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ABSTRACT

Two methods for approximating the limiting distribution of the present value of the
benefits of a portfolio of identical endowment insurance contracts are suggested.
The model used assumes that both future lifetimes and interest rates are random.
The first method is similar to the one presented in PARKER (1994b). The second
method is based on the relationship between temporary and endowment insurance
contracts.
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1. INTRODUCTION

In PARKER (1994b) we present a method for approximating the distribution of the
present value of the average cost per policy of a portfolio of temporary insurance
contracts. In this paper, based on chapter 7 of PARKER (1992), we first show how
this method can be applied to portfolios of endowment contracts. The relationship
between temporary and endowment policies is also used to suggest an alternative
way of approximating this distribution. Some justifications for the suggested
approximation are given. Finally, we indicate how to extend these results to the case
of contracts payable by annual premiums. The references section lists some recent
papers on the subject of actuarial functions with random interest and mortality.

2. A PORTFOLIO

Consider a portfolio of c identical n-year endowment insurance contracts, all with
sum insured 1, being sold to lives insured at age x at time of issue. Let 2E (c) be the
random variable representing the present value of the benefits of the portfolio. This
is relevant for contracts payable by single premiums.

Here, summing over the n policy-years of the contract and using the notation of
PARKER (1994b), one can express 3£(c) as

(1 \ \ & (r\ - J r • p~y{i+V) + r • p
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26 GARY PARKER

When studying 3£(c), we will again assume that (c,-)"=i is multinomial. We also
assume that the future lifetimes and the forces of interest, {ds}sS:0, are indepen-
dent.

For the portfolio under consideration the average cost per policy, 2E (c)/c, tends
almost surely, hence also in distribution to (see, for example, FREES (1990)).

(2.2) $„= Ll<?^"V ( i t " + A - ^ ' W

; = o

3. A RECURSIVE APPROXIMATION

Let Zi and yj be possible realizations of ;}, and y(j) respectively. And let the
function hn(zn, yn) be defined as

(3.1) hn(zn, yn) = P(Sn^zn) •/„„,(}„ I -in ^ zn)

or equivalently,

(3.2) hn(Zn, yn) =fyin)(yn) -P^n ^ zn \y(n) = >-„)•

where fy(n) is the probability density function (pdf) of y(n).
It is an immediate consequence of this definition that the pdf of ;]„ is

(3.3) F,,JZn) = I hn(zn, yn) • dyn.

This function hn(zn, yn) is similar to the function gn(zn yn) defined in section 4
of PARKER (1994b). It can also be calculated recursively with a high degree of
accuracy by using

(3.4) hn(zn,yn)=\ fyM(yn\y(n-\) = yn-
J - -x.

hn-\(zn- n - \ P x - (e~y" ~ e ~ y " - ' ) , y n ~ \

with the starting value

(3.5) i0.5

otherwise,

where 0(-) denotes the pdf of a standardized normal random variable.
This approximation was obtained by assuming that

( 3 . 6 ) /.,; , (z - „ _ , px • (e->- - e ~ y - ' ) \ y (n) = y n , y (n - 1) = yn . , )

=/;}„_, (z - n - i P x - ( e ' y " - e ~ y " - l ) \ y ( n - \ ) = , y n _ , )
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Recall that {y(t)}"=[ is multivariate normal, therefore, y(n) given y(n-\) is
normally distributed with mean and variance given by (4.7)' and (4.8) of PARKER

(1994b).
Note that (3.4) is exact if y(f) is a Markov process. However, when modelling the

force of interest by a Wiener process or an Ornstein-Uhlenbeck process, the
resulting y(t) is not Markov and (3.4) is an approximation.

4. JUSTIFICATIONS

Our justifications of the approximation are based on two correlation coefficients
which we would like to be high. From Table 1 of PARKER (1994b), we know that
y(n) and y(n- 1) are highly correlated and this suggests that the approximation is
acceptable. From MARDIA, KENT and BIBBY (1979, section 6.5) the approximation
would also be acceptable if the correlation coefficient between e~y n) and $n is
high. This correlation is given by

(4.1)

c o v l e - - ^ , tiWx-e-^+^ + nP*-*-'™

.-=o

1/2

Using the male ultimate rates of the CA 1980-82 mortality table (COWARD, 1988,
pp. 227-231), Table 1 shows that the correlation coefficients are high especially for
n small.

Note that p(e~yil\ ;^) is exactly 1, this implies that the first recursion in (3.4) is
always exact.

