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Rotating spheres in cylindrical channels roll or slide along the channel depending on
the physical and geometric conditions. For a thorough investigation of the phenomenon,
finite-element modelling is utilized to obtain the resistance coefficients for the motion
of a sphere in a cylindrical channel, with an emphasis on near-wall motion. Extracted
coefficients are compared with the data in the literature and utilized in exploring the
conditions for rolling versus sliding along the channel. Sliding occurs due to the pressure
build-up in the nip region between the wall and the rotating sphere in small confinement
ratios, whereas rolling occurs when the shearing forces on the sphere are dominant in
larger ratios. According to numerical results, a flow reversal takes place in the nip region
and reduces the shear as well. Rolling versus sliding is demonstrated in experiments by
using magnetic spherical particles, which are rotated by means of an external magnetic
field inside cylindrical channels filled with viscous fluids. Faster axial velocities are
observed in narrow channels while sliding than in wider channels while rolling for the
same rotation rate of the sphere. Experiment observations are compared with the velocities
evaluated from the resistance coefficients, showing that the distance between the sphere
and the wall, which is dominated by roughness, plays an important role in the velocity of
the sphere.
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1. Introduction

The motion of spherical particles in channels is a quintessential problem in fluid mechanics
and has been studied extensively in the literature with a range of applications in many
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fields, such as sedimentation (Jayaweera, Mason & Slack 1964; Batchelor 1972; Bungay
& Brenner 1973; Herron, Davis & Bretherton 1975; Arigo et al. 1995; Zhang & Muller
2018), lubrication (O’Neill & Stewartson 1967; Barnocky & Davis 1989; Higdon &
Muldowney 1995; Gopinath, Chen & Koch 1997; Marston, Yong & Thoroddsen 2010),
microfluidics (Bhagat, Kuntaegowdanahalli & Papautsky 2009; Koklu, Sabuncu & Beskok
2010) and micro/nanorobotics (Avron, Kenneth & Oaknin 2005; Golestanian & Ajdari
2008; Silverberg et al. 2020). Limited analytical solutions are available under simplifying
assumptions, especially at low Reynolds numbers. Basset (1888), Boussinesq (1903) and
Oseen (1927) studied the motion of a sphere settling under the gravity force in a quiescent
fluid. In such a fluid, disturbance to the flow occurs solely due to the settling motion of the
sphere, which is of low Reynolds number, and this allows the deduction of the resulting
fluid force on the sphere using the Stokes equations (Maxey & Riley 1983). Tchen (1947)
included the effects of unsteady flows in his PhD thesis, which prompted an immense
number of studies suggesting corrections to his equations. Among the notable corrections,
Corrsin and Lumley’s (1956) remark on the contribution of the pressure gradient on the
net force acting on the particle, and Buevich’s (1970) correction on the term suggested
by Corrsin & Lumley (1956) should be listed as well. Soo (1975) and Gitterman &
Steinberg (1980), on the other hand, offered their own solutions. Maxey & Riley (1983)
gave the equation the form that is widely used to this day, with corrections by Auton,
Hunt & Prud’Homme (1988) and Maxey himself. Brenner & Happel (1958) investigated
the frictional drag on a confined sphere subjected to a Poiseuille flow using the method
of reflections. They concluded that the drag is minimized at an optimal distance away
from the cylindrical channel boundaries. However, their results are valid in asymptotic
cases where the distance between the sphere and the channel wall is much larger than
the sphere radius. Later, Brenner & Sonshine (1964) calculated the torque required to
maintain steady rotation of a sphere inside a cylindrical conduit. Their data show that
the resistance to rotation increases logarithmically as the confinement increases. Bungay
& Brenner (1973) studied the motion of spherical particles in a tightly fitting cylindrical
conduit and proposed an improvement on the existing lubrication theories, which is still
widely used in the cases where the sphere and the channel wall are in close proximity.

