RING THEORETIC PROPERTIES OF MATRIX RINGS

S.M. Kaye¹

(received February 1, 1967)

 $\underline{\text{Morita Theory.}}$ K. Morita has shown that, given two rings R and S, there is an isomorphism between the category of left R-modules and the category of left S-modules if and only if there exists an R-S bimodule U such that

(1) U is a progenerator in the category of left R-modules, and

(2) $S \cong (End_R U)^{opp}$ as rings.²

If $S=R_{(n)}$, the ring of $n\times n$ matrices with entries in R, then R^n satisfies the two properties above when viewed as the $R-R_{(n)}$ bimodule of $1\times n$ matrices over R. In this case the inverse isomorphisms may be defined directly. They will be used to show systematically that $R_{(n)}$ has certain ring theoretic properties if and only if R has the same property.

The Isomorphisms. Given two categories f and f', two (covariant) functors $F: f \to f'$ and $G: f' \to f$ will be called inverse isomorphisms if GF and FG are naturally equivalent to the identity functors on f and f' respectively.

Let R be a ring with unit. e_{ij} will denote the element of

Canad. Math. Bull. vol. 10, no. 3, 1967

¹ I would like to thank Professor I. Connell, the director of my research, for his assistance.

See Morita [6] and Bass [2].

These isomorphisms were defined in my Master's thesis before I was aware of Morita theory.

R_(n) whose only non-zero entry is 1 in the ijth position. \mathcal{M} will denote the category of left R-modules and \mathcal{N} the category of left R_(n)-modules. We define functors $S: \mathcal{N} \rightarrow \mathcal{M}$ and $T: \mathcal{M} \rightarrow \mathcal{N}$ as follows. For $M \in |\mathcal{N}|$ let $S(M) = e_{11}M$. If $r \in R$, let \hat{r} denote the scalar matrix rI, where I is the identity matrix. The action of R on S(M) is defined by $r(e_{11}m) = \hat{r}e_{11}m = e_{11}\hat{r}e_{11}m \in S(M)$. If $\varphi:M \rightarrow N$ is a mapping in \mathcal{N} , let $S(\varphi)(e_{11}m) = \varphi(e_{11}m) = e_{11}\varphi(m) \in S(N)$. For $M \in |\mathcal{M}|$ let T(M) be a direct sum of n copies of M. The action of $R_{(n)}$ on T(M) is defined by $\sum_{i,j} r_{ij}e_{ij}(m_1, \ldots, m_n) = \sum_{i,j} r_{ij}m_j \cdots \sum_{j} r_{ij}m_j \cdots \sum_{j} r_{ij}m_j \cdots \sum_{i,j} r_{ij}m_i \cdots \sum_{j} r_{ij}m_j \cdots \sum_{i,j} r_{ij}m_i \cdots \sum_{i,j$

PROPOSITION 1. S and T are inverse isomorphisms.

Proof. Let $I_{\mathfrak{M}}$ denote the identity functor on \mathfrak{M} and $I_{\mathfrak{N}}$ the identity functor on \mathfrak{N} . We must exhibit natural isomorphisms $\mu:I_{\mathfrak{M}}\to ST$ and $\nu:I_{\mathfrak{N}}\to TS$. Let $M\in [\mathfrak{N}]$. Define ν (M)(m) = $(e_{11}^{m},\ldots,e_{1n}^{m})=(e_{11}^{e}_{11}^{m},\ldots,e_{11}^{e}_{1n}^{m})\in TS(M)$. If ν (M)(m) = 0, then $e_{1j}^{m}=0$ for every j and hence $m=\sum\limits_{j}e_{j1}^{e}e_{1j}^{m}=0$. A typical element of TS(M) is of the form $(e_{11}^{m}e_{11}^{m},\ldots,e_{11}^{m}e_{11}^{m})=\nu$ (M)($\sum\limits_{j}^{m}e_{j1}^{m}e_{j1}^{m}$), where each $m_{j}\in M$. ν (M) clearly preserves sums. Let $\sum\limits_{i,j}^{m}e_{ij}^{m}e_{ij}^{m}\in R_{(n)}$. $\sum\limits_{i,j}^{m}e_{ij}^{$

= ν (M)($\sum_{i,j} r_{ij} e_{ij} m$).

