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Abstract

Two theorems on limit distributions for sums of values sampled from a finite population without
replacement are presented. The emphasis is on non-normal limit distributions.

1980 Mathematics subject classification (Amer. Math. Soc.): 60 F 05.

1. Main results

Let {</„*}, n = 1, 2, . . . , k = 1, . . . , n, be a triangular array of real numbers;
we shall call them scores. Further, let n^ be a sequence of natural numbers such
that 1 < m,, < n. From each row of the array we select at random and without
replacement mn elements. The result is a triangular array {X^} of random vector
assuming any m.combination of elements from (anl, . . . , am) with equal proba-
bilities (^i)~

l- We shall be interested in limit probability distributions of Xn =
2J5L i XnJ. Xn is the statistic of a two-sample rank test with scores a^. Several
methods were used within the theory of rank tests to study the asymptotic
normality of Xn. One such method was devised by Erdos and Renyi in [1]
(reproduced also in [3] Chap. VIII, §5). In the present paper the Erdos-Renyi
method is applied to a more general situation and a large family of non-normal
limit distributions is obtained.

Before we present the two main results, we must introduce three auxiliary
measures Cn, Mn and Dn on R. They are defined by

Cn(/)= 2 1, A/n(/)= 2 "* and />„(/)= £ <&.
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[2 ] Limit theorems from a finite population 319

Weak convergence of measures will be understood in the following sense: If
ju,, are finite non-negative measures on Borel sets of the real line R, we shall say
that ju,, converges weakly on a Borel set / to a measure /i if /i(7) < oo and if
ft, (/)->/*(/) for any Borel J c I which is a continuity set of p. A complement
R - /of / will be denoted by /.

We shall write pn = mn/n,qH = 1 — pn and we shall assume without repeating
it explicitly that mn -» oo and that limn pn = p exists; q = 1 — p.

THEOREM 1. Let us assume that

(1.1) Dn converges weakly on R to a measure D and that

(1.2) Urn n-l/2Mn(R) = ft exists.
n

Put cn = pn*2.k a^ = pnMn(R) and denote by C the weak limit of Cn on each
[-e, e]. Then Xn — cn converges in distribution and the limit characteristic function
is

(1.3) &x\t) = e
(~i/2)pqiDi{0):>~'ll)'2J{(qe~i9'x + pe"qx)C{{x)).

REMARK 1. The existence of the weak limit C on each [-e, e] follows from
(1.1). C is well defined on {0} and finite on each [-e, e]. The measure D is finite
on the whole R. The product II, extends over all atoms of C. It is convergent
uniformly with respect to f in each finite interval, so that it defines a proper
characteristic function, and it converges unconditionally, that is, it is indepen-
dent of the order of multiplication.

REMARK 2. The limit distribution described by (1.3) is non-trivial only if
0 <p < 1, so that Theorem 1 is relevant only to this case. Two natural
questions arise: Firstly, do there exist conditions more general than those of
Theorem 1 under which

(a) Xn — cn converges in distribution for a suitable choice of cn1
Secondly, if so,

(b) What is the most general form of the limit distribution?
Let us first assume that

(1.4) sup Dn(R) < oo
n

holds. Simple examples of scores satisfying (1.4) but not satisfying (1.1) may be
constructed such that (a) is true for some 0 <p < 1. However it is also easy to
show that if (a) is true under (1.4), then the corresponding limit characteristic
function has the form (1.3) (with D{0) - p2 replaced by a suitable non-negative
constant) even if (1.1) or (1.2) do not eventually hold.
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If (1.4) does not hold and 0 <p < 1, then Remark 4 of Section 2 indicates
that our method fails to give an answer to (a) or (b).

On the other hand, Up = 0 orp = 1, then our method does not require (1.4)
to hold and non-trivial limit distributions can be obtained. The next Theorem 2
is formulated for p = 0, however it covers the case p = 1 too if complementary
samples are used. The function h in Theorem 2 is defined by

h(x) = x if \x\ < 1, h(x) = sgn x if \x\ > 1.

THEOREM 2. Let us assume pn —»0,(1.5) PnDn converges weakly on each [ -e, e ] to a measure 8,

(1.6) Pn^-n converges weakly on each [ -e, e ] to a measure y

and

(1.7) Mm^p^ Mn{[~\, 1]) = p exists.

Put cn = Pm2k *(«„*) = />„(*/„([-!, 1]) + Cn(fll])). Then, Xn - cn converges in
distribution and the limit characteristic function $(Jf) has

(1.8) log &x\t) = -Us({0}) - tfY + r{e"x - 1 - ith(x)) ay{x).