The limitations of asymptotic models have been overcome only recently. Higdon &
Muldowney (1995) used a spectral boundary element method to obtain translational
resistance coefficients of torque-free spheres moving inside cylindrical conduits. They
presented tabulated results for a range of confinement ratios at any distance from the
channel wall. For the cases when the sphere is too close to the channel wall, they employed
the lubrication theory. As zero torque conditions are applied, rotational resistance
coefficients and coupling coefficients are not reported. The most recent and comprehensive
study on the topic is presented by Bhattacharya, Mishra & Bhattacharya (2010) in which
the authors presented a semi-analytical method called the basis transformed spectral
method (BTSM) to calculate translational, rotational and coupling resistance coefficients
for spheres at a wide range of radial positions and for various confinement ratios. In this
method, reflection relations for separable solutions of the flow field, represented by a basis
function expansion governed by the Stokes equations, at the surfaces of the spherical
particle and the cylindrical channel wall are utilized. The study is the first to report the
exact coupling coefficients between the rotation and translation of a spherical particle
inside a cylindrical channel. The authors explain the transition from rolling to sliding
through the change in the sign of the coupling coefficients, which come out from the
opposing effects of the pressure and shear forces on the particle.

One of the earliest reports on rolling and sliding is by Goldman, Cox & Brenner
(1967), where the authors deduce that a sphere should slip as it rolls near a boundary.
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The phenomenon is demonstrated by Liu et al. (1993) experimentally. The authors found
that when a sphere is dropped near a planar wall, depending on the nature of the fluid used
(Newtonian versus non-Newtonian) and the angle of inclination of the wall, the sphere
might perform normal or anomalous rolling. Anomalous rolling is defined as the sphere
rolling in a direction against its direction of rolling in the dry rolling case, for example,
rolling upwards as it falls through a vertical tube. It is similar to what we call sliding in
this study, but the translation is induced not by the rotation of the sphere but by gravity.
The sphere exhibits anomalous rolling in both Newtonian and non-Newtonian fluids, and it
shies away from the wall when the wall is vertical. The researchers observed that the sphere
transitions to normal rolling in Newtonian fluids once the inclination of the planar wall
is beyond a critical angle. However, anomalous rolling persists in non-Newtonian fluids
regardless of the inclination angle. Similar behaviour patterns are observed for spheres
falling down cylindrical tubes as well (Humphrey & Murata 1992), and more studies
reporting the behaviour of spherical particles approaching a boundary or falling near a
boundary (Dreyfus et al. 2005; Takagi et al. 2014; Djellouli ef al. 2017), and studies on
the collective behaviour of multiple particles (Brenner 1961; Bico et al. 2009), are also
available in the literature.

Anomalous rolling is attributed to shearing at the large space between the sphere
and the wall (Humphrey & Murata 1992). Bhattacharya et al. (2010) highlight the
effect of lubrication as the sphere gets closer to the boundaries, so much so that the
coupling resistance changes its sign and the sphere exhibits rolling instead of sliding.
One important consideration at close proximity becomes the surface morphology of
the sphere as roughness elements start to affect the distance from the sphere to the
boundaries. Smart, Beimfohr & Leighton (1993) investigate rough spheres rolling down
planes and find that the change in the distance from the sphere to the plane changes the
coefficient of friction of the sphere, which manifests itself as fluctuations in the sphere
velocity. When a roughness element makes contact with the plane, the contact may initiate
normal motion relative to the plane that would decrease the rotation and increase the
slip. The authors also provide a theoretical model that is in quantitative agreement with
their experimental results with rough spheres. A more rigorous model is developed by
Galvin, Zhao & Davis (2001) for a sphere rolling down a tilted plane, in which they
define two roughness scales for the sphere. Large roughness elements temporarily lift
the sphere, and as it rotates, it moves away from the plane, and this causes the sphere
to lose contact with the plane. The sphere is then pulled down by gravity to be lifted off
from the surface once again, with an upcoming roughness element. The authors report
that the sphere is in contact with the plane for a longer time at lower inclination angles
than in higher inclination angles, but the hydrodynamic resistance appears to be greater
at high inclination angles. This is explained by the sphere’s faster rotation leading to
more frequent contact of the large roughness elements with the plane. Based on the
model of Galvin et al. (2001), Zhao, Galvin & Davis (2002) study the problem of a
smooth sphere rolling down a rough plane with two different roughness scales again.
Upon contact with a large bump, the translational velocity of the sphere decreases as
the rotational velocity increases, then the sphere quickly loses contact with the bump
and the translational velocity decreases further upon contact with the small bumps. The
dimensionless translational velocity is much greater than the dimensionless rotational
velocity, indicating that the sphere slips all this time. Upon contact with the second large
bump, the velocities coincide and slipping stops. These observations are quite critical as
the gap size between the sphere and the channel wall determines the mode of motion of
the sphere.

