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1. Introduction. This paper presents a list of all finite groups having 
exactly six and seven conjugate classes and an outline of the background 
necessary for the proof, and gives, in particular, two results which may be 
of independent interest. In 1903 E. Landau (8) proved, by induction, that for 
each k the equation 

(*) 1 = — + — + . . . + — (wi > w2 > . . . > mk) 
w mi m2 mk 

has only finitely many solutions over the positive integers. This equation holds 
in any finite group G if k is interpreted as the number of conjugate classes 
Ki of G and mt as |G|/|i£*| ; therefore it follows that there are only finitely 
many non-isomorphic finite groups having exactly k conjugate classes. About 
1910 G. A. Miller (9) and W. Burnside (4, Note A ) derived those finite groups 
having at most five classes, together with the corresponding solutions of (*). 
D. T. Sigley (15) in 1935 examined those with k = 6, and for k = 7 he derived 
those with non-trivial centre; his list for k = 6 was in fact incomplete (cf. §2). 
No other notice was taken of Landau's result until it reappeared recently in 
The Collected Works of Otto Schmidt* (13); lately W. R. Scott (14) and R. 
Brauer (1 ; 2) have referred to it. 

The basic outstanding problem concerning Landau's result, as formulated 
by R. Brauer (1), is: 

Problem. "Give upper bounds for the order n of a group with a given class 
number k, which lie substantially below the bounds obtainable by Landau's 
method." 

For by Landau's method, when k = 6 the upper bound is 3,263,442 and when 
k = 7 it is 10,650,056,950,806; see Miller (10); the upper bound can be 
approximated by 32 ~2). In contrast, the largest finite group with six classes is 
LF(2, 7) of order 168 and that with seven classes is Alt(6) of order 360. 
However, until radically new methods are developed, obtaining even good 
estimates of the true upper bounds involves determining all groups with the 

Original version received August 24, 1966, and revised version January 18, 1967. 
This material formed part of the author's dissertation, McGill University, May, 1966. 
*I thank my director H. Schwerdtfeger for calling my attention to Landau's theorem, 

from this reference. 
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given class number, so that actually the Problem is solved at present only for 
k < 7. Note that for k = 5, 6, and 7, the largest finite group with k classes is 
simple ; and, roughly speaking, the closer a group approaches the structure of a 
simple group the higher its order becomes (for a fixed class number k < 7). 
This suggests that it might be useful to answer the Problem when the group 
satisfies certain conditions. For ^-groups, Ph. Hall (unpublished) has established 
a formula for k which almost completely resolves the Problem in this case; 
see also (12). 

Throughout this paper we discuss only finite groups, and we let k = k(G) 
denote the number of (conjugate) classes of G, Z(G) the centre of G, G' the 
derived group, and pa \\ n = \G\ that pa divides the order n of G but pa+1 does 
not (p prime). Often, we shall implicitly take (*) as a relation satisfied by the 
indices of the classes of some group G. 

2. The case k < 7. 

THEOREM 2.1. If G is a finite non-abelian group with exactly six conjugate 
classes, then one of the following holds: 

(i) equation (*) reads 

1 8 ^ 9 ^ 9 ^ 9 ^ 9 ^ 2 

and G = (x, y, z \ x3 = yz = z2 = 1, xy = x, xz = x2, yz = y2), 

or G = (x, y \ x9 = y2 = 1, xv = x8); 

(ii) equation (*) reads 

1 6 8 T 8 T 7 T 7 T 4 T 3 

and G = LF(2, 7) ; 

(iii) equation (*) reads 

l ^ + i + ^ + i + i + i 

and G = (x, y, z \ x4 = ys = zz = 1, xv = z, yz = y, zx = y2) ; 

(iv) equation (*) reads 

7 2 ^ 9 ^ 8 T 4 ^ 4 T 4 

and G = (w,x,y,z | w4 = x4 = ;y3 = s3 = 1, w2 = x2,xw = x3,yz = y,y" = z, 
ZW _ y2^ yX _ y 2 ; g* _ ^ 2 ^ . 
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(v) equation (*) reads 

l a a J L + JL + I + I + I + I 
1 2 ^ 1 2 ^ 6 ^ 6 ^ 4 ^ 4 

and G = (x, y, z \ x3 = y2 = z2 = 1, xz = x2, xy = x, ;y* = y), 

or G = (x, y | x3 = y4 = 1, xv — x2). 