TABLE 1

CORRELATION COEFFICIENT BETWEEN e'y(n) AND ; j n

FORCE OF INTEREST AS WHITE NOISE AND ORNSTEIN-UHLENBECK PROCESSES

1
5

10
20
40
60

White Noise*
A 0 06 a 0 01

1.000000
0.999998
0.999983
0.999742
0.982191
0.859629

Ornstein-Uhlenbeck 6 = 0.06, <50 = 0.1,

(7 = 0.01 * = 30

1.000000
1.000000
0.999996
0.999915
0.990842
0.884964

a = 0.02 x=30

1.000000
1.000000
0.999996
0.999924
0.992647
0.871195

a = 0.1

cr = 0.01 x = 50

1.000000
0.999998
0.999848
0.996258
0.887285

—

In the case of the White Noise process, we know that (3.4) is exact. Nevertheless, this case is of interest
since it provides a lower bound for the correlation coefficients resulting from the use of other Gaussian
processes for the force of interest.

Note that the denominator V[y(n)} should be V[y(n-\)].
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5. RELATIONSHIP BETWEEN gn AND tln

The function gn introduced in PARKER (1994b) and the function hn are of very
similar nature, but are based on different random variables (£„ for the former and []n

for the latter). These random variables are the limiting average cost per policy of a
portfolio of temporary and endowment insurance contracts respectively.

As the difference between endowment insurance and temporary insurance is the
pure endowment benefit, it is possible to link the random variables, £„ and ;]„. We
have,

(5-1) $ „ = t,n + n P x - e ~ y ( n ) .

This leads to the following relationship between gn and h,,.

Theorem: The functions gn and hn are linked by the following equation

(5.2) h n ( z n , y n ) = g n ( z n - n P x - e ~ y \ y n ) .

Proof: From definition (3.2), conditioning on y(n)=yn and using (5.1), we
have

(5.3) hn(zn, yn) = fy{n)(yn) • P^n~ nPx- e'y{n) =s zn - npx • e~•v(") \y(n) = yn)

- fy(n)(yn) • P(Kn — Zn ~ nPx ' <? ~ *''" \y(fl) = Vn).

Finally, from (4.3) of PARKER (1994b), the right-hand side of (5.3) is simply
9n(Zn-nPx-e~\yH). •

An immediate use of this result is to offer an alternative way of approximating
the distribution of ;]„. From (3.3) and (5.2), we have

(5.4) F,t (zn) = \ gn{zn - npx • e~y", yn) • dyn3,(zn) = 9n(zn ~ n

So the distribution function of $„ can be obtained by the numerical integration of
(3.3) or (5.4). It should be noted that using (5.4) involves one additional source of
inaccuracy in that the value of gn(zn - npx • e'y\ yn) has to be approximated (say
by linear interpolation) because it is generally not evaluated at the specific values
that zn ~ HPK ' e~y" m a y take in (5.4).

6. ILLUSTRATIONS

An arbitrary discritization method (details are provided in PARKER (1992)) using the
relationship between gn and hn has been used to obtain the distribution of {]„ for
different values of n. The results are illustrated in Figure 1.
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FIGURE 1. Cumulative distribution function of ;!„.
Endowment insurance policies issued at age 30.

Ornstein-Uhlenbeck 6 = 0.06, <50 = 0.1, a = 0.1, a = 0.01.
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The range of possible values for ;}5 is shorter than the one for ;^25- This is due to
the fact that with a limiting portfolio, there is no fluctuation due to mortality, and
therefore, all the possible variations in the random variable $„ are caused by the
force of interest. When there are only five years of fluctuating force of interest
involved, it is clear that the results will be less spread than when there are 25 years
of fluctuating force of interest. Due to the later time of payment of the survival
benefit, ;]25 takes smaller values than ^5.

Useful information for pricing or solvency purposes is contained in the right tail
of the distribution of ;\n. Some illustrative right-tail probabilities of the distributions
of ^5 and ^25 are contained in Table 2.

From Table 2, we know, for example, that a company charging a single premium
of 0.734243 to each life insured in a very large portfolio of 5-year endowment
contracts will meet its future liabilities with a probability of about 0.9968. Of
course, the company may choose to charge a lower premium. In this case, the
difference should be put aside if the future liabilities are to be met with the same
probability.
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TABLE 2

RIGHT TAIL OF THE APPROXIMATE DISTRIBUTION OF ;{„
5 AND 25 YEARS ENDOWMENT INSURANCE ISSUED AT AGE 3 0
ORNSTEIN-UHLENBECK (5 = 0.06, (5,, = 0.1, a = 0.1, a = 0.01

5 years endowment 25 years endowment

0.691584

0.705804

0.720023
0.734243

0.776901

0.931803

0.983629
0.992748

0.996828

0.999589

Z25

0.270676
0.294392

0.365540
0.412971

0.460403

0.933177

0.966609

0.993782

0.997693
0.999229

7. VALIDATIONS

The method has been validated by comparing the exact first three moments of $n

with the first three moments estimated from the distribution illustrated in section 6
(see Table 3). The expressions for the estimated moments can be found in section 7
of PARKER (1994b).