935 A9-3


https://doi.org/10.1017/jfm.2021.1144

https://doi.org/10.1017/jfm.2021.1144 Published online by Cambridge University Press

H.O. Caldag, E. Demir and S. Yesilyurt

A comprehensive investigation of the motion of a rotating sphere in close proximity
to the boundaries is necessary. Our study aims to understand the effects of geometric
parameters and to elucidate the rolling and sliding of spheres in cylindrical channels. In
that regard, we study the effects of the distance of the sphere from the channel boundaries,
and the confinement ratio, which is the ratio of the radii of the channel and the sphere,
numerically and experimentally. The transition between rolling and sliding is demonstrated
with respect to the confinement ratio. To this end, we first introduce a finite-element
method-based (FEM) numerical model to obtain the complete set of resistance coefficients
for a sphere inside a cylindrical channel especially for the case where the sphere is very
close to the channel wall. The resistance coefficients are systemically derived by evaluating
the forces and torques on the sphere for given swimming velocities. Unlike in Higdon &
Muldowney (1995), coupling and rotational resistances are included here alongside the
translational resistance coefficients. Moreover, we verify that the FEM model is more
efficient and accurate especially for the case when the sphere is very close to the channel
wall compared to the semi-analytical model presented by Bhattacharya er al. (2010).
Furthermore, we demonstrate the rolling and sliding of rotating spheres in cylindrical
channels experimentally for the first time in the literature. In our experiments, magnetized
spheres with considerable roughness are placed in viscous fluid-filled cylindrical channels
and rotated with the help of a rotating magnetic field. Both the rolling and sliding cases
are reported and characterized. Finally, the experiment results are confirmed with the
velocities obtained from the resistance coefficients, showing that the sphere is rotating
in close proximity to the channel boundaries but the exact proximity cannot be determined
due to the roughness of the spheres used in the experiments and limitations in image
processing capabilities.

2. Methodology
2.1. Resistance coefficients

Consider a sphere with diameter Dy rotating inside a viscous fluid-filled cylindrical
channel with diameter D, as shown in figure 1. Inertial effects in low Reynolds number
motion are generally negligible, which is why the forces and torques acting on the sphere
are directly related to the linear and angular velocities of the sphere through a resistance
matrix, R. The matrix is generally expressed in terms of its four subcomponents as

m _[A] [Z] - [,CZ ﬁZ] m @

In this equation, F is the viscous force acting on the sphere and 7 is the torque. F" is the
translational resistance matrix, F'" is the rotational resistance matrix, and F” and F'* are
the coupling resistance matrices with F” = F'" where the /* sign indicates the transpose.
The linear velocity vector is U, and the angular velocity vector is @. Two coordinate
frames will be used in the text. One follows the notation in Bhattacharya et al. (2010):
it is a cylindrical coordinate frame with the z axis placed alongside the long axis of the
cylindrical channel. The radial direction is identified with p, and the tangential direction

is identified with ,fi — unit vectors in figure 1 — along with a global Cartesian frame.

The elements of the resistance matrix are obtained in the cylindrical coordinates by
running a series of simulations in which one component of linear or angular velocities is
set to unity and the rest are set to zero. Most of the off-diagonal entries are found to be

infinitesimally small (10° times smaller than the parameters listed in table 1) so they are
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=

Figure 1. Geometric set-up for the sphere of diameter D inside a cylindrical channel of diameter D, and
the coordinate frames.

Inputs Outputs
u, Ug U, w, wp (Equations)
1 0 0 0 0 0 Fy, =F,
0 1 0 0 0 0  Fgg=Fp G=-—-rt,
0 0 1 0 0 0 FIL=F, G =-14
0 0 0 1 0 0 Fpy =1,
0 0 0 0 1 0 G =-F Fg=1
0 0 0 0 0 1 G=-rg Fl =1,

Table 1. Combinations of linear and angular velocity values, and the resultant equations.

assumed to be zero, resulting in the following explicit form for (2.1):

FO[F, 0 0 0 0 07ru

Fg 0 F ;tSt 5 0 0 0 —G||u 8

F.l o 0 Ft 0 -G 0||u 02
w| =10 o o0 FLo0 0 || :
8 0 0 -G 0 Fg O wp

z] o -6 o o 0 Fr|Le

The whole set of cases and the resulting equations from each one of the cases are listed in
table 1. A total of six separate simulation runs are required to obtain all of the components
in (2.2) for a given position of the sphere.