THEOREM 2.2. If G is a finite non-abelian group with exactly seven conjugate 
classes, then one of the following holds: 

(i) equation (*) reads 

1 = JL - JL + JL + JL , J_ , i . + 1 
22 ^ 11 ^ 11 ^ 11 ^ 11 ^ 11 ^ 2 

and G = (x, j | x11 = y2 = 1, xy = x10); 

(ii) equation (*) reads 

39 ^ 13 ^ 13 T 13 T 13 T 3 T 3 

and G = (x, y | x13 = y3 = 1, x" = x3) ; 

(iii) equation (*) raids 

52 ^ 13 ^ 13 ^ 13 T 4 ^ 4 ^ 4 

awd G = (x, y | x13 = yi = 1, x" = x 5 ) ; 

(iv) equation (*) raxds 

16 T 16 T 8 T 8 T 8 T 4 T 4 

awd G « quaternion, dihedral, or semi-dihedral; 
(v) equation (*) reads 

1 2 0 T 1 2 ^ 8 T 6 T 6 T 5 ^ 4 

arad G = Sym(5) ; 

(vi) equation (*) reads 

3 6 0 T 9 T 9 T 8 T 5 T 5 T 4 

and G = Alt(6) ; 

(vii) equation (*) reads 

l . J . + i. + 1 + I + i + I + I 
2 4 ^ 2 4 ^ 6 T 6 T 6 T 6 T 4 

awd G = (x,y,z |x2 = y2, x4 = z3 = 1,*" = x3,x* = y,yl = xy); 
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(viii) equation (*) reads 

1 _ 55 + 11 + 11 + 5 + 5 + 5 + 5 

and G — (x, y \ x11 = y5 = 1, xv = x4); 

(ix) equation (*) reads 

^L + l + i + l + l + l + l 
42~r7~ t~6*" t~6""1~6~ t~6' i~6 

and G = (x, y | x7 = y = 1, xv = x3). 
The proof follows Landau's method (in contrast to the methods employed 

by G. A. Miller (9 )). If G is not to be abelian, then obviously 2 < mk < k — 1. 
Fixing k (here as 6 or 7) we take some value in this range for mk. Then mk-1 is 
bounded (roughly between mk/(mk — 1) and (k — l)mk/(mk — 1)) and we 
choose some intermediate value for mk-1. Continuing in this way we fill in the 
denominators in (*) and then check whether any group exists with these 
values as its class indices. This latter condition enables us to apply a number 
of restrictions to the possible value of raz- when mk, mk-i, . . . , mi+i are already 
chosen; for, if x 6 Kt and mt = |G|/|2£*|, then mt = \CG(x)\. The most basic 
restrictions stem from 

PROPOSITION 2.3 (Burnside, 4, Note A). If for some i > 1, mt = p, p prime, 
then p2 \ \G\, and if, for some j > 1, p \ mjf then mô = p. 

PROPOSITION 2.4 (Miller, 9). G is a Frobenius group with kernel of index p, 
p prime, if and only if mt = p for p — 1 distinct values of i. 

PROPOSITION 2.5 (Miller, 11). If for exactly b values of i > 1, mt = p} 

p prime, then b \ (p — 1) and (p — l)/b is the order of some element of G. 

PROPOSITION 2.6. If for some i > 1, mt = pq, p and q distinct primes, then 
for at least three distinct values of j > 1, pq divides m^. 

Actually we require more general forms of these propositions (for example, 
see Proposition 4.1) but usually the statement of the generalized proposition 
is too lengthy and awkward to warrant presentation here. We should note, 
however, the general principle underlying Proposition 2.6 since it is quite 
useful: mt is the order of a subgroup of G with non-trivial centre so that if mt 

is not a prime power, then for every prime p \ mt there exists a prime q \ mt 

{q 9^ p) and elements of order p and q which commute. 
In order to give a better idea of the actual proof, let us just indicate it 

briefly for k = 6. First, 2 < w 6 < 5. If m& = 5, no group exists because of 
Theorem 3.2 of the next section. If m6 = 2, the groups of 2.1 (i) follow from 
Proposition 3.1. Because w 6 = 3 leads to a lengthy discussion, we examine 
the case m6 = 4 instead; this should illustrate the methods sufficiently. If 
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m6 = 4 and m5 > 7, then m2, w3 , and m4 are at least 7, and m\ > 28, so (*) 
can never be satisfied. Therefore m 5 = 4, 5, or 6. If m 5 = 6, then ra2 = 6 and 
Wi = 12 by the same reasoning, and no such group of order 12 exists. If 
m5 = 5, then m4 cannot be 6 or greater, so m4 = 5, and then w 3 < 7; if 
m 3 = 6 we contradict Proposition 2.6 and if m 3 = 5, then m 2 = 5 by Proposi­
tion 2.5, contradicting (*). Finally if ra5 = 4, then either ra4 = 8, in which 
case m\ = 8 and no such group exists, or m4 < 7. If w 4 = 6, then using 
Proposition 2.6 and the bounds, w 3 = 6, and so m2 = mi — 12 and we have 
2.1 (v). If next m4 = 5, then either mz = 5 and so m2 = 12, or ra3 = 6, both 
of which contradict Proposition 2.6. Last, when m4 = 4, Proposition 4.2 of the 
last section gives two possible types of Frobenius group, and the remark that a 
cyclic group of order 9 has automorphism group of order 6 suffices to yield 
2.1 (iii) and (iv). We should remark that occasionally quite large values for 
mi occur in (*) even when Propositions 2.3 to 2.6 are not contradicted; 
because of their size we cannot refer to lists of such groups, and rather 
sophisticated arguments are required to show that no corresponding groups 
exist.* 