 $= (e_{ll} \sum_{i,j} r_{ij} e_{ij} m, \dots, e_{ln} \sum_{i,j} r_{ij} e_{ij} m)$

Therefore ν (M) is an isomorphism. If $\varphi:M\to N$ is an $R_{(n)}$ -homomorphism then

$$\nu (N)(\varphi(m)) = (e_{11}\varphi(m), \dots, e_{1n}\varphi(m))$$

$$= (\varphi(e_{11}m), \dots, \varphi(e_{1n}m))$$

$$= (S(\varphi)(e_{11}m), \dots, S(\varphi)(e_{1n}m))$$

$$= TS(\varphi)(e_{11}m, \dots, e_{1n}m)$$

$$= TS(\varphi)(\nu (M)(m)).$$

Thus v is natural.

Now let $M \in |m|$. A typical element of ST(M) is of the form $(m,0,\ldots,0)$ with $m \in M$. Let $\mu(M)(m) = (m,0,\ldots,0)$. μ is clearly an isomorphism. If $\varphi:M \to N$ is an R-homomorphism then $\mu(N)(\varphi(m)) = (\varphi(m),0,\ldots,0) = T(\varphi)(m,0,\ldots,0) = ST(\varphi)(\mu,0,\ldots,0)$. Thus μ is natural.

PROPOSITION 2. S and T are exact functors.

 $\begin{array}{c} \underline{\operatorname{Proof.}} & \operatorname{Consider} \ an \ \operatorname{exact} \ \operatorname{sequence} \ M \xrightarrow{\varphi} P \xrightarrow{\psi} Q \ \operatorname{in} \ \mathcal{M} \ . \\ T(\psi)T(\varphi) = T(\psi\varphi) = T(0) = 0 \ . \ \text{If} \ p = (p_1, \ldots, p_n) \in T(P) \ \text{and} \\ T(\psi)(p) = (\psi(p_1), \ldots, \psi(p_n)) = 0 \ \text{then} \ \psi(p_j) = 0 \ \text{for all} \ j \ , \ \text{that is,} \\ p_j \in \operatorname{Ker} \ (\psi) = \operatorname{Im}(\varphi) \ \text{for all} \ j \ . \ \text{Therefore there exist} \ m_j \in M \ , \\ j = 1, \ldots, n \ \text{such that} \ \varphi(m_j) = p_j \ . \ p = (p_1, \ldots, p_n) = (\varphi(m_1), \ldots, \varphi(m_n)) \\ = T(\varphi)(m_1, \ldots, m_n) \in \operatorname{Im}(T(\varphi)) \ . \ \text{Therefore T is exact.} \end{array}$

Consider an exact sequence $M \xrightarrow{\varphi} P \xrightarrow{\psi} Q$ in \mathcal{H} . $S(\psi)S(\varphi) = S(\psi\varphi) = S(0) = 0$. If $p = e_{11}p \in S(P)$ and $S(\psi)(p) = 0$ then $\psi(p) = 0$ and $p \in Ker(\psi) = Im(\varphi)$. Therefore there exists $m \in M$ such that $\varphi(m) = p$. $S(\varphi)(e_{11}m) = \varphi(e_{11}m) = e_{11}\varphi(m) = e_{11}p = p \in Im(S(\varphi))$. Therefore S is exact.

PROPOSITION 3. S and T preserve finite generation.

<u>Proof.</u> Let $M \in |m|$ and let $\{m_i : i = 1, ..., r\}$ be a set of generators for M. Then $\{(m_i, 0, ..., 0) : i = 1, ..., r\}$ is a set of generators for T(M).

Let $M \in |\eta|$ and let $\{m_i : i=1,\ldots,r\}$ be a set of generators for M. Then $\{e_{lj}^{\ m}: i=l,\ldots,r;\ j=l,\ldots,n\}$ is a set of generators for S(M).

Ring Theoretic Properties.

PROPOSITION 4. If R and R' are rings and the functor F is an isomorphism from the category of left R-modules to the category of left R'-modules, then

- (i) If F(M) is projective, so is M.
- (ii) If F(M) is injective, so is M.

<u>Proof.</u> Suppose F(M) is projective. Let G be an inverse for F and let γ be a natural isomorphism from the identity functor to GF. Let $\varphi:A\to B$ be an R-epimorphism $\psi:M\to B$ an R-homomorphism. Then $F(\varphi):F(A)\to F(B)$ is an R'-epimorphism and $F(\psi):F(M)\to F(B)$ is an R'-homomorphism. Since F(M) is projective, there exists an R'-homomorphism $\theta:F(M)\to F(A)$ such that $F(\varphi)\theta=F(\psi)$. $\gamma(A)^{-1}G(\theta)\gamma(M):M\to A$ is an R-homomorphism. Moreover $\varphi\gamma(A)^{-1}G(\theta)\gamma(M)=\gamma(B)^{-1}GF(\varphi)\gamma(A)\gamma(A)^{-1}G(\theta)\gamma(M)=\gamma(B)^{-1}GF(\varphi)G(\theta)\gamma(M)$ = $\gamma(B)^{-1}GF(\varphi)\gamma(A)\gamma(A)^{-1}G(\theta)\gamma(M)=\gamma(B)^{-1}GF(\varphi)\gamma(M)=\psi$. Therefore M is projective. The injective case may be proved dually.

