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For more than 30 years the ‘two-process model’ has played a central role in the understanding

of sleep/wake regulation. This ostensibly simple model is an interesting example of a non-

smooth dynamical system, whose rich dynamical structure has been relatively unexplored.

The two-process model can be framed as a one-dimensional map of the circle, which, for some

parameter regimes, has gaps. We show how border collision bifurcations that arise naturally

in maps with gaps extend and supplement the Arnold tongue saddle-node bifurcation set

that is a feature of continuous circle maps. The novel picture that results shows how

the periodic solutions that are created by saddle-node bifurcations in continuous maps

transition to periodic solutions created by period-adding bifurcations as seen in maps with

gaps.

Key words: 37E10 Maps of the circle; 92B25 Biological rhythms and synchronisation; 37G15

Bifurcations of limit cycles and periodic orbits; 37E05 Maps of the interval; 37N25 Dynamical

systems in biology.

1 Introduction

Since the seminal paper of Arnold (1991), circle maps have played an important role

in understanding the behaviour of a variety of physical and biological systems. The

circle maps that Arnold considered were monotonic and could be discontinuous. Non-

decreasing circle maps with gaps were also studied by Keener (1980) and Rhodes &

Thompson (1986), who proved that solutions could only be either periodic or aperiodic.

Furthermore, that if the map depended smoothly and monotonically on a parameter, then

the periodic solutions occur in intervals with a devil’s staircase structure dependence on

the parameter.

As described in the extensive review paper by Granados et al. (2017), the same sequences

of periodic solutions have been repeatedly observed in monotonic maps with gaps of the

real line, and have been termed period-adding sequences in the non-smooth literature,
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for example, see Avrutin et al. (2006). The observation of period-adding sequences is

typically linked with border collision bifurcations where fixed points of the map are

created/destroyed by colliding with the gap.

In this paper, we describe an interesting application that can be framed as a map of

the circle. As a parameter is varied, this map transitions from a continuous monotonic

circle map to a monotonic circle map with gaps. This map enables us to understand

how border collisions in gap maps can play a similar role to saddle-node bifurcations in

continuous circle maps in forming boundaries for existence regions of periodic solutions.

This view provides an interesting link between the Arnold tongue picture for continuous

maps where resonant regions are bounded by saddle-node bifurcations and the sequences

of period-adding bifurcations commonly seen in the maps with gaps literature.

The application arises in the context of sleep/wake regulation. Understanding

sleep/wake regulation is important because chronic sleep restriction or mis-timed sleep

have been shown to disrupt the carefully orchestrated approximately daily (circadian)

rhythms that govern many physiological processes, see Möller-Levet et al. (2013) and

Archer et al. (2014). Furthermore, poor sleep has been correlated with a wide range of

health issues including depression, psychotic disorders, neurodegenerative conditions, dis-

ease progression in cancer, cardiovascular disease, obesity and diabetes, for example, see

Knutson (2010), Nielsen et al. (2011) and Luyster et al. (2012). Mathematical modelling

has been used as a tool to help understand biological mechanisms of sleep for decades,

with the two-process model of particular importance. The two-process model was first

described in Borbély (1982) and extended in Daan et al. (1984) and has since provided a

theoretical framework and even the language now commonly used to describe sleep–wake

regulation: the original paper by Borbély (1982) has been cited more than 3,000 times.

With greater understanding of the neuronal mechanisms that underlie sleep/wake

regulation, as described by Saper et al. (2005), has come more sophisticated mathematical

models, such as those of Tamakawa et al. (2006), Phillips & Robinson (2007), Diniz Behn

et al. (2007), Postnova et al. (2009), Diniz Behn & Booth (2010), Rempe et al. (2010) and

Kumar et al. (2012). A discussion of those models can be found in the review by Booth

& Diniz Behn (2014). However, the two-process model remains at the heart of many of

these models: in Skeldon et al. (2014), it is shown that the model introduced in Phillips

& Robinson (2007) can be formally reduced to the two-process model using multiple

timescale analysis and the relation of the two-process model to more general neuronal

models is discussed in Skeldon et al. (2017b).

Consequently understanding the dynamics of the two-process model is important for

two reasons. First, because of the central role of this model in the understanding of

sleep/wake regulation, and second, in providing a deeper understanding of some of

the interesting dynamical phenomena that have been observed in neuronal models of

sleep/wake regulation.

The two-process model proposes that the sleep–wake cycle can be understood in terms

of the interaction of two oscillatory processes: a homeostatic sleep process and a circadian

process. The homeostatic sleep process results in a homeostatic sleep pressure that can

be viewed as the physiological need for sleep. The sleep pressure increases monotonically

during wake and decreases during sleep. Switching between the sleep and wake states

occurs at threshold values of the sleep pressure, with the transition from wake to sleep
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Figure 1. The two-process model. (a) A one sleep/day periodic sleep–wake cycle, showing the

homeostatic sleep pressure (shown in red) increasing during wake until it hits the upper threshold

and then decreasing during sleep (shaded regions) until it hits the lower threshold. The thresholds

are shown in black. Parameter values: a = 0.1, H−
0 = 0.15, H+

0 = 0.65, χs = 0.417, χw = 0.75. Panels

(b)–(d) show three other possible patterns that occur as parameters are varied. Parameter values:

(b) a = 0.1, H−
0 = 0.53, H+

0 = 0.75, χs = 0.25, χw = 0.75 giving a sleep–wake cycle that repeats every

two days with three sleep episodes; (c) a = 0.1, H−
0 = 0.2, H+

0 = 0.55, χs = 0.124, χw = 0.5 giving

a sleep–wake cycle that repeats every day with two sleep episodes; (d) a = 0.05, H−
0 = 0.15, H+

0 =

0.85, χs = 0.25, χw = 0.75 giving a sleep–wake cycle that repeats every two days with one sleep

episode.

occurring at the upper threshold and from sleep to wake at the lower threshold. Both

thresholds are modulated by the circadian oscillation, as illustrated in Figure 1.

As the examples shown in Figure 1 illustrate and noted by Daan et al. (1984), this

deceptively simple model can display a wide range of different sleep–wake patterns. Here,

we seek to shed light on the bifurcation structures associated with the transitions between

different kinds of pattern. It was shown by Nakao et al. (1997) and Nakao & Yamamoto

(1998) and subsequently discussed further by Skeldon et al. (2014) that the two-process

model can be represented as a one-dimensional map with gaps. The inherent periodicity

of the circadian process means that this one-dimensional map can be linked to a circle

map. Consequently, both classic results for circle maps and well-known results for maps

with gaps will be relevant to our discussion.

