RING THEORETIC PROPERTIES OF MATRIX RINGS
1
S.M. Kaye
(received February 1, 1967)
Morita Theory. K. Morita has shown that, given two
rings R and S, there is an isomorphism between the category

of left R-modules and the category of left S-modules if and only
if there exists an R-S bimodule U such that

(1) U is a progenerator in the category of left R-modules,
and 5
(2) s (EndRU)Opp as rings.

¥ S-= , the ring of n X n matrices with entries in

R

- ()
R, then R satisfies the two properties above when viewed as
the R-R bimodule of 1X n matrices over R . In this case

(n)
the inverse isomorphisms may be defined directly. They will
be used to show systematically that R(n) has certain ring

theoretic properties if and only if R has the same property.

The Isomorphisms. Given two categories ¥ and £',
two (covariant) functors F: ¢ = ¢' and G:¢'—=> ¢ will be called
inverse isomorphisms if GF and FG are naturally equivalent
to the identity functors on % and ¢' respectively.

Let R be a ring with unit. eij will denote the element of

1I would like to thank Professor I. Connell, the director of my
research, for his assistance.

2
See Morita [6] and Bass [2].

These isomorphisms were defined in my Master's thesis before
I was aware of Morita theory.
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th
R whose only non-zero entry is 1 in the ij position. ™M

(n)
will denote the category of left R-modules and 7] the category of

left R(n)-modules. We define functors S:#]—=7n and T:M -1

as follows. For Me |71] let S(M) = eyM . If reR, let £

denote the scalar matrix rI, where I is the identity matrix.

The action of R on S(M) is defined by r(eum) = feum =

eufeume S(M) . If ¢:M— N is a mapping in_ , let

S(p)(e,;m) = p(e;m) = e p(m) ¢ S(N) . For Me m| let T(M) be

a direct sum of n copies of M . The action of R(n) on T(M)
is definedby ( X r.e. )Jm,...,m )=(Zr. m,...,Zr m, ).
YilelJl n j oL j o]

If o:M~—~ N is a mapping in ", let T((p)(ml, e ,rnn) =
(go(ml), ...,0(m )) . Itis easily checked that S and T are
n

functors between N\ and 1 .
PROPOSITION 1. S and T are inverse isomorphisms.

Proof. Let I4y denote the identity functor on M and
In the identity functor on 7' . We must exhibit natural isomor-
phisms pily =~ ST and y:ly\> TS . Let Me |1\ . Define
m) = (e_.e _m,

In 1 i
If v(M){(m) =0, then e,..m =0 for every j and hence

v (M)(m) = (eum, e, nrn) e TS(M) .

1j
m =2 ejleljm =0 . A typical element of TS(M) is of the form
J
(euml, cees eumn) =y (M)(Ej ejlm,) , where each rnj eM . v (M)
clearly preserves sums. Let Z r.e..e R .
LT (n)
i, ]
> = .« e
(' .rijeij)v (M)(m) (‘Z' rijeij)(ellm’ , elnm)
1:_] l’J
= (= ) .e._.
( ; rljeljm j rn_]el_]m)
= (e Zr e m,...,e . 2 r, e .m)
11 i, ij ij In i ij ij
= M)(Z .
v (M) z rijeijm)
1,]
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Therefore v (M) is an isomorphism. If ¢:M - N is an
R(n) -homomorphism then

v (N)(¢(m))

1]

(e o(m), ..., e o(m))

= (p(e;m), ..., o(e, m))

= (S(g)(em), ..., S(g)(e) m))
= TS(g)e,m, ..., e _m)

= TS(e)(v (M)(m)) .

Thus v is natural.

Now let Me|[m| . A typical element of ST(M) is of the
form (m,0,...,0) with meM . Let p(M)(m) = (m,0,...,0).
p is clearly an isomorphism. If ¢:M —+ N is an R-homomorphism
then p(N)(¢(m)) = (¢(m),0,...,0) = T(¢)(m,0,...,0) =
ST(¢)(m, 0,...,0) = ST(p)(n(M)(m)) . Thus p is natural.