REMARK 3. It follows from (1.5) and (1.6) that, for any e > 0, y([-e, e]) < oo
and 8([-e, e]) = / ^ e]x

2 dy{x) < oo. Hence, O(jr) is the characteristic function of
an infinitely divisible distribution.

Theorem 1 will be proved in Section 2. The proof of Theorem 2 will be only
outlined briefly. Section 3 contains comparison with independent sampling.

We shall conclude this section with four examples. They all concern Theorem
1. In all of them we assume pn —» 1/2.

EXAMPLE 1. Let the scores in the nth row be: ±n each once, ±1 each
(n — 2)/2 times if n is even; if n is odd, add one 0. With these scores the
assumption of Theorem 1 are not satisfied, however if we rescale the scores by
dividing the nth row by n, we obtain easily that (\/n)Xn has the limit character-
istic function (l/4)e"" + (1/2) + (l/4)e".

EXAMPLE 2. Replace in Example 1 the scores ±n by ±Vn and leave
the rest unchanged. Then (l/Yn)Xn has the limit characteristic function
e("1/2)'2(l/4e"" + (1/2) + (l/4)e"), that is, the limit distribution is a mixture of
three normal distributions.
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EXAMPLE 3. Let the scores in the nth row be 2, 22,. . . , 2". After having
divided the scores by 1/2" we obtain from Theorem 1 that (1 /2")^ — 1 has the
limit characteristic function II^.0((l/2)e-a"w+lv + (l/2)e/2~c/+"'). This is well
known to be the characteristic function of the uniform distribution on (-1, 1)
([2], p. 67(v)). Hence \/2n+xXn has in the limit the uniform distribution on (0, 1).

EXAMPLE 4. Let the scores in the «th row be 3, 32, . . . , 3". Proceeding as in
Example 3 and using [2], page 67(iv) we find that the limit distribution for
2/3"+lXn is the well known singular distribution concentrated on the Cantor
discontinuum in (0, 1).

2. Proofs

Our method is based on a relation between the triangular array {X^} and an
auxiliary triangular array of two-dimensional random vectors {W^} =
{(Unk> vnk)}> n = I, 2, . . . , k = 1, 2, . . . , n, such that, for each n,
WnX,. . . , Wm are independent and

P(( U*, Vnk) = (0, 0)) = qn, P{{ Unk, V^) = (1, a*)) = Pn.

Denote by Offi the characteristic function of W^ and by $ ^ the characteristic
function of Wn = (Un, Vn) where Un = 2* U^ and Vn = 2* V^. Clearly

(2.1) ¥J\s, t) = qn+ /,„*'<'+*-> and *£">(,, /) = H #&(*, 0-
k

Finally, if we denote by 4>^f) the characteristic function of Xn, we have

(2.2) *</>(/) = ^ g - f e-»*QW>(s, t) ds.

where Bn = {^t)p^qH~m"- The formula (2.2) can be derived by a simple combi-
natorial argument and it is the starting point for the Erdos-Renyi method
mentioned in Section 1, although its interpretation in terms of W^ is not
mentioned explicitly in [1] or [3].

Put dn = Vnpnqn . Substituting s/dn for s in (2.2) we obtain

(2.3) **>(,) = A /'"" J - ^ W f t) ds

where An -* 1 and ex(a) = ea; later we shall also use the notation eXj(a) = ea

- 1, ex2(a) = e" - 1 - a and ex3(a) = ea - 1 - a - o2/2.
The characteristic function of V^ will be denoted by $ ^ ( 0 = $ ^ ( 0 , 0 and

the characteristic function of Vn = 2fc V^ will be denoted by Q^P = Ylk
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Further, for any n, k we shall write

**(*> 0 = In ex(-ipH{jj- + 'Ink)] + Pn

and ^ ( 0 = ^ ( 0 , 0-
If <p is a characteristic function, log <p(t) will denote its natural continuous

logarithm defined uniquely in a sufficiently small neighborhood of 0 by log <p(0)
= 0.

In the proofs, G, will denote a function of several variables. For simplicity
reasons, these variables or parameters will not be written explicitly; L, will
denote a constant not depending, unless said otherwise, on the variables or
parameters occurring in the relation, as long as these variables and parameters
are kept within the indicated limits.

LEMMA 1. Let us assume that (1.2) and (1.4) hold. Further, let there exist
constants cn such that Vn — cn converges in distribution. Denote the limit character-
istic function by O(K). Then Xn — cn converges in distribution and the limit
characteristic function is

REMARK 4. Under the additional assumption 0 <p < 1, the condition (1.4) is
redundant. It is possible to prove that the convergence of Vn — cn implies (1.4)
under 0 <p < 1, however we shall not prove this statement as (1.4) follows
from (1.1) anyway.