COROLLARY. If M is projective, so is F(M). If M is injective, so is F(M).

 $M \cong \frac{\text{Proof.}}{\text{GF(M)}}$ Notice that G is also an isomorphism, and that

THEOREM 1. A ring R is left self-injective if and only if $R_{(n)}$ is.¹

This theorem was proved by Y. Utumi [7] but by an entirely different method. The present proof applies in the more general case of an isomorphism between the categories of left R-modules and left R'-modules for any two rings R and R', and may be simplified somewhat in our case, since $S(R_{(n)}) \stackrel{\sim}{=} R^n$.

<u>Proof.</u> $S(R_{(n)})$ is a finitely generated projective left R-module since $R_{(n)}$ is a finitely generated projective left $R_{(n)}$ -module. That is, $S(R_{(n)})$ is a direct factor of a direct product of copies of R (since finite sums are the same as finite products). Therefore $S(R_{(n)})$ is injective if and only if R is left self-injective. But by Proposition 4 and the Corollary, $S(R_{(n)})$ is injective if and only if $R_{(n)}$ is left self-injective. O. E. D.

A ring R will be called left hereditary if every left ideal of R is projective. R is left semi-hereditary if every finitely generated left ideal of R is projective.

THEOREM 2. R is left (semi-) hereditary if and only if $R_{(n)}$ is.¹

<u>Proof.</u> We use the fact that a ring R is (semi-) hereditary if and only if every (finitely generated) submodule of a projective left R-module is projective.

Let R be (semi-) hereditary and let I be a (finitely generated) left ideal of $R_{(n)}$. Then S(I) is isomorphic to a (finitely generated) submodule of $S(R_{(n)})$, a projective left R-module by the Corollary to Proposition 4. Hence S(I) is projective. Therefore I is projective, and $R_{(n)}$ is left (semi-) hereditary. The proof of the converse is similar.

Let M and N be modules. A homomorphism $\varphi: M \to N$ is called minimal if $\operatorname{Ker}(\varphi)$ is a small submodule of M. A projective cover of a module M is a minimal epimorphism π from a projective module P to M. A ring R is left perfect if every left R-module has a projective cover. R is left semiperfect if every finitely generated left R-module has a projective cover.

¹ This theorem is due to L. Levy [5].

² Cartan and Eilenberg [3], pp. 14, 15.

These concepts are defined by Bass [1].

LEMMA 1. Let P be a projective module. An epimorphism $\pi:P \to M$ is a projective cover for M if and only if for any proper monomorphism (i.e. one which is not an isomorphism) θ into P, $\pi\theta$ is not an epimorphism.

<u>Proof.</u> Suppose $\theta: S \to P$ is a proper monomorphism and $\pi\theta$ is an epimorphism. Then for all $p \in P$ there exists $s \in S$ such that $\pi\theta(s) = \pi(p)$. $p - \theta(s) \in Ker(\pi)$ and $p = \theta(s) + (p - \theta(s))$. Therefore $P = Im(\theta) + Ker(\pi)$. Since $Im(\theta)$ is a proper submodule of P, π is not a projective cover of M.

Suppose π is not a projective cover of M. Then there exists a proper submodule S of P such that $S+Ker(\pi)=P$. Let $i:S\to P$ be the inclusion map, a proper monomorphism. Let $m\in M$. Since π is an epimorphism, there exists $p\in P$ such that $\pi(p)=m$. Since $S+Ker(\pi)=P$, there exist $s\in S$ and $x\in Ker(\pi)$ such that p=i(s)+x. $\pi i(s)=\pi(p-x)=\pi(p)-\pi(x)=m-0=m$. Therefore πi is an epimorphism.