PROPOSITION 2. S and T are exact functors.

Proof. Consider an exact sequence M £ Pq-J-> Q in M.
T(WT(p) = T(Yep) = T(0) =0. I¥p-= (pl, e pn)e T(P) and
T (W) (p) = (¢(p1), .. .,q,:(pn)) = 0 then L]J(pj) = 0 for all j, that is,

p.¢ Ker (i) = Im(¢) for all j. Therefore there exist mje M,
J
j=1,...,n such that ga(mj) = pj . p= (pl, .. .,pn) = (¢(m1), .. .,¢(mn))
= T(<p)(m1, ....m ) e Im(T(¢)) . Therefore T is exact.
n

Consider an exact sequence M % P £ Q in 7. S()S(e) =
S(bg) =S(0) =0. If p= e Pe S(P) and S(U)(p) = 0 then Y(p) =0

and pe Ker(y) = Im(p) . Therefore there exists me M such that
¢(m) =p . S(p)(e m) = gle;m) = e o(m) = e p=pe Im(S(¢)).

Therefore S is exact.
PROPOSITION 3. S and T preserve finite generation.

Proof. Let Me [m| and let {mi:i= l,...,r} be a set

of generators for M . Then {(mi, 0,...,0):i=1,...,r} is a set

of generators for T(M) .
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Let Me || and let {mi:i:l,...,r} be a set of
generators for M . Then {eljmi:iz L...,r;j=1...,n} is a

set of generators for S(M) .

Ring Theoretic Properties.

PROPOSITION 4. If R and R' are rings and the
functor F is an isomorphism from the category of left R-modules
to the category of left R'-modules, then

(i) If F(M) is projective, sois M.
(ii) If F(M) is injective, so is M .

Proof. Suppose F(M) is projective. Let G be an
inverse for F and let y be a natural isomorphism from the
identity functor to GF . Let ¢:A - B be an R-epimorphism
y:M = B an R-homomorphism. Then F(¢):F(A) = F(B) is an
R'-epimorphism and F(y):F(M) - F(B) is an R'-homomorphism.
Since F(M) is projective, there exists an R'-homomorphism

0:F (M) - F(A) such that F(0)0 = F(U) . v(A) ‘G(O)y(M):M ~ A
is an R-homomorphism. Moreover <py(A)_1G(6)y(M) =

v(B) 'GFlplv(aN () 'G(ory (M) = y(B) 'GF(e)G (e (M)

= Y(B)—iG(FW)e)y(M) = y(B)_1GF(¢)y(M) =y . Therefore M is

projective. The injective case may be proved dually.

COROLLARY. If M is projective, sois F(M). If M
is injective, so is F(M) .

Proof. Notice that G is also an isomorphism, and that
M % GF(M) .

THEOREM 1. A ring R is left self-injective if and only

1
if R, is.
(n)

1 This theorem was proved by Y. Utumi [7] but by an entirely
different method. The present proof applies in the more general
case of an isomorphism between the categories of left R-modules
and left R'-modules for any two rings R and R', and may be
simplified somewhat in our case, since S(R(n)) T RD
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Proof. S(R, ,) is a finitely generated projective left

(n)

R-module since R(n) is a finitely generated projective left

-module. That is, S(R, ,) is a direct factor of a direct

R
(n) (n)
product of copies of R (since finite sums are the same as
finite products). Therefore S(R( )) is injective if and only if
n

R is left self-injective. But by Proposition 4 and the Corollary,
S(R is left self-injective.
(n (n)

Q.E.D.

) is injective if and only if R

A ring R will be called left hereditary if every left ideal
of R 1is projective. R 1is left semi-hereditary if every finitely
generated left ideal of R 1is projective.

THEOREM 2. R is left (semi-) hereditary if and only if
1
R is.
(n)
Proof. We use the fact that a ring R is (semi-)
hereditary if and only if every (finitely generated) submodule of

a projective left R-module is projective.