3. The case mk = k — 1. As we remarked above, mk is bounded by 2 below 
and by k — 1 above, if G is non-abelian. Now when k < 7, the values near the 
middle of the interval [2, k — 1], when assumed by mk, give quite a variety of 
groups ; from the smallest to the largest. Therefore it might be expected that, 
for a general k, as mk nears the extreme values, the corresponding groups are of 
a rather particular character. In fact, when mk = 2, we have, as a corollary 
of Proposition 2.4: 

PROPOSITION 3.1 (Burnside 4, Note A). / / m k = 2 j* \G\, then mj = 2& — 3 
for 1 < j < k, andG = (x, M | x2 = 1, yx = y~l for ally Ç M) where M can be 
any abelian group of order 2& — 3. 

In addition, Burnside (4, Note A) gave one possible solution for G when 
mk = k — 1. Here we describe all solutions in this case. 

THEOREM 3.2. If mk = k — 1, then either 
(i) k = pa (p prime) ; equation (*) reads 

y H & - l ) & £ - l & - l ' 
and G is a Frobenius group of order pa(pa — 1) in which the kernel is elementary 
abelian and has cyclic complement of order pa — 1 ; or 

(ii) k = 226 + 1 ; equation (*) reads 

2(k - 1) ^ 2(k - 1) ^ k - 1 ^ * * ' ^ k - 1 ' 

*Cf. my Ph.D. thesis "On the group class equation," McGill University (1966). 
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and G is an extra-special 2-group of order 2&+1. 
For each such value of k, corresponding such groups exist. 

Proof. To begin, let us show that only two forms of equation (*) expressed 
above can occur. To simplify the proof, let X denote k — 1. 

If i > 1, mt < 2X = 2(k - 1), since 

> 1 - k ~ l 

using (*). Thus we can write mt = X + pt where pt < X (i > 1). Note that 
(X, nti) = (X, pi) < pi. Let p be the minimum non-zero value of the pu so 
that for some j , 

ntj = X + p, nij+i = mj+2 = . . . = mk = X. 

Put (X, p) = p' < p. Since mi = \G\ = l.c.m.fra* ^ w j ) > X(X + p)/ p , 

i = i_ . . _L < PL i J . X ~ J 
mi ^ " * ' ^ w* ^ X(X + p) ^ X + p ^ X • 

Therefore X(X + p) < p' + j \ + (X - j) (X + p) ; that is, j < pf/p < 1. It 
follows that p = pand j = 1, so we have m 3 = w 4 = . . . = wfc = X = ^ - 1, 
& < m 2 < 2X, and if ra2 = X + p, then 1 < p < X and p = (m2, X). 

Now the values of the mt 9e m\ are the orders of the centralizers of the 
elements of G not in Z(G) (these centralizers are called the fundamental 
subgroups of G; cf. I to (7)). Thus if m2 < 2X, then no fundamental subgroup 
is a proper subgroup of any other fundamental subgroup of G. By a theorem of 
Ito (7, 4.2) the fundamental subgroups of G must be abelian, and hence must 
be Hall subgroups of G (Brauer and Fowler 3, Section 14). In particular, 
(m2, X) = 1, and since m2 = X + p with p = (w2, X), we conclude that 
w 2 = X + 1 = k. 

Thus if mk = k — 1, then niz = m± = ...=nilc and m2 = k or m2 = 
2(k — 1). If m2 — k, then we have seen that the fundamental subgroups of G 
are abelian Hall subgroups; by a generalization of Proposition 2.6 ra2 = k 
must be a prime power, say k = £a. The solutions of xpa = 1 lie in X i and K2 ; 
conversely, because m2 = £tt, every element of K\ and i£2 must be a solution 
of xpa = 1. Therefore there are exactly 1 + \K2\ = pa such solutions. Since 
m 2 = pa, it follows that G possesses a normal subgroup of order pa. Using the 
fact that the order of any non-trivial element of G divides pa or pa — 1, a 
theorem of Feit (5, 2.1 ) now shows that G is a Frobenius group. The kernel, of 
order pa, must be elementary abelian (Burnside 4, p. 182), and its complement, 
being abelian, must be cyclic (18). Burnside (4, Section 140) has shown that 
for all prime powers pa > 3, such a group exists. 