TABLE 3

COMPARISON OF EXACT AND APPROXIMATE MOMENTS OP ;{„
N-YEAR ENDOWMENT INSURANCE ISSUED AT AGE 3 0

ORNSTEIN-UHLENBECK d = 0.06, (5,, = 0.1, a = 0.1, a = 0.01

n

1
5
10
15
20
25

m = 1

0.90660
0.63471

0.43263

0.30965
0.22975
0.17581

m = 2

0.82196
0.40402

0.19026

0.09980
0.05658

0.03415

m = 3

0.74523
0.25792
0.08505

0.03348
0.01494

0.00734

E

m= 1

0.00000

0.00025
- 0.00054

- 0.00056
0.00005

- 0.00263

u:\-itua
m = 2

0.00000
0.00027

- 0.00069

- 0.00052

- 0.00027
-0.00100

m = 3

0.00000
0.00022

-0.00061
- 0.00034

- 0.00020

- 0.00029

The exact moments of $n about the origin may be obtained by using the
definition of $„ given by (2.2). Its mth moment about the origin is then given
by

(7.1) cromn _
k Lin J -

https://doi.org/10.2143/AST.26.1.563231 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.1.563231


A PORTFOLIO OF ENDOWMENT POLICIES AND ITS LIMITING DISTRIBUTION 31

For example, we obtain

(7.2) £Ufl
3l=2 I i^wl^-^-^-^ ' ' -^1 1-^0]

/ = () / = () k = 0

+ 3 I Z^-WnPt-Ele-*'*"-*'*"-?™]
/ = () ./ = ()

+ 3 X , | 4 x - ( , , / > , ) 2 - £ [ ^ y ( ' + l ) - 2 v ( ' 1 > ] + (nP*)3-E[e-3>-Ml
/ = ()

The moments of $n are exactly the limiting moments of the average cost per
policy obtained by PARKER (1994d).

For «S25 , the absolute difference between the exact and the approximate first
three moments of ;')n is always less than 0.003 and the relative error is less than
about 4%.

A discretization of (3.3) and (3.4) was also tried. It generally gave very similar
results to those presented here, but on some occasions, the results were worse due to
round-off errors.

8. ANNUAL PREMIUMS

The ideas presented here are easily extended to more general types of insurance or
annuity contracts. Note that for contracts where the benefits depend on the interest
process, the application of these results may not be so straightforward.

As a simple illustration of how to extend the approach presented here, consider a
portfolio of n-year endowment contracts with a benefit of 1 payable by annual
premiums nh i = 0, 1, ..., n-\. From proposition 5 of FREES (1990), we know that
the distribution of the present value of the cash flows generated by this portfolio
tends in distribution to

(8.1) -\n = X CFre-y(i\
i = 0

where

- Jin / = 0

(8.2) CF,= \ i.x\qx-nriPx < = 1, 2, . . . , n - 1

n-\Px i = n

One can then show, with appropriate modifications, that the cumulative distribu-
tion function of $n is given by (3.3) and (3.4) but with the first argument of hn _ j in
(3.4) replaced by zn - CFn • e'y". The condition for the non-zero starting value in
(3.5) should also be changed to zn =̂  CF0+CF{ • e'y'.
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32 GARY PARKER

Note that the intermediary values for h{, i - 1, 2, ..., n-\ are specific to
portfolios of n-year endowment contracts. They relate to the first i annual cash
flows generated by that portfolio and should not be used for portfolios of /-year
endowment contracts. This is in contrast with the results of sections 3 and 5 where
intermediary ht can be used to obtain the results for portfolios of endowment
contracts of duration up to n.

9. CONCLUSION

In this paper, we have suggested two ways of approximating the distribution of
limiting portfolios which can be used as long as the conditional probability density
function of y{n) given y(n — 1) and some covariances are known. Using a Gaussian
process for the interest rates simplifies things considerably.

From the very nature of the problem at hand, approximation (3.4) appears to be
highly acceptable. The worst possible case for Gaussian interest rates is when they
are independent, i.e. a White-Noise process. Even in this case, the correlation
resulting between consecutive present value functions is fairly high.

Due to the round-off errors frequently encountered when using the method
involving hn, it is preferable to use the relationship between temporary and
endowment insurance contracts, i.e. (5.4) which uses the equation linking gn

and hn.
The distribution of the average cost per policy is useful in pricing, valuation,

solvency and reinsurance. The justified and validated approximation we suggest in
this paper is certainly accurate enough for these purposes.
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