THEOREM 3. R is left (semi-) perfect if and only if $R_{(n)}$ is. 1

Proof. Suppose R is left (semi-) perfect and M is a (finitely generated) left R_(n)-module. Then S(M) has a projective cover $\pi:P\to S(M)$. T(P) is a projective R_(n)-module and $\nu(M)^{-1}T(\pi):T(P)\to M$ is an epimorphism. Let $\theta:N\to T(P)$ be a proper monomorphism. Then $\mu(P)^{-1}S(\theta):S(N)\to P$ is a proper monomorphism. Therefore $\pi\mu(P)^{-1}S(\theta)$ is not an epimorphism. But $\pi\mu(P)^{-1}S(\theta)=\mu(S(M))^{-1}ST(\pi)\mu(P)\mu(P)^{-1}S(\theta)=\mu(S(M))^{-1}S(T(\pi)\theta)$. Since $\mu(S(M))^{-1}$ is an isomorphism, $S(T(\pi)\theta)$ is not an epimorphism. Therefore $T(\pi)\theta$ is not an epimorphism, and since $\nu(M)^{-1}$ is an isomorphism, $\nu(M)^{-1}T(\pi)\theta$ is not an epimorphism. Therefore $\nu(M)^{-1}T(\pi)\theta$ is not an epimorphism. Therefore $\nu(M)^{-1}T(\pi)\theta$ is not an epimorphism.

It is well-known that a ring $\,R\,$ is (Von Neumann) regular

¹ This theorem was stated for perfect rings by H. Bass [1].

if and only if every left R-module is flat. We shall use this characterization to show that R is regular if and only if R_(n) is. We define functors S⁰ from the category of right R_(n)-modules to the category of right R-modules and T⁰ in the opposite direction analogously to S and T. μ^0 and ν^0 will denote the natural isomorphisms.

PROPOSITION 5. Let M be a right $R_{(n)}$ -module, N a left $R_{(n)}$ -module. Then $M \otimes_{R_{(n)}} N \cong S^{O}(M) \otimes_{R} S(N)$ naturally.

Let $\chi(M, N): M \bigotimes_{R_{(n)}} N \to S^{\circ}(M) \bigotimes_{R} S(N)$ be the map induced by θ . $\chi(M, N)$ is onto since if $me_{11} \in S^{\circ}(M)$ and $e_{11} n \in S(N)$ then $me_{11} \bigotimes_{R} e_{11} n = \chi(M, N) (me_{11} \bigotimes_{R} e_{11} n)$. To see that $\chi(M, N)$

is 1-1, notice that $\sum_{k} m_{k} \otimes R_{(n)}^{n}_{k} = \sum_{k} \sum_{i=1}^{n} m_{k}^{e}_{il} \otimes R_{(n)}^{e}_{k}^{n}_{k}$, which is 0 if $\chi(M, N)(\sum_{k} m_{k} \otimes R_{(n)}^{n}_{k}) = \sum_{k} \sum_{i=1}^{n} m_{k}^{e}_{il} \otimes R_{ii}^{e}_{k}^{n}_{k}$ is, since $Me_{ll} \subset M$, $e_{ll}^{N} \subset N$, and $R \subset R_{(n)}$.

To show that χ is natural, it is sufficient to show naturality on the basis elements since all maps concerned preserve sums. Let $\varphi:M\to M'$ be a right $R_{(n)}$ -homomorphism, and $\psi:N\to N'$ a left $R_{(n)}$ -homomorphism.

¹ See, for example, Lambek [4], p.134.

$$\begin{split} \chi(M', N')(\varphi \bigotimes_{R} \psi)(m \bigotimes_{R} \eta) &= \chi(M', N')(\varphi(m) \bigotimes_{R} \psi(n)) \\ &= \sum_{i} (\varphi(m) e_{i1} \bigotimes_{R} e_{li} \psi(n)) = \sum_{i} (\varphi(m e_{i1}) \bigotimes_{R} \psi(e_{li} n)) \\ &= \sum_{i} (S^{o}(\varphi)(m e_{i1}) \bigotimes_{R} S(\psi)(e_{li} n)) = \sum_{i} (S^{o}(\varphi) \bigotimes_{R} S(\psi))(m e_{i1} \bigotimes_{R} e_{li} n) \\ &= (S^{o}(\varphi) \bigotimes_{R} S(\psi)) (\sum_{i} m e_{i1} \bigotimes_{R} e_{li} n) \\ &= (S^{o}(\varphi) \bigotimes_{R} S(\psi)) \chi(M, N)(m \bigotimes_{R} \eta) . \end{split}$$

Therefore $\chi(M', N')(\varphi \bigotimes_{R_{(n)}} \psi) = (S^{\circ}(\varphi) \bigotimes_{R} S(\psi)) \chi(M, N)$.

THEOREM 4. R is (Von Neumann) regular if and only if $R_{(n)}$ is.