We note that although simulations suggest that the two-process model exhibits a rich

variety of sleep/wake patterns and its representation as a one-dimensional map has
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also been identified before, there has been no detailed mathematical analysis of the

model. Given its prominence and importance for the field of sleep/wake regulation, this is

surprising. We would argue that understanding the mathematical structure is a critical step

to fully understand its strengths and weaknesses as a model of observed sleep behaviour.

Interestingly, our analysis also brings insight into the bifurcation structures that occur in

circle maps as they transition from being continuous to discontinuous.

The layout of the paper is as follows. In Section 2, we formally define the two-

process model and its associated one-dimensional map and give some basic properties. In

Section 3, we show that there is a parameter regime where the one-dimensional map is a

lift of a continuous monotonic circle map and hence the regions of existence of different

types of periodic solutions form Arnold tongues bounded by saddle-node bifurcations.

In Section 4, we find the parameter regions for which gaps in the map occur and

monotonicity is preserved, and describe the structure of the gap. In Section 5, we show

that discontinuities in the map result in border collision bifurcations. Both saddle-node

bifurcations and border collision bifurcations are mechanisms for the creation/destruction

of periodic solutions. We show how the border collisions and period-adding bifurcations

relate to the tongue structure formed by the saddle-node bifurcations, hence, forming a

novel picture of how the intervals of periodic solutions in continuous circle maps relate

to those in maps with gaps. We end with a discussion section that summarises our key

results and discusses the biological relevance.

2 Definition of the model and (p, q) periodic orbits

2.1 Definition of the two-process model and associated map

As described in Section 1 and illustrated in Figure 1, the two-process model consists of

a homeostatic sleep pressure that increases during wake and decreases during sleep with

switching between wake/sleep and sleep/wake occurring at threshold values.

We define Hs(t, t0) to be the homeostatic sleep pressure during sleep, which starts at

t = t0 on the upper threshold H+(t), and Hw(t, t0) to be the homeostatic sleep pressure

during wake, which starts at t = t0 on the lower threshold H−(t). Then, the expressions

for Hs and Hw are

Hs(t, t0) := H+(t0)e
(t0−t)

χs and Hw(t, t0) := 1 − (1 −H−(t0))e
(t0−t)

χw . (2.1)

Here, the upper and lower thresholds are given by

H+(t) = H+
0 + a sin(2πt) and H−(t) = H−

0 + a sin(2πt). (2.2)

Defined in this way the model has five parameters: sleep and wake time constants χs, χw ,

which determine the rate of dissipation and build-up of homeostatic sleep pressure;

the mean values of the upper and lower thresholds, H+
0 and H−

0 , respectively, and the

circadian amplitude, a. The period of the circadian oscillator has been scaled to one and

the sleep and wake homeostatic pressure are scaled such that they would asymptote to 0

and 1, respectively, in the absence of the thresholds. Biological relevance places some

restrictions on physiologically plausible values. Specifically, requiring Hs to monotonically
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decrease, Hw to monotonically increase and the homeostatic sleep pressure to start and

stay in the interval (0, 1) for any initial value on the upper or lower threshold leads to

χs > 0, χw > 0,

a < H−
0 < H+

0 < 1 − a, (2.3)

where without loss of generality we consider a � 0.

This paper focuses on understanding the regions of existence of periodic orbits in the

two-process model and the associated bifurcations. In order to study periodic orbits, it

is sufficient to consider the map that takes a point (H0, t0) on the upper threshold and

maps it into the next point on the upper threshold. Since the upper threshold satisfies

H0 = H+(t0), this is in fact a one-dimensional map. An equivalent description (as far as

periodic orbits is concerned) is given by the map that takes a point on the lower threshold

to the next point on the lower threshold.

Although it is perhaps easiest to describe the map in terms of the homeostatic sleep

pressure, as above, to understand the dynamics, we define the map in terms of time. The

map from the upper threshold into itself can be regarded as a composition of two maps.

One map goes ‘down’ from the upper to the lower threshold and the other map goes ‘up’

from the lower to the upper threshold. This motivates the definition of the down map

Td : � → � and the up map Tu : � → �, where Td(t0) and Tu(t0) are the first times

greater than t0 such that

Hs(Td(t0), t0) = H−(Td(t0)) and Hw(Tu(t0), t0) = H+(Tu(t0)). (2.4)

The composite map that maps the upper threshold into itself is Ts : � → � with

Ts(t0) = Tu(Td(t0)). (2.5)

The periodicity of the upper and lower threshold, (2.2) imply that all three maps satisfy

Ti(t0 + 1) = Ti(t0) + 1, i = d, u, s. (2.6)

Typical examples of the three maps, Ti, i = d, u, s are shown in Figure 2.

For large regions of the parameter plane, including small values of the parameter a, the

map Ts is monotonic. In these regions, the relation (2.6) implies that Ts can be seen as

the degree 1 lift of a circle map on the interval [0, 1], and hence the theory of monotonic

circle maps with and without gaps can be applied. Thus, the map has a unique rotation

number given by

ρ̃(Ts) = lim
n→∞

Tn
s (t0) − t0

n
.

This rotation number does not depend on the value t0. If the rotation number is rational,

then the map has periodic solutions, see Rhodes & Thompson (1986) for more details.

2.2 Definition of a (p, q) periodic solution

The example trajectories shown in Figure 1 suggest that there are many different types of

periodic orbits. These can be characterised as having p sleeps (and hence p wakes) in q
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Figure 2. Typical examples of Ti mod 1 for i = d, u, s. Parameter values: a = 0.15, H−
0 = 0.25, H+

0 =

0.75, χs = 0.25, χw = 0.75. For the remainder of the examples in this paper, we take H+
0 , χs, χs to be

the values given here, but a and H−
0 will vary.

days. Hence, we say that t0 generates a (p, q) periodic orbit if

Tp
s (t0) = t0 + q; (Tj

s (t0) − t0) � � for j = 1, . . . , p− 1.