Let R be (semi-) hereditary and let I be a (finitely
generated) left ideal of R(n) . Then S(I) is isomorphic to a

(finitely generated) submodule of S(R, ), a projective left

(n)
R-module by the Corollary to Proposition 4. Hence S(I) is
projective. Therefore I is projective, and R(n) is left (semi-)

hereditary. The proof of the converse is similar.

Let M and N be modules. A homomorphism ¢:M - N
is called minimal if Ker(¢) is a small submodule of M . A

projective cover3 of a module M is a minimal epimorphism
from a projective module P to M . A ring R is left perfect
if every left R-module has a projective cover. R is left semi-
perfect if every finitely generated left R-module has a projective
cover,

1 This theorem is due to L. Levy [5].
2 Cartan and Eilenberg [3], pp. 14, 15.

3 These concepts are defined by Bass [1].
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LEMMA 1. Let P be a projective module. An epimor-
phism w:P - M is a projective cover for M if and only if for
any proper monomorphism (i.e. one which is not an isomorphism)
6 into P, w6 is not an epimorphism.

Proof.  Suppose 6:S—-> P is a proper monomorphism and
w0 is an epimorphism. Then for all p ¢ P there exists se S
such that w6(s) =mw(p) . p - 6(s) ¢ Ker(rm) and p = 6(s) + (p - 6(s)).
Therefore P = Im(6) + Ker(w) . Since Im(6) is a proper sub-
module of P, w is not a projective cover of M .

Suppose w is not a projective cover of M . Then there
exists a proper submodule S of P such that S +Ker(w) = P .
Let i:S - P be the inclusion map, a proper monomorphism.

Let meM . Since m is an epimorphism, there exists peP such
that w(p) =m . Since S + Ker(n) = P, there exist se¢S and

xe Ker(mr) such that p =i(s) +x. wi(s) =w(p - x) = w(p) - w(x) =
m - 0=m . Therefore wi is an epimorphism.

THEOREM 3. R is left (semi-) perfect if and only if
.1
R is.
(n)

Proof. Suppose R is left (semi-) perfectand M is a

(finitely generated) left R(n)—module. Then S(M) has a projec-

tive cover mP - S(M) . T(P) is a projective R(n)-module and
v(M)_iT(w):T(P) - M is an epimorphism. Let 6:N - T(P) be a
proper monomorphism. Then p(P)_is(G):S(N) - P is a proper
monomorphism. Therefore Trp(P)—is(G) is not an epimorphism.

But mu(P) 'S(6) = w(S(M) 'ST(mw(PIu(P) ' 5(6) = (s ts(T(m)e) .

. -1 . . . . .
Since p(S(M)) is an isomorphism, S(T(w)6) is not an epimor-
phism. Therefore T(w)® is not an epimorphism, and since

-1 -
V(M) is an isomorphism, v (M) 1T(1T)6 is not an epimorphism.
-1
Therefore v (M) "T(w) is a projective cover for M, and R

(n)

is left (semi-) perfect. The proof of the converse is similar.

It is well-known that a ring R is (Von Neumann) regular

1 This theorem was stated for perfect rings by H. Bass [1].

370

https://doi.org/10.4153/CMB-1967-034-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-034-3

if and only if every left R-module is flat. ! We shall use this
characterization to show that R is regular if and only if R(n)

is. We define functors S° from the category of right R(n)-
modules to the category of right R-modules and T° in the opposite
direction analogously to S and T . po and v° will denote the
natural isomorphisms.

PROPOSITION 5. Let M be a right R( ) -module, N

a left R(n)-module. Then M®R NZS (M)O S(N naturally.
(n)

Proof. S°(M) = Me, and S(N)=e N. Let MXN be

the Cartesian product of M and N . Define 6:M X N - Me ®

R 11
n
by 6(m,n) = 21 (me, 1®R ™ - 0 is clearly linear in m and n.
i=
0 =
Forall r ¢ R and all eij , (rnreiJ n) = kmre ek1®R ™
mre;ie; @ gy = mre; @ pey ™ T ey Gyt
imeld@R lkre n = 0(m, reljn) . Thus 0 is R(n)-bilinear.