If m 2 = 2(k — 1), then |Z(G)| = 2. Ito (7) has shown that a group whose 
centre and non-central classes have order 2 is a 2-group. Then, applying 
Section 99 of Burnside (4), we have G' = Z(G) and G/G' elementary abelian 

nti \mk niiA-i/ 
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with an even number of generators, say 2b. Such (extra-special) 2-groups exist, 
for each positive integral value of 6, as the central product of b quaternion and 
dihedral groups of order 8. 

4. The case mk = ?%_i = wfc_2 = 4. A majority of the groups having 
k < 7 are Frobenius groups. Often they arise through Proposition 2.3 and a 
generalization of this result proves useful. 

PROPOSITION 4.1. Let S be a subset of the integers from 2 to k and p a prime 
such that in (*), if s Ç 5, ms is a power of p, and 

S W = ~~F~ ' 
with p* || n = |G| 9e pa. Then G is a Frobenius group with kernel of index pa. 

Proof. Denote the number of solutions in G of xpa = 1 by t. Let P be a p-
Sylow subgroup of G and let X be the number of £-Sylow subgroups of G. Note 
that \\NG(P)\ = n so X < n/pa. Now if x — 1 or x € Ks for some s G S, then 
xpa = 1 and so 

t > v~Y/n + i > 0a - Dx + i. 
On the other hand, xpa = 1 means that x G yPy~l for some y and a s P H 
y i V 1 > 1, then t < 1 + (pa - 1)X. I t follows that P C\ yPy-1 = 1 if 
;y $ NG(P) and that NG(P) = P . Hence G is a Frobenius group and P is a 
complement of the kernel. 

I t is natural to ask if we can eliminate the condition "pa \\ n" in the above 
proposition. The simplest related case to examine is that of p = 2, a = 2, and 
the answer here is:* 

THEOREM 4.2. Let G satisfy (a) mk = m^i = wfc_2 = 4. Then G is one of: 
(i) a Frobenius group whose kernel is abelian of order 4& — 15 and index 4 

(so mj = 4& - 15 for 2 < j < k - 3) ; 
(ii) a Frobenius group whose kernel is abelian of order Sk — 39 and any 

complement is quaternion of order 8 (so mk-Z = 8, mj = Sk — 39 for 2 < j < 
* - 4) ; 

(iii) abelian of order 4 ; or 
(iv) quaternion or dihedral of order 8. 

Proof. First we need a formula for the class number of a Frobenius group, 
and this follows directly from the properties of Frobenius groups: 

LEMMA 4.3. / / G is a Frobenius group with kernel M and a complement H of 
order h, then 

*I thank T. Gagen for his help in completing the proof of this theorem. 
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Now let G be a minimal counterexample, n = \G\. By (iii), n ^ 4. If 4 || n, 
then by Proposition 4.1 G is a Frobenius group whose kernel has index 4. 
By a theorem of Burnside (4, p. 172) the kernel is abelian and so by Lemma 
4.3 it has order 4& — 15, contradicting (i). Therefore 8 | n and Suzuki (16 ; 17) 
has shown the 2-Sylow subgroups of G to be dihedral or quaternion, or possibly 
semi-dihedral of order at least 16. Of these, only the quaternion and dihedral 
groups of order 8 satisfy (a), as is easily checked. By (iv), w ^ 8 , Let P be a 
2-Sylow subgroup of G and 1 9* t Ç Z(P) ; t is an involution of G. Since 
P < CG(t), then CG(t) satisfies (a). If CG(t) = P , then for some i, mt = 8, and 
since 8 || n, 8 ^ n,G is a Frobenius group with kernel of index 8 by Proposition 
4.1. Again the kernel is abelian, and k(P) = 5, so by Lemma 4.2 the kernel 
has order Sk — 39. Finally, Zassenhaus (18) has shown that P cannot be 
dihedral, so (ii) forces us to conclude that CG(t) 5e P. li P were quaternion, 
then by Proposition 4 of Suzuki (17), CG(t) is SL(2, 3) or SL(2, 5), neither of 
which satisfy (a). Hence P is dihedral, 

P = (x, y \ xA = y2 = 1, xv = x-1), t = x\ 

By Lemma 8 of Gorenstein and Walter (6), CG(t) has a (non-trivial) normal 
2-complement N. Then xy and y act as fixed-point-free automorphisms of N of 
order 2 by (*), sending every element of N into its inverse. But then (xy) (y) = x 
leaves N elementwise fixed, contradicting (*). Therefore G does not exist. 

I t is an open question what happens if p ^ 2 or if a > 2. 
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