For our parameter values, the map Ts will be monotonic, and the periodicity relation (2.6)

implies that the set Ts([0, 1]) will be contained in an interval of length 1. Thus, if Ts has

a (p, q) periodic orbit, the greatest common divisor of p and q will be 1 and the theory of

monotonic circle maps gives that function Ts has the rotation number ρ̃(Ts) = q
p
, see the

papers by Arnold (1991), Keener (1980) and Rhodes & Thompson (1986) for details.

Having defined the map and (p, q) periodic solutions, we move on to analyse the

bifurcations of these periodic solutions.

3 Saddle-node bifurcations

For circadian amplitude a = 0, the biological constraints (2.3) become 0 < H−
0 < H+

0 < 1.

The dynamics of the homeostatic sleep pressure gives that any t0 ∈ [0, 1] results in a

solution that repeats with a ‘natural’ period Tnat given by

Tnat = χs log

(
H+

0

H−
0

)
+ χw log

(
1 −H−

0

1 −H+
0

)
, (3.1)

where χs log(
H+

0

H−
0

) is the length of each sleep episode and χw log(
1−H−

0

1−H+
0

) is the length of

each wake episode. Such solutions are (p, q)-periodic solutions when

Tnat =
q

p
and gcd(p, q) = 1.

The natural period Tnat is monotonically decreasing in the parameter H−
0 and monoton-

ically increasing in the parameters H+
0 , χs and χw . Thus, for a = 0, the map Ts can be

written as Ts(t0) = t0 + Tnat and generates a twist map in t0 and any one of these four
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Figure 3. The creation of a pair of (p, q) = (1, 1) solutions via a saddle-node bifurcation for

a = 0.05 and H−
0 varying. (a) No fixed points, H−

0 = 0.177; (b) at the saddle-node bifurcation,

H−
0 = 0.197; (c) two fixed points, H−

0 = 0.217. Note that for these parameter values, the primary

effect of H−
0 is to shift the position of the map rather than change its gradient.

parameters. The sleep map Ts depends smoothly on a; hence, perturbation theory gives

that also for small a, the map Ts is monotonic in t0 and is conjugate to the degree 1 lift

of a monotonic, continuous Arnold circle map. Therefore, regions of (p, q) periodic orbits

of the map persist for small amplitude a, forming tongue-like regions (Arnold tongues,

see Arnold, 1991) in a two-dimensional parameter plane consisting of one of the four

parameters χs, χw,H
+
0 or H−

0 along the horizontal axis and the circadian amplitude a

along the vertical axis. At the edge of each tongue are saddle-node bifurcations, which

create a pair of solutions, one stable and one unstable. For illustration, a sequence of

maps showing the transition from no fixed points to a pair of solutions is shown in

Figure 3.

In the remainder of this paper, we consider the bifurcation behaviour as a function

of a and H−
0 . Since Tnat is a monotonic function of χs, χw and H+

0 , the results will be

qualitatively similar if any of the latter three parameters were selected instead of H−
0 .

In this section, we first consider a small a analysis of the primary (p, q) = (1, q) tongues

before numerically finding general (p, q)-tongues.

3.1 Small circadian amplitude approximation for (p, q) = (1, q) tongue

The analysis in this section focuses on the case where p = 1. Writing the length of the

sleep episode as τ := Td(t0)− t0 ∈ (0, q), the homeostatic sleep pressure in a (1, q) periodic

trajectory can be described as follows: being in the sleep state from t0 to t0 + τ; hitting

the lower threshold H− at t0 + τ and switching to the wake state; in the wake state from

t0 + τ to t0 + q, with a further switch at t0 + q when it reaches the upper threshold H+.

This gives the relations

Hs(t0 + τ, t0) = H−(t0 + τ) and Hw(t0 + q, t0 + τ) = H+(t0 + q) = H+(t0).
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Using the definition of the sleep and wake forms of the homeostatic sleep pressure in (2.1),

this can be rewritten as

H+(t0) =
1 − e

τ−q
χw

1 − e−
τ
χs e

τ−q
χw

and H−(t0 + τ) = H+(t0)e
− τ

χs .

Introducing the functions

α(τ; q) =
1 − e

τ−q
χw

1 − e−
τ
χs e

τ−q
χw

and β(τ, t0) = H+(t0)e
−τ/χs − a sin(2π(t0 + τ)),

and using the definition of H−(t), this implies that if a (1, q) periodic orbit exists, then

there is a pair (t0, τ) ∈ (0, 1] × (0, q) satisfying

H+(t0) = α(τ; q) (3.2)

and

H−
0 = β(τ, t0). (3.3)

The function α(τ; q) should be considered as a function of τ; the parameter q is added

to stress its dependence on this parameter. It is straightforward to show that α(τ; q) is

a monotonically decreasing function for τ ∈ [0, q] with α(0) = 1 and α(q) = 0. In other

words, α is a bijection between [0, q] and [0, 1]. The biological constraints (2.3) imply that

the range of the upper threshold H+ lies fully in the interval [0, 1]. Using the monotonicity

of α, we can use (3.2) to define a function τ : [0, 1] → [0, q] with

α(τ(t0); q) = H+(t0). (3.4)

This definition, the relation H+(t0) = H+
0 + a sin(2πt0) and (3.3) show that for any

H−
0 ∈ {β(τ(t0), t0) | t0 ∈ [0, 1]}, (3.5)

there are two t0 ∈ [0, 1] such that the pair (t0, τ(t0)) satisfies equations (3.2) and (3.3). If

Ts is continuous (which it is for small a), then these two pairs (t0, τ(t0)) correspond to

periodic solutions.

For a = 0, H+(t0) = H+
0 for all t0. Furthermore, H+

0 ∈ (0, 1) implies that there exists a

unique τ0 such that

α(τ0; q) = H+
0 . (3.6)

Thus, equation (3.2) gives that at a = 0, τ(t0) = τ0, for all t0 ∈ (0, q), and (3.3) implies that

for

H−
0 = H+

0 e
− τ0

χs ,

any t0 ∈ (0, q) generates a (1, q) periodic solution. To see that this is equivalent to Tnat = q

with Tnat given by (3.1), we first observe that the relation above between H−
0 and H+

0

implies that the length of the sleep period satisfies τ0 = χs log(
H+

0

H−
0

). Next, we use the

relations α(τ0; q) = H+
0 and e−

τ0
χs = H−

0 /H+
0 to see that the length of the wake period

satisfies q − τ0 = χw log(
1−H−

0

1−H+
0

), and therefore from (3.1), Tnat = q.
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Having established that H−
0 = H+

0 e
− τ0

χs leads to a (1, q) periodic solution at a = 0, we

will now use (3.5) to determine a small a approximation for the interval of H−
0 values

near H+
0 e

− τ0
χs for which (1, q) periodic orbits exist. For a small, the function τ(t0) can be

expanded as

τ(t0) = τ0 + aτ1(t0) + O(a2).