Proof. Suppose R is (Von Neumann) regular. Let N be a left $R_{(n)}$ -module and $\varphi:M\to M'$ a right $R_{(n)}$ -monomorphism. Then $S^{o}(\varphi):S^{o}(M)\to S^{o}(M')$ is a right R-monomorphism. Since R is regular, S(N) is flat. Therefore $S^{o}(\varphi)\bigotimes_{R}S(l_{N})=S^{o}(\varphi)\bigotimes_{R}l_{S(N)}$ is a monomorphism of abelian groups. Therefore $\varphi\otimes_{R}l_{N}$ is a monomorphism of abelian groups. Therefore $\varphi\otimes_{R}l_{N}$ is a monomorphism, and N is flat. Therefore $R_{(n)}$ is regular. The converse is trivial.

<u>Properties Involving Ideals.</u> There is a well-known l-l correspondence between the ideals of R and the ideals of $R_{(n)}$ given by $I \rightarrow I_{(n)}$. It follows immediately that R is simple

¹ In the general case (see footnote, p. 368) the correspondence between ideals of R and R' may be defined in terms of the isomorphisms between the categories, but this is unnecessary here.

(0 is a maximal 2-sided ideal), semi-simple (the intersection of all maximal ideals is 0) 1 , prime (0 is a prime ideal), or semi-prime (the intersection of all prime ideals is 0) if and only if $R_{(n)}$ has the same property. We shall show that R is primitive (0 is a primitive ideal) or semi-primitive (the intersection of all primitive ideals is 0) if and only if $R_{(n)}$ is. Recall that a primitive ideal is the annihilator of a simple left module (one whose only proper submodule is 0).

LEMMA 2. Let I be an ideal of R and M a left R-module. Then $T(IM) = I_{(n)}T(M)$.

Proof. This is trivial.

THEOREM 5. R is (semi-) primitive if and only if $R_{\mbox{\scriptsize (n)}}$ is.

 $\frac{Proof.}{(n)} \quad \text{We show that I is a primitive ideal of } R \quad \text{if and only if } I_{(n)} \quad \text{is a primitive ideal of } R_{(n)} \quad \text{Let I = Ann(M)} \quad \text{where } M \quad \text{is a simple left R-module.} \quad T(M) \quad \text{is a simple left } R_{(n)} \text{-module, } \\ \text{and } I_{(n)} T(M) = T(IM) = T(0) = 0 \quad \text{Let } J_{(n)} = \text{Ann}(T(M)) \quad \text{Then } \\ I_{(n)} \subset J_{(n)} \quad T(JM) = J_{(n)} T(M) = 0 \quad \text{and hence } JM = 0 \quad \text{Therefore } J \subset I \quad \text{and so } J_{(n)} = I_{(n)} \quad \text{is a primitive ideal of } R_{(n)} \quad \text{.}$

Let $I_{(n)} = Ann(N)$ where N is a simple left $R_{(n)}$ -module. S(N) is a simple left R-module. $T(IS(N)) = I_{(n)}TS(N) \cong I_{(n)}N = 0$. If JS(N) = 0 then $J_{(n)}TS(N) = T(JS(N)) = T(0) = 0$ and hence $J_{(n)} \subset I_{(n)}$. Therefore $J \subset I$ and I = Ann(S(N)).

REFERENCES

1. H. Bass, Finitistic Dimension and a Homological Generalization of Semi-primary Rings. Trans. Am. Math. Soc., Vol. 95

¹ Note that our definition of a semi-simple ring differs from both Bourbaki and Jacobson. Bourbaki defines semi-simple to mean Artinian semi-simple. Jacobson defines semi-simple to mean semi-primitive.

(June, 1960), 466-488.

- 2. H. Bass, The Morita Theorems. University of Oregon lecture notes (1962).
- 3. H. Cartan and S. Eilenberg, Homological Algebra. Princeton University Press (1956).
- 4. J. Lambek, Lectures on Rings and Modules. Blaisdell (1966).
- 5. L. Levy, Torsion-free and Divisible Modules over Non-Integral-Domains. Can. Jour. Math., Vol.15, No.1 (1963) 132-151.
- 6. K. Morita, Duality Theorems for Modules and its Application to the Theory of Rings with Minimum Condition. Sc. Rep. Tokyo Kyoiku Daigaku, Vol. 6 (1958), 83-142.
- 7. Y. Utumi, On Continuous Rings and Self-injective Rings. Trans. Am. Math. Soc., Vol.118 (June, 1965), 158-173.

McGill University