PROOF. The proof will consist of a number of steps. In the whole proof, / ¥= 0
is fixed,

a) For any n, k, s

(2-4) hUO - 1| < ^qSa2*,

(2-5) ^(s, t) = ^(t) ^ G,

where |G,| < (1 /dn)pnqn\s\,

(2.6) Vnk(s, t) = ^(t) - ±-s\\ + G2) + G3

where \G2\ < (l/3dn)\s\ and |G3| < (I/dn)Pnqn\^J,

(2.7) ^(s, t) = ^ ( / ) - 2^2(1 + G4) - ^-

where \G4\ < (\/3dn)\s\ + | / a j , \G5\ <
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P R O O F O F a ) : Pu t a , = -ipns/dn, a2 = iqHs/dH, T , = -ipnta^, r2 - iqHta^.
Then

G\ = In ex^a,) ex(r,) + pn e x , ^ e x ^ ,

G2 = -(2n/s2Xqn ex3(0,) +pn ex3(az)),
G3 = 1n ex,(a,) ex,(Tl) + pn ex,(a2) ex,(T2),

On
G* = G2 - —{qn ex2(a,) ex^r,) + pn ex2(a2) ex,(T2)),

[-ex2(T1) + ex2(r2)].

b) For 0 < e < min{l, r2}, 0 < X < 1, |a^| < e and \s\ < dn\,

^, 0 = (<Pnk(x, t) - 1)(1 + G6)

where \G6\ < e + X.

PROOF OF b): By (2.4) and (2.5), {^(s, t) - 1| < (l/8)e + (1/4)A + 1/2.
Then use log(l + y) = y(\ + z) with \z\ < \y\ if |^| < 1/2.

In the rest of the proof, 2 < e or 2 > e will denote a sum extending over all k
such that \ank\ < e or |a,,J > e respectively. The same rule will apply to II<C and

c) For e, \, s satisfying the conditions of b),

2 log VHk(s, / ) - 2 log ̂ ( 0 - IA i Cn([-e, e]) + G7]
<e <e z L " J

where \G,\ < L, • (e + X) for / = 7, 8, 9.

PROOF OF C): AS $nk(t) = <p (̂0, 0, we have by b) 2 < e log ^ ( J , 0 -
2 < e log < U 0 = G* + G** where G* = 2 < e <p^ , 0 - 2 < € ^ ( 0 and \G**\
< 2(e + A)Z<,|fc,fc(j, 0 - 1|- Apply (2.7) to G* and use (2.4) and (2.6) to
estimate 2|(pn*Cs, /)—1|- At one stage, the inequality «~1/22*|aJ < (Dn{R))x/2

must be used.

d) Let e, X, s satisfy the conditions of b). Then there exists n,(e) (depending
only on e) such that for any n > /i,(e)

II <PAS, 0 = II ^ ( 0 ex(-^2(l + G10) -

where |G,| < L2- (e + X) for / = 10, 11, 12.
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PROOF OF d): Under the assumption of Lemma 1, (l/n)Cn([-e, e])-»l and
(l/dn)pnqHMn([-e, e]) -* {pqY^Y Use this in c).

n

e) For any e > 0, A > 0, \s\ < dn\ and any n, k

II ?„*(*, 0 = II **(/) + G,3
<e <e

where | Gl3\ < L3 e • A with L31 depending only on e.
PROOF OF e): By (2.5), |<p^(j, /) - ^ ( 0 1 < A for all n, k.

Hence, the two products differ by less than supn Cn([-e, e]) • A.

f) Let e, A satisfy the conditions of b) and be so small that Z^ • (e + A) < 1/4.
Then for any \s\ < dn\ and n > /j,(e)

e x l -

PROOF OF f): The expression on the left-hand side equals

n
[ ^ ( 0 ex,(G14) + II ^ ( 0 ex(G,4) • G

where Gl4 = (-l/2)s2Gl0 - sGu + Gn. Apply d) and e).

g) To an arbitrary TJ > 0 there exists A > 0 and /J3(TJ) such that for all

n

/_:
ds

PROOF OF g): To any e > 0, there exists n2(e) such that

\ex(-itcn)&n
v\t) - ¥v\t)\ < e for all n > n2(e).

Then for any e, A satisfying the conditions of f) and any n > max{/i,(e), «2(e)},
the above integral is less than /fTO ex((-l/4)j2 + L5 |J | ) • (s2 + \s\ + 1) ds • L6 •
(2e + (L31 + 1)A) = Z ê + Lg£A where LSe depends on e. To a given TJ, choose
first an e satisfying the conditions of f) and such that Lr,e < TJ/2. Then choose a
A satisfying the conditions of f) and such that LSe\ < TJ/2. The assertion of g)
holds for «3(TJ) = max{n,(e), n2(e)}.
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[81 Limit theorems from a finite population 325

h) For any 0 < A < TT

f \&n
w\s,t)\ds->0.