Using the definition of τ (3.4), it follows immediately that

τ1 =
sin(2πt0)

α′(τ0; q)
.

Now, (3.3) gives the range of H−
0 values for which (1, q) periodic orbit exist, parameterised

by t0:

H−
0 = β(τ(t0), t0) =

[
H+

0 + a sin(2πt0)
]
e−

τ(t0)

χs − a sin(2π(t0 + τ(t0))).

Using the expansion τ(t0) = τ0 + a sin(2πt0)
α′(τ0;q)

+ O(a2), we get

H−
0 = H+

0 e
− τ0

χs + a

(
e−

τ0
χs sin(2πt0)

(
1 − H+

0

α′(τ0; q)

)
− sin(2π(τ + t0))

)
+ O(a2).

This can be written as

H−
0 (a, t0) = H+

0 e
− τ0

χs + aρ sin(2π(t0 + θ)) + O(a2), (3.7)

where

ρ cos(θ) =

(
e−

τ0
χs

(
1 − H+

0

χsα′(τ0; q)

)
− cos(2πτ0)

)
and ρ sin(θ) = sin(2πτ0),

implying

ρ =

[
sin2(2πτ0) +

(
e−

τ0
χs

(
1 − H+

0

χsα′(τ0; q)

)
− cos(2πτ0)

)2
] 1

2

.

This shows that for a small, two (1, q) periodic orbits exist in a wedge with H−
0 ∈

[H+
0 e

− τ0
χs − aρ,H+

0 e
− τ0

χs + aρ] + O(a2), as illustrated in Figure 4(a). At the edges of the

wedge, the periodic solutions disappear in a saddle-node bifurcation.

3.2 Calculation of general (p, q) tongues

For a small, the circle map nature of the map of the two-process model means that

there exist regions of periodic solutions bounded by saddle-node bifurcations. In order

to compute the boundary of the tongue for any (p, q)-periodic orbit, we therefore use the

condition for periodicity along with the fact that at saddle-node bifurcations the map has

gradient one. Hence, for fixed χs, χw,H
+
0 , a, we seek the values of (t0, H

−
0 ) such that

Tp
s (t0) = t0 + q,
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Figure 4. (a) A comparison of the numerical computation of the Arnold tongues for (p, q) = (1, 1)

(solid lines) and the analytical expression for small a given in equation (3.7) (crosses). (b) The map

of the two-process model for a = 0.05 and H−
0 = 0.55, where a saddle-node bifurcation for the

(2, 1) periodic solutions occurs.

and

(Tp
s )′(t0) =

p−1∏
j=0

T ′
u(Td(T

j
s (t0)))T

′
d(T

j
s (t0)) = 1, (3.8)

where we use the notation T 0
s (t0) = t0. This enables all (p, q) tongues, with multiple sleeps

across any number of days, to be found. In Figure 4(a), a comparison of the numerical

computation of the (1, 1) tongue with the analytical expression given in equation (3.7) is

shown. As expected, both the numerical solution and analytical expression agree for small

a, but diverge as a becomes larger. Also note that for a (p, q)-periodic solution there will

be p values of t0 ∈ (0, 1] that lead to the same solution, as illustrated for (p, q) = (2, 1) in

Figure 4(b).

In Figure 5, the saddle-node bifurcation curves are plotted for a range of (p, q) periodic

orbits. The (red) dashed lines mark the boundaries of the biological constraints on the

parameters, see (2.3). The solid (red) lines mark the saddle-node bifurcations. Note that

the right-hand boundary of each tongue comes to an end, at this point, the saddle-node

bifurcations cease to exist. The explanation for this will follow in Section 5. As is known

for circle maps, a tongue exists for each pair of values (p, q), gcd(p, q) = 1, although only

a few of the largest tongues are plotted in Figure 5(a).

To further illustrate the sequence of bifurcations for increasing H−
0 and the fact that

the parameter dependence of the rotation numbers has a devil’s staircase structure,

a bifurcation diagram for a slice through the bifurcation set for a = 0.05 is shown in

Figure 5(b). For small circadian amplitudes (such as a = 0.05 as used in Figure 5), the map

is continuous and periodic solutions are created/destroyed by saddle-node bifurcations.
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Figure 5. (a) Bifurcation set in the (H−
0 , a)-plane showing the largest few tongues where saddle-node

bifurcations give the boundary of each tongue. (b) Bifurcation diagram for a = 0.05. Sleep–wake

patterns associated with the ω-limit set, plotted over two days for a dense grid of H−
0 values, with

sleep plotted in blue. Black lines in panel (a) and in panel (b) have been drawn to help identify the

boundaries of the Arnold tongues at a = 0.05, given by the dashed blue line in (a).

However, as will be discussed in the next two sections, this picture is altered for larger

amplitudes.

To compute the bifurcation diagram, successive values of H−
0 have been taken. For each

value, the two-process model has been iterated for 100 time units, which is sufficiently

long for transients to decay, and then plotted. The vertical axis shows time over two

time units with the blue regions representing times for which sleep occurs. Vertical black

lines have been drawn to help guide the eye, and demark the regions of existence of the

(2, 3), (1, 1), (3, 2), (2, 1) and (3, 1) periodic solutions. The discontinuity in the band in

the (2, 3) tongue might look surprising at first sight. However, this discontinuity represents

the fact that for each (2, 3) periodic solution, there are two values on the upper threshold

that can act as its starting point. The discontinuity is due to the numerical solution

undergoing a phase shift between these starting points.
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Figure 6. A small perturbation in start time t0 can lead to large changes in the value of Ts(t0)

if, for t0, a tangency occurs between the homeostatic sleep pressure on sleep Hs(t) and the lower

threshold, or the homeostatic sleep pressure on wake Hw(t) and the upper threshold. (a) Two

possible trajectories with initial time tu0 are shown. The bold red line shows the homeostatic sleep

pressure switching at the tangency point H+(tutan), and dashed blue line shows the homeostatic sleep

pressure missing the tangency and continuing on a wake trajectory. (b) The corresponding map

shows the gap in Ts(t0) occurring at tu0. Here, we use a = 0.1 and H−
0 = 0.3.