Let x(M,N):ME R N - SO(M)®RS(N) be the map induced
(n)

by 6. Xx(M,N) is onto since if me, ¢ s°(M) and e m ¢ S(N)

= &, . T that (M, N
then men@: RE™ " x (M, N)(me 1Q;,R(n)eun) o see that x( )

n
is 1- ; =T = 2, ,
is 1-1, notice that X mk®R n - mkeil(}s’ RS %

k (n) & =1 (n)
n
which is 0 if yx(M, N)(imk®R(n)nk) :?{ 12:1 mkeﬂ‘)R P IS
since Me11 cM, eHN C N, and RCR(n) .

To show that x is natural, it is sufficient to show naturality
on the basis elements since all maps concerned preserve sums.
Let ¢:M = M' be a right R(n)-homomorphism, and Y:N-> N' a

left R, .~-homomorphism.

(n)

1 See, for example, Lambek [4], p.134.
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XML NYe@®p Wm@p  0) = x(ML N em) @y ¢(n)
(n) (n) (n)

Z(w(m 1®R ) = Z(<p(mei1)®R¢(ehn))

2(5(g)(me, ) @ g SW)e, 1) = 2 (S7(6) @ g SW)(me, Bpe;n)

n

(°(0) @ R S(Y(T me @ pe; )

= (5°(0) @ g SW)) x (M, NGy -

Therefore x(M', N')o@®p ) = (S (9)® o SW)x (M, N) .
(n)

THEOREM 4. R is (Von Neumann) regular if and only
if R is.

(n)

Proof. Suppose R is (Von Neumann) regular. Let N
be a left R, .-module and ¢:M = M' a right R(n)—monomorphism.

(n)
Then So(zp):So(M) - SO(M') is a right R-monomorphism. Since
R is regular, S(N) is flat. Therefore So(<p)®RS(1 ) =
hi
s°© (q;)@R S(N) is a monomorp ism of abelian groups. Therefore

¢®R 1 _=yx(M', N') (S ((p)@RS(lN))X(M N) is a monomorphism,

N
(n)
and N is flat. Therefore R(n) is regular. The converse is
trivial.

Properties Involving Ideals. There is a well-known 1-1
correspondence between the ideals of R and the ideals of R(n)

given by I - I(n) . 1 It follows immediately that R is simple

1 In the general case(seefootnote, p.368)the correspondence be-
tween ideals of R and R' may be defined in terms of the
isomorphisms between the categories, but this is unnecessary
here.
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(0 is a maximal 2-sided ideal), semi-simple (the intersection

1
of all maximal ideals is 0)  , prime (0 is a prime ideal), or
semi-prime (the intersection of all prime ideals is 0) if and

only if R(n) has the same property. We shall show that R is
primitive (0 is a primitive ideal) or semi-primitive (the
intersection of all primitive ideals is 0) if and only if R is.

(n)
Recall that a primitive ideal is the annihilator of a simple left
module (one whose only proper submodule is 0).

LEMMA 2. Let I be anideal of R and M a left
R-module. Then T(IM) = I(n)T(M) .

Proof. This is trivial.

THEOREM 5. R is (semi-) primitive if and only if

R(n) is.

Proof. We show that I is a primitive ideal of R if and
only if I(n) is a primitive ideal of R(n) . Let I = Ann(M) where

M is a simple left R-module. T(M) is a simple left R(n -module,

)

and I(n)T(M) = T(IM) = T(0) =0 . Let J(n) = Ann(T(M)) . Then
T(IM) =J, . T(M) =0 and hence JM =0 . Therefore

In) ) - (n)

JCI and so J =1 is a primitive ideal of R .
(n) ~ “(n) P (n)
Let I(n) = Ann(N) where N is a simple left R(n)-module.
S(N) is a simple left R-module. T(IS(N)) =1 TS(N)®* I N=0.

(n) (n)

If JS(N) = 0 then J(n)TS(N) = T(JS(N)) = T(0) = 0 and hence
J CclI . Therefore JCI and I= Ann(S(N)) .
(n) ~ (n)
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