B). Let v(z) = P*[G](z), where G(¢) = lim,_,; g(r), ¢ € S. We will show that
u(z) = v(2), z € B. Define

~1
_ | 8 @v@), z€B
Z =
F@ { G(2), z€S.
Then f(z) and g(z) have the same boundary function G(z), and by what we have just
proven (the first part of this theorem), f(z) — g(z) € C(B). Therefore we can conclude
u = v by Corollary 5.

THEOREM 7. Let 1 < p < coand let F € IF(0). If a« > } then P*[F] € X, N k"
and if o« = 1 then P'?[F] € X_,. NP2~

Conversely, suppose either f € X Nh*"8, o > % orf €X_ NP "2 If1<p<
00 then there is an F € [P (o) such that f = P*[F]. If p = 1 then there is a measure |
such that f = P%[u].

p = 2 case of Theorem 7 appeared at [KK] by an approach using orthogonality in
L?(0). In proving Theorem 7 all we need now are, as in the proof of X, case [R, 4.2.4],
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an equicontinuity argument of D. Ullrich [R, 4.2.4], MMP (Corollary 5), and duality.
We include here the equicontinuity as a lemma, and give a proof of Theorem 7 for the
completeness.

Let U denote the unitary group on S, and let dU denote the Haar measure on U. U
is compact subgroup of O(2n) (See [R 1.4.6]). For G(z) defined on Band for0 < r < 1,
let us denote the dilation by G,(z) = G(rz), z € B.

LEMMA 8 [R, PP. 56-57]. Let1 < p < 00. Let v: U — [0, 00) be continuous such
that [¢yv(U)dU = 1. If G(z), z € B, is defined by

G(z) = /‘ L u(UV(U)dU

for some u € hP° then we have
(4.4) {G,: 0 < r < 1} is equicontinuous subset of C(S),
(4.5) G(2) is uniformly bounded by ||u||p,0(fﬂ vi(U) dU)l/q, where q is the conjugate
exponent of p, and
(4.6) My(r,G) < ”u”p,o.

PROOF OF THEOREM 7. Note first that if o > % then (1 — r)"®g,(r) = O(1) and that
—log(l — r)g%(r) =01)asrT1.
If F € [P(0) and f = P*[F] then it follows from Holder’s inequality that

_ 1/p
WFllpms < C( [, l8'r1Pdo) ™ < |1Fll, < oo,

sothatf € hP"% On the other hand, Af(z) = M (z). This proves the first half of Theorem 7.

For the converse, let 1 < p < oo and suppose either f € X, NhP", o > L, orf €
X_,» Mh"2~. We assume ||g5 'f||,0 = 1 without loss of generality. Let v;: U — [0, 00),
Jj=1,2,...be continuous such that f¢;¥;(U)dU = 1 and the support of v; shrink to the
identity of U as j — o0o. Apply Lemma 8 with g;'(z)f(z) and vj(2) in places of u(z) and
v(z). Let G; be the corresponding G. We fix j for a moment. Then by (4.4) and (4.5) there
is a sequence r; = r(j, i) tending to 1 (as i — oo) such that (G;),, converges to a function
g € C(S) uniformly.

Let

4.7) = sup|G
ces

i(riQ) —

Pa[g]](rlc)‘

8a(riC)

By Theorem 6, g;'(z)P"[gj](riC) tends to g;(¢), uniformly as i — oo. Thus ¢;; — 0 as

i — 00. By Corollary 5 and (4.7),

P*g1@)
8a(2)

for every i. Hence Gj(z) = g,'(2)P*[gjl(z), z € B. Now, letting j — 00, Gj(z) —

&+ (2)f (2) pointwise. On the other hand, since ||gj||, < 1 by (4.6), there is a subsequence
of {g;} that converges to some F € L(0) in the weak*-topology of L”(0). In particular,

P[gil(zx) — P*[F1(z), z€ B.

Gi(z) — <¢€i, |7 <n,
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Therefore we have f(z) = P*[F](z).
When p = 1, the proof is same except using the dual of C(S).

COROLLARY 9. Let a > % If f is positive and f € X), then there is a positive

measure (i on S such that f = P*[u].

PROOF. If f is positive and f € X}, then by (1.2), g5 '(r) fsf(r¢) do(¢) = £(0). Thus,
by Theorem 7, f = P*[u] for some . This p is positive being weak*-limit of the positive
function &, = g;'(r)f,. In fact, for g € C(S),

1
Jihegdo = — [[g@dotn) [ P*rm,0 du(©

1 104
= 5 P800 du©,

04

and this last integral tends to f5 g(¢) du(¢) by Theorem 6.

REFERENCES

[K]E. G. Kwon, One radius theorem for the eigenfunctions of the invariant Laplacian, Proc. AMS. 116(1992),
27-34.

[KK] H. O. Kim and E. G. Kwon, M-invariant subspaces of X, Illinois J. Math, to appear.

[R] Walter Rudin, Function theory in the unit ball of C", Springer-Verlag, New York, 1980.

[S] Lucy John Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.

Department of Mathematics Education
Andong National University

Andong 760-749

Korea

https://doi.org/10.4153/CMB-1993-061-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1993-061-2