4 Gaps in the map

In this section, we discuss the regions in the parameter plane for which the map is

discontinuous (i.e., it has a gap), and the position and characteristics of this gap.

4.1 Existence and structure of gaps

As discussed in Skeldon et al. (2014) and Skeldon & Derks (2017a), gaps in the map

of the two-process model can arise when either the homeostatic sleep pressure during

sleep, Hs(t, t0), becomes tangential to the lower threshold, H−(t), or the homeostatic sleep

pressure during wake, Hw(t, t0), becomes tangential to the upper threshold, H+(t), as

illustrated in Figure 6(a). The existence of gaps can in turn lead to border collisions,

where a fixed point of the map collides with the gap.

In order to investigate the gaps, we consider first the case where Hs(t, t0) becomes

tangential to the lower threshold, H−(t). Denoting the time a tangency occurs on the

lower threshold as tltan ≡ Td(t
l
0), the conditions for the tangency to occur are that

Hs(t
l
tan) = H−(tltan) and that the gradients of the trajectory and the threshold match,

H ′
s(t

l
tan) = (H−)′(tltan). Hence,

H+(t0)e
t0−tltan

χs = H−
0 + a sin(2πtltan), (4.1)
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and

−H+(t0)

χs
e

t0−tltan
χs = 2πa cos(2πtltan). (4.2)

Substituting (4.1) into (4.2) and rearranging, it can be shown that tltan satisfies

γs cos(2πtltan + B) = −H−
0

a
, (4.3)

where

γs =
√

4π2χ2
s + 1,

and

B = 2π − arccos

(
2πχs
γs

)
. (4.4)

Note that B ∈
(

3π
2
, 2π

)
.

Solutions tltan to (4.3) exist if

−1 �
H−

0

aγs
� 1.

The biological constraints (2.3) and the fact that γs > 1 imply that the left-hand inequality

is always satisfied, whereas the right-hand inequality gives a necessary condition on the

circadian amplitude for the existence of gaps in the down map Td(t0), namely,

a �
H−

0

γs
. (4.5)

For a >
H−

0

γs
, (4.3) has two possible solutions for tltan. These two solutions correspond

to tangencies that would occur as a result of Hs(t0, t) approaching the lower threshold

from above and from below, respectively. From the definition of the down map Td, all

t ∈ (t0, Td(t0)) have to satisfy Hs(t0, t) � H−(t). Thus, only the tangency point tltan that

corresponds to the trajectory that approaches the lower threshold from above is relevant

for gaps in the map. The local behaviour of Hs near the tangency point can be found by

considering the Taylor expansion of Hs(t0, t) − H−(t) about the tangency point t = tltan.

Since

Hs(t0, t
l
tan + Δt) −H−(tltan + Δt) =

(
H ′′(tltan) −H−′′

(tltan)
)
Δt2 + O(Δt3)

=

(
−2π

χs
a cos(2πtltan) + 4π2a sin(2πtltan)

)
Δt2 + O(Δt3),

the right-hand side is greater than or equal to zero when 2πχs sin(2πtltan)− cos(2πtltan) � 0.

Using the definition of B in (4.4), this can be written as γs sin(2πtltan + B) � 0; hence,

0 � 2πtltan + B � π.

Thus, (4.3) gives that a tangency point that is related to a gap in the map is given by

2πtltan + B = arccos

(
−H−

0

aγs

)
.
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Substituting the value of B from equation (4.4) and rearranging give the time that a

tangency occurs on the lower threshold, namely

tltan =
arccos

(
−H−

0

aγs

)
+ arccos

(
2πχs
γs

)
2π

, (4.7)

for −a < H−
0 � aγs. Since the lower threshold has to have a negative gradient to be

tangential to the homeostatic sleep pressure on sleep, the value of tltan lies in the region

( 1
4
, 3

4
).

Having identified the tangency point related to a gap, we next look at the point tl0 that

is mapped by Td into tltan, that is, the point tl0 that satisfies Td(t
l
0) = tltan. By rearranging

the tangency condition (4.2), it can be seen that tl0 satisfies

(
H+

0 + a sin(2πtl0)
)
exp

(
tl0
χs

)
= −2πχsa cos(2πtltan) exp

(
tltan

χs

)
. (4.8)

This is an implicit equation that can be solved numerically. To summarise, to find the

position of the gap in the map tl0, first tltan is found from equation (4.7), and then equation

(4.8) is solved numerically to find tl0, where tl0 < tltan.

The second mechanism to create gaps is via Hw(t0, t) becoming tangent to the upper

threshold H+
0 . These tangencies lead to gaps in the up map, Tu(t0). A discrete symmetry

exists in the two-process model that maps the solution for the sleep and wake trajectories

onto each other. The sleep trajectory is mapped into a wake trajectory by using the

mapping

(t, Hs, χs, H
−
0 , H+

0 , a, t0) �→
(
t +

1

2
, 1 −Hw, χw, 1 −H+

0 , 1 −H−
0 , a, t0 +

1

2

)
.

This symmetry allows us to directly state the criteria for tangencies of the wake homeo-

static pressure with the upper threshold. Specifically, applying the mapping to (4.5) gives

that the homeostatic sleep pressure on wake has a tangency (and hence the up map Td

has a gap) if

a �
1 −H+

0

γw
, (4.9)

where γw =
√

4π2χ2
w + 1. The tangency from below is at

tutan =
arccos

(
2πχw
γw

)
− arccos

(
1−H+

0

aγw

)
2π

. (4.10)

The initial time t∗0 on the lower threshold that leads to this tangency satisfies

(
1 −H−

0 − a sin(2πt∗0 )
)
exp

(
t∗0
χw

)
= 2πaχw cos(2πtutan) exp

(
tutan

χw

)
. (4.11)

Thus, the up map Tu(t) has a gap at t = t∗0 . As Ts = Tu ◦ Td, this leads to a gap in the

sleep map Ts only if t∗0 lies in the range of Td. If t∗0 is in the range of Td, then the initial

time tu0 on the upper threshold, which leads to the tangency time tutan (i.e., Ts(t
u
0) = tutan), is
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characterised by

H−(t∗0 ) exp

(
t∗0
χs

)
= H+(tu0) exp

(
tu0
χs

)
. (4.12)

In Figure 6, the values tu0 and t∗0 are labelled to help visualise this process. The parameter

values in Figure 6 are chosen such that the up map Tu has a gap, but the down map Td

has no gap.