PROOF OF h): For \s\ > dn\ and k such that \ta^\ < A/2, \&,5P(s/dn, t)\ <
ex(-pnqn(l - cos(A/2))). Hence, the above integral is less than 2irdn ex(-rfn

2(l -
cos(A/2)) ex(Cn[-A/ (2t), A/ (2*)D- This expression tends to 0 as dn - • oo.

Finally, it follows from (2.3), g) and h) that

cx(-itcn)¥n
x\t) -> ¥v\t)—— f

" V2w •'-

LEMMA 2. Let (1.1) hold and let cn be defined as in Theorem 1. Then Vn - cn

converges in distribution and the limit characeristic function ^ ^ is given by the
right-hand side of (1.3) with /i = 0.

PROOF. For any atom x of C we shall write

if>x(t) = q ex(—itpx) + p ex(itqx).

The symbols 2 < e or 2 > e if applied to ^ ( f ) will have the same meaning as in
the proof of Lemma 1. If applied to ^(t), they will denote sums extending over
all atoms x of C such that |JC| < e or \x\ > e respectively. The same rule will
apply to products. The proof will consist again of several steps.

a) For any /0 > 0, the product Ux[\px(t)]
c^x^ converges uniformly with respect

to t e [-to, t0] and unconditionally (see Remark 1 in Section 1).

PROOF OF a): For any e > 0 and \t\ < t0

2 1^(0 ~ 11C"({JC}) = lim 2 l̂ n*(0 ~ l| < ^'osuP A/^*) < °°
>e " >e 2 „

by (2.4). Hence sup|,K,o 2 x | ^ ( 0 - l|C({x}) < oo.

In the rest of the proof, t ¥= 0 and TJ > 0 are fixed.
b) There exists an e0 > 0 such that

i) f or all 0 < e < e0.

PROOF OF b): Follows from a).

c) There exist 0 < e < e0 and n4 such that

< 17 for all n > n4.
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PROOF OF C): Using methods similar to those in the proof of Lemma 1 we can
show that, for any e < min{l, t~2} and any n

1 _ ,r ^ ., < ^

Choose an e > 0 which is a continuity point of D and such that e <
min{l, r 2 , £(,}, LQC < i)/2 and t2/2\D([-e, e\) - D({0})\ < TJ. Finally, choose nA

so that t2/2\Dn([-e, e]) - D([-e, e])|rj for all n > n4.

d) To the e of c), there exists n5 such that

II ^ ( O — II [ « ^ ( 0 ] C ^ x ^ < •*) f°r a'l " ̂  n5-
>c >e

PROOF OF d): Follows from Cn^*C weakly on [-e, e].
n

Combining b), c), and d) we have for n > max{«4, n5}

n *jtt) -«
k

Theorem 1 follows from the combination of Lemma 1 and Lemma 2.
Similarly, Theorem 2 follows from the combination of the following two lem-
mas.

LEMMA 3. Let (1.7) hold and let there exist constants cn such that Vn — cn

converges in distribution. Denote the limit characteristic function by <I>*K). Then
Xn — cn converges in distribution and the limit characteristic function is

LEMMA 4. Let pn -» 0 and let (1.5) and (1.6) hold. Further, let cn be defined as in
Theorem 2. Then Vn — cn converges in distribution and the logarithms of the limit
characteristic function $*^ is given by the right-hand side of (1.8) with /i = 0.

Lemma 3 can be proved in a similar way to Lemma 1, although some
technical changes are necessary, for example in the definition of tp^ and ^ the
scores ank must be truncated. On the other hand, Lemma 4 does not need any
proof. Under pn -»0 , the triangular array of independent random variables
{Vnk} satisfies the null (uniform negligibility) condition and the result follows
from the general theory for such arrays.
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3. Comparison with independent sampling

If the sampling described in Section 1 is independent, that is with replace-
ment, the result is a triangular array { Yv} of random variables such that, for
each n, YnX, . . . , Ymr^ are independent, equally distributed with ^ ( 1 ^ = a^) =
1/n for all n,j, k. Put Yn = 2 ^ . , Y^.

If the assumptions of Theorem 1 hold, then Yn — cn converges in distribution
and the limit characteristic function $ ( y ) has

log*cn( r ) = -I/,(D({0}) - M2)'2 + />2(e"* ~ 1 - itx)C({x}).

Comparing this formula with (1.3) we see that the dependent sampling reduces
the variance of the normal component and converts the Poisson components
into Bernoulli distributions.

Under the assumptions of Theorem 2, Yn — cn has in the limit the same
distribution as Xn — cn. This is not surprising; the assumption/?,, -* 0 means that
Xnj are asymptotically uncorrelated.
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