Having established when and where tangencies occur on the lower and upper threshold

and how this introduces gaps, we can now focus on characterising the other endpoint of

the gap as this will be needed for the derivation of the border collisions.

4.2 Characterising the gap

By continuing the homeostatic sleep pressure on sleep Hs through the tangency point,

H−(tltan), until the next hit on the lower threshold, the other endpoint of the gap in the

down map Td(t0) can be found. Denoting this endpoint found by continuation by tlcon, it

can be characterised as the first tlcon > tltan, which satisfies

H−(tltan)e
tltan−tlcon

χs = H−(tlcon). (4.13)

By rearranging (4.13), we get

H−(tlcon)e
tlcon
χs = H−(tltan)e

tltan
χs , tlcon > tltan, (4.14)

which can be solved implicitly giving the size of the gap in Td as tlcon − tltan. Since

Ts = Tu ◦ Td, the size of the gap in Ts is Tu(t
l
con) − Tu(t

l
tan).

The same approach can be used for tangencies on the upper threshold, giving the

implicit definition

(1 −H+(tucon))e
tucon
χw = (1 −H+(tutan))e

tutan
χw , tucon > tutan. (4.15)

By continuing the homeostatic sleep pressure on wake through the tangency point, tutan,

until the next hit on the upper threshold tucon, one finds that the size of the gap in the

up map Tu is given by tucon − tutan. If the down map Td has no discontinuities, then this

is also the size of the gap in Ts. If the down map Td has discontinuities and t∗0 is in the

range of Td, then this is the size of a second gap in Ts, otherwise Ts has no second gap.

In Figure 6, we show the relationship between the two-process model and the size of the

gap, illustrating that the size of the gap is the same in Tu as in Ts. The parameters are

such that Tu has a gap, but Td is continuous.

As can be seen in Figures 2 and 6, the derivative of the map to the left of the gap in

the down, up and sleep maps appears to be infinite. This is indeed an intrinsic feature of

maps generated from the two-process model, which can be seen from the expressions for

the derivatives of the maps. Differentiating the expression for the sleep map Ts (2.5) with

respect to t0 gives

T ′
s (t0) = T ′

u(Td(t0))T
′
d(t0). (4.16)
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When Td(t0) and Tu(Td(t0)) are locally well defined, differentiation of the implicit relations

for Td and Tu in (2.4) with respect to t0 and use of the explicit definitions of the sleep

and wake homeostatic sleep pressure in (2.1) shows that

T ′
d(t0) =

(
2πa cos(2πt0) +

H+
0

χs
+ a

χs
sin(2πt0)

)
e

t0−Td(t0)

χs(
2πa cos(2πTd(t0)) +

H−
0

χs
+ a

χs
sin(2πTd(t0))

) , (4.17)

and

T ′
u(Td) =

(
2πa cos(2πTd) +

H−
0 −1

χw
+ a

χw
sin(2πTd)

)
e

Td(t0)−Tu(Td)

χw(
2πa cos(2πTu(Td)) +

H+
0 −1

χw
+ a

χw
sin(2πTu(Td))

) . (4.18)

Furthermore, combining the tangency conditions (4.1) and (4.2) gives that a tangency

point tltan satisfies 2πa cos(2πtltan)+
H−

0

χs
+ a

χs
sin(2πtltan) = 0. Thus, if tl0 is such that Td(t

l
0) =

tltan, then (4.17) shows that Td is not differentiable at tl0 and T ′
d(t0) → ∞ as t0 approaches tl0

from the left. As t0 approaches tl0 from the right, then Td(t0) approaches to tlcon and (4.17)

shows that the derivative is finite. Similarly, if tu0 is such that Tu(Td(t
u
0)) = tutan, then

T ′
u(Td(t

u
0))) → ∞ as t0 approaches tu0 from the left and is finite if t0 approaches tu0 from

the right.

We note that the t-interval in which the gradient of the map increases towards infinity

can be very small, so in a numerical simulation study it is easy to miss the fact that the

gradient becomes infinite. Much of the literature on maps with gaps (see, for example,

the review paper by Granados et al., 2017) focuses on piecewise linear maps where the

derivative is necessarily finite on both sides, although Pring & Budd (2011) note that

infinite derivatives at a gap arise naturally in many applications.

4.3 Monotonicity

Just as a gap is created in the down map Td when there is a tangency between the

homeostatic sleep pressure during sleep and the lower threshold H−, it has a turning point

(and hence is non-monotonic) when there is a tangency between the homeostatic sleep

pressure during sleep and the lower threshold H−. This mechanism for the development

of non-monotonicity is discussed in more detail by Skeldon & Derks (2017a).

As the upper threshold and the lower threshold are identical apart from in their mean

value, the work from Section 4.1 can be used to derive the criteria for non-monotonicity

of the down, up and sleep maps. So, for the down map, we get from (4.5), with the mean

value H−
0 replaced by the mean value H+

0 , that the down map Td may be non-monotonic

if

a >
H+

0

γs
.

For the up map, we get from (4.9), with the mean value H+
0 replaced by the mean value

H−
0 , that the up map Tu is non-monotonic if

a >
1 −H−

0

γw
.
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Thus, the sleep map Ts = Td(Tu) may be non-monotonic if

a > min

(
H+

0

γs
,
1 −H−

0

γw

)
.

5 Border collisions

The presence of gaps in the map can alter the transitory behaviour, but more significantly

gives an alternative mechanism for the creation/destruction of fixed points of the map

and thus periodic solutions in the two-process model, via border collisions. At a border

collision, a fixed point of the map (or its iterate) coincides with the endpoint of a gap.

Two types of border collision are possible within the two-process model. First, where a

fixed point of the map coincides with the side of the gap where the derivative of the map

is infinite, resulting in the creation/destruction of an unstable fixed point. In what follows,

these will be referred to in this paper as Type I border collisions. Second, where a fixed

point of the map coincides with the side of the gap where the derivative is finite, resulting

in the creation/destruction of either a stable or an unstable fixed point. These will be

referred to in this paper as Type II border collisions. We distinguish between the two types

of border collisions as a saddle-node bifurcation can collide with a finite derivative border

collision (if the derivative equals 1), but it can never collide with an infinite derivative

border collision. These two types of border collision are illustrated in Figure 7.

Clearly, since gaps can result from tangencies with either the lower threshold or upper

threshold, four cases should be considered, namely Type I and II border collisions for the

lower threshold and Type I and II border collisions for the upper threshold. In the next

two subsections, we focus on methods for computing border collisions with gaps due to

tangencies occurring on the upper threshold, but similar ideas can be used to find those

due to the lower threshold.

5.1 Computation of Type I border collisions

To find Type I border collisions of (p, q) periodic solutions numerically, we fix all

parameters except for H−
0 . The Type I border collision with a gap due a tangency with

the upper threshold will occur when there is a (p, q) periodic solution at tutan. We use

the explicit expression from equation (4.10) to find the tangency time tutan. We then take

an initial guess for the parameter H−
0 and use a non-linear solver to iterate on this

parameter to find the value of H−
0 such that the forward iteration of the two-process

model starting on the upper threshold at t = tutan and following the homeostatic sleep

pressure until t = tutan+q leads to a return to the appropriate value on the upper threshold.

In Figure 7(a) a typical example of a (1,1) periodic sleep–wake cycle undergoing a Type I

border collision is shown. Figure 7(b) shows the associated one-dimensional map, clearly

showing the infinite derivative at the border collision.

5.2 Computation of Type II border collisions

A similar idea can be used for the computation of Type II border collisions of (p, q)

periodic solutions. A Type II border collision due a tangency with the upper threshold
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Figure 7. Type I and Type II border collisions of a (1, 1) periodic solution are shown for a = 0.07.

The dashed blue lines in (a) and (c) represent the value, H+(tutan). (a) A sleep–wake cycle for a Type

I border collision, switching from wake to sleep occurs at the time tutan on the upper threshold.

(b) The corresponding one-dimensional map shows the infinite derivative at the Type I border

collision. (c) A sleep–wake cycle for a Type II border collision where the homeostatic sleep pressure

on wake misses the upper threshold at H+(tutan), switching at a later time (see Section 4.2). (d) The

one-dimensional map for the Type II border collision. In (a) and (b), we have H−
0 = 0.178, and for

(c) and (d) H−
0 = 0.4071.

will occur when there is (p, q) periodic orbit at tucon. Equation (4.10) gives the tangency

time tutan and the time point at the other side of the gap tucon is found by solving the

implicit relation in (4.15). The forward iteration starts at this point and H−
0 is tuned such

that the forward iteration of the two-process model starting on the upper threshold at

t = tucon and following the homeostatic sleep pressure until t = tucon + q leads to a return to

the appropriate value on the upper threshold. In Figure 7(c), we show how tucon is found

by continuing the homeostatic sleep pressure on a wake trajectory from the tangency tutan

and the resulting (1, 1) periodic solution for the tuned H−
0 value. The associated map in
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Figure 7(d) shows that the fixed point now coincides with the other side of the gap where

the derivative is finite.

5.3 Bifurcation set: Saddle-node tongues and border collisions

In this section, we illustrate how gaps in the maps change the bifurcation set: one of the

two saddle-node bifurcation boundaries is replaced by a border collision boundary and

the border collisions inside the tongue decrease the number of periodic solutions to one

periodic solution. Figure 8 shows the position of the two types of border collisions and the

saddle-node bifurcations in the (H−
0 , a) parameter plane. From the analysis in Section 4.1,

it follows that for a <
H−

0

γs
and a <

1−H+
0

γw
, there are no tangencies in the two-process model

and consequently no gaps in the one-dimensional map. In this region, the one-dimensional

map is the lift of a continuous circle map and regions of (p, q) periodic solutions form

Arnold tongues bordered by saddle-node bifurcations, where within each tongue there is

a pair of periodic solutions, one stable and one unstable.

As discussed in Section 4.1, for a �
H−

0

γs
or a � 1−H+

0

γw
, gaps can occur in the map Ts. For

some regions, the presence of gaps has no impact on the number and stability of fixed

points of the map, although their presence can alter the transient dynamical behaviour.

However, as can be seen in Figure 8, the gaps lead to border collisions that define roughly

u-shaped regions ‘in’ each tongue. The left-hand side of these u-shaped regions are linked

to Type I border collisions and appear to asymptote to the saddle-node bifurcation line.

Note that these two types of bifurcations cannot coincide because at the saddle-node

bifurcation the gradient of the map is one, whereas at the Type I border collision the

gradient of the map is infinite.

The right-hand side of u-shaped region is linked to Type II border collisions. The

saddle-node bifurcation and the Type II border collision meet at a point where the

gradient of the map at the Type II border collision is unity, leaving only the border

collision. This explains how the right saddle-node curves in Figure 5 terminate: they are

replaced by the border collision curve.

Within the u-shaped region, there is only one periodic solution. For the parameter

values we have explored, the map is monotonic and has a unique rotation number q
p

corresponding to the (p,q) periodic orbits. The Type I border collision removes/adds an

unstable periodic solution (due to its infinite derivative); hence, the remaining solution is

stable.

For the (H+
0 , χs, χw) parameter choice shown in Figure 8, the Arnold saddle-node tongues

with rotation number q
p
< 1 end in the region with

1−H+
0

γw
< a <

H−
0

γs
. In this region, the

up map Tu has a gap, but the down map Td does not have a gap. Thus the relevant

border collisions for these tongues are those due to a tangency with the upper threshold.

The right endpoint of the (1, 1) tongue is in this region as well; hence, here, the border

collision due to a tangency with the upper threshold is relevant. The left endpoint of the

(1, 1) tongue is in the region with a > max(
H−

0

γs
,

1−H+
0

γw
), hence both border collisions due a

tangency with the upper threshold and due to a tangency with the lower threshold could

play a role. For the parameter values used in Figure 8, we have not found any numerical

evidence for border collisions due to the lower thresholds in the (1, 1) tongue.
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Figure 8. Bifurcation set in the (H−
0 , a)-plane. Tangencies on the upper threshold occur above

the dot-dashed black line corresponding to a =
1−H+

0
γw

. Tangencies on the lower threshold occur

above the dot-dashed blue line. As in Figure 5, the saddle-node bifurcations are shown as solid red

lines. Border collisions emerge from the lines demarking the onset of tangencies, forming u-shaped

regions. These are shown in black for those occurring as a result of tangency with the upper

threshold and in light blue for those resulting from tangency with the lower threshold. Type I

border collisions occur to the left of each u-shaped region and Type II border collisions occur to the

right. The bifurcations are bounded by the biological constraints on the parameters (2.3) (dashed

red). Above the dot-dashed green line, the map may be non-monotonic.

The tongues with rotation number q
p
> 1 end in regions where border collisions with

both the upper and lower thresholds potentially are important. In the (2,3) tongue, it can

be seen how the curve for the Type II border collision with the lower threshold intersects

with the curve for the Type I border collision with the upper threshold. At this point in

parameter space, the endpoint of the gap due to the lower threshold, tlcon, coincides with

the start point of the gap due to the upper threshold, tutan. Hence, the endpoint of gap

due to the lower threshold ‘jumps’ to tucon. This is an illustration of how the tangency

on the upper threshold loses relevance, see the discussion under (4.11) for more details.

As illustrated by the plot, at the intersection of the two curves, the border collisions

disappear.

6 Conclusions

In this paper, we have discussed an interesting non-smooth dynamical system that arises in

the context of sleep/wake regulation. This system brings together results from continuous

monotonic circle maps and maps with gaps, resulting in a novel bifurcation set in which

both border collisions and saddle-node bifurcations create/destroy fixed points of the map.

The fixed points in the map correspond to periodic solutions in the full dynamical system

and represent different (periodic) patterns of sleep/wake. We see that at low circadian
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amplitudes, varying the bifurcation parameter H−
0 leads to a sequence of periodic solutions

arising through saddle-node bifurcations, as is known to happen in continuous monotonic

circle maps. For fixed a and varying H−
0 , the rotation number associated with the map has

a devil’s staircase structure and the intervals with constant rotation number are bounded

by saddle-node bifurcations. At larger amplitudes, varying the same parameter leads to

the same devil’s staircase sequence for the rotation number, but now both border collisions

and saddle-node bifurcations are important for the creation/destruction of periodic orbits.

In Section 4.3, we have seen that, for larger values of a, the maps Td, Tu and Ts = Tu◦Td

are not monotonic. We note that non-monotonicity has the potential to lead to more

complex dynamics, including period-doubling and chaos, as was shown for continuous

but non-invertible maps of the circle by Mackay & Tresser (1986). In the results presented

here, we focused on monotonic maps. A more extensive discussion of the consequences

of non-monotonicity is in Derks et al. (2018) for a simplified example that contains the

key features of the two-process model.

Within the context of sleep/wake regulation, understanding the dynamics of the two-

process model is important for two reasons. First, because the two-process model is very

influential within sleep and circadian science and second, because it remains at the heart

of more complicated models of sleep. Many of the numerical results found in these more

complicated models can be understood by understanding the dynamics of the two-process

model.

The different patterns of sleep that arise in the model have biological relevance.

Although a common pattern of human sleep corresponds to one sleep a day, (p, q) = (1, 1),

referred to as monophasic sleep, other patterns of sleep do occur. For humans, in some

cultures, the usual practice is to take a siesta, see Barone (2000); Ekirch (2005) suggests

that two sleeps at night, with only a short wake period between the two, was the historical

norm in some societies. This suggests that relatively small sociological or physiological

changes could result in a different sleep pattern.

Patterns of sleep with more than one sleep a day are referred to as polyphasic sleep.

In babies and pre-school children, there is a gradual transition from polyphasic to

monophasic sleep, see Galland et al. (2012). In Skeldon et al. (2014), it was suggested

that these could plausibly be explained by gradual changes in physiological parameters

that result in slowly varying parameters. Within the context of this paper, this would

correspond to a gradual increase in the natural period Tnat of the homeostatic sleep

system resulting in a transition across the tongues corresponding to decreasing numbers

of sleep episodes a day.

Transitions between different kinds of periodic solutions are also relevant in experi-

mental studies showing internal desynchrony. When humans are isolated from external

time cues, a circadian rhythm remains, but is no longer entrained to 24 h: for most

humans, the circadian rhythm is a little longer than 24 h, see Aschoff (1965). Patterns of

sleep/wake then: either alter to remain in synchrony with the adjusted circadian period,

but with an altered phase relationship because of the change in period or desynchronise,

or switch to a rhythm of one sleep every two days, a so-call circabidian rhythm, see Wever

(1979). We have scaled time so that the circadian period is one, so a lengthened circadian

period in the original system is equivalent to increasing Tnat as occurs by decreasing H−
0

or increasing H+
0 , χs or χw . The switch to circabidian rhythms would therefore correspond
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to a transition from the (p, q) = (1, 1) tongue to the (1, 2) tongue. This structure gives

the theoretical underpinning for the results of the numerical study carried out in Phillips

et al. (2011a) to investigate internal desynchrony and bicircabidian rhythms in a neuronal

model.

This same Arnold tongue framework also explains the polyphasic patterns seen in

Phillips et al. (2010) used to describe different patterns of mammalian sleep and the

original results of Daan et al. (1984). We note that in Daan et al. (1984) the circadian

oscillation includes not only a sin 2πt term but also a small amplitude higher harmonic

term, sin 6πt. We would not expect this to change the qualitative Arnold tongue/border

collision structure, as the higher order terms are a small perturbation; hence, the main

features of monotonicity together with a transition to maps with gaps is preserved.

We note that the differences in transient dynamical behaviour that result from the

presence of gaps can also have biological relevance, as is discussed by Booth et al. (2017)

who consider the construction of one-dimensional maps in a neuronal model that models

wake and two stages of sleep (rapid eye movement and non-rapid eye movement). This

neuronal model also has the two-process model at its heart, although the additional sleep

stage results in additional gaps.

Finally, we note that although there is an extensive literature on maps, previous studies

have either focussed on maps with gaps or maps with no gaps. This is the first example

of which we are aware where the transition between the two is considered. The results are

illuminating, showing how border collision can take over from saddle-node bifurcations to

form boundaries of Arnold tongues and highlighting a link between the devil’s staircase

structure of periodic solutions seen in both cases.
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