2.2. The finite-element model
Sphere motion in viscous fluids and at very small scales (Re < 1) is governed by the
Stokes equations. The equations are written in non-dimensional form as

Vu—-Vp=0, V-u=0. (2.3a,b)

Here, u and p are the non-dimensional fluid velocity field and the pressure, respectively.
The length scale for non-dimensionalization is the sphere radius Rj, the time scale is
the rotation frequency of the sphere f, and the mass scale is the fluid viscosity p; u is
non-dimensionalized with [f while p is non-dimensionalized with uf.
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(a) (b)

Symmetry plane
Sphere surface

Dense meshing domain

Figure 2. Geometries for the FEM models. (¢) Half-cut model in the yz plane and (b) half-cut model in the xy
plane. Regions shown in orange are densely meshed for the simulations where p; > 0.9.

The COMSOL Multiphysics software package is used to solve the incompressible Stokes
equations. No-slip boundary conditions are applied on the channel boundaries and the
sphere surface. The sphere surface is modelled as a moving wall with a velocity profile
expressed as

us=U+wx(r—ry, res, 2.4)

where 7 is a position on the sphere surface S and ry is the position of the centroid of the
sphere.

Taking advantage of the symmetries in the model, the computational domain is cut
in half in circular and rectangular cross-sections of the cylinder through the sphere for
computational efficiency, as shown in figure 2. A slip boundary condition is applied at the
cut planes as a symmetry condition. The complete three-dimensional (3-D) geometry is
required only to obtain the rotational resistance of the sphere in the radial direction, Fy),,
with the same meshing parameters used in the cut geometries.

The P2+P2 discretization of the fluid and MUMPS direct solver are employed for the
simulations. Tetrahedral elements are used to mesh the fluid domain, and triangular surface
mesh is applied to the sphere surface, with the same meshing applied to symmetric pairs
of the sphere faces to improve the accuracy of the solutions. The coefficients in (2.2) are
obtained from the scenarios listed in table 1 for a wide range of non-dimensional radial
positions, defined as

~ Ps
= 2.5
Ps R — R, (2.5)
where p; is the dimensional radial position of the sphere and R, is the radius of
the cylindrical channel. The minimum distance from the sphere surface to the channel

boundaries is identified by § and is non-dimensionalized as

_
§=— 2.6
R (2.6)

We first demonstrate the mesh convergence for the configuration pg; = 0.8 and R, /Ry =
1.6. The narrowest channel size is considered here so as to demonstrate the convergence
with respect to the densest meshing possible. The converged configuration will be used to
obtain the resistance coefficients for 0 < p; < 0.9. The meshing strategy is slightly altered
for p; > 0.9 as the convergence in this range is much more demanding.

The mesh convergence study over the domain element size shows that the system is
relatively insensitive to this parameter (maximum element size ranging from 0.1R; to
Ry), with a relative error of less than 1 % even at the coarsest meshing configuration (not
shown). The meshing on the spherical surface appears to be more critical for convergence,
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Figure 3. Convergence of F” FI7 and G for (a) py = 0.8 and R.,/Ry = 1.6, and (b) p; = 0.99 and

Ron/Rs = 1.6.

with the results demonstrated in figure 3(a) for several key resistance coefficients. The
relative percentile error, e, is defined as
{FZ, FIZ, Ghmax

FeaRmly Vol

E{Fétz’pzrzryc} =100 y (27)

where {F ?Z, F77, G}jnax indicate the values obtained at the maximum degrees-of-freedom
that corresponds to the smallest mesh element size. The converged configuration results in
around 4 x 10° degrees-of-freedom in cut geometries and takes up to 100 GB of random
access memory (RAM) usage.

When the sphere is very close to the channel wall, special care must be taken to
ensure converging results. In this work, we take 0.9 < p; < 0.99 to be the close proximity
range, corresponding to 0.006 < § < 0.2. The minimum element dimension in the mesh
is adjusted to accommodate properly the small gap between the sphere and the channel.
As the sphere gets closer to the channel boundaries, a large pressure gradient builds up
across the nip region between the sphere and the channel wall when the sphere rotates
in the B direction (azimuthal). An accurate solution of the pressure gradient is critical
to obtain resistance coefficients with high accuracy. Hence the meshing density in the
fluid surrounding the sphere is increased to match the density on the sphere (the regions
coloured orange in figure 2). A mesh convergence study is carried out for p; = 0.99 and
R.n/Rs = 1.6, corresponding to the tightest configuration in the scope of this work, and
the convergence of FZ, FI/ and G are displayed in figure 3(b). The results indicate that the
relative error falls below 1 % as the degrees-of-freedom approach 3million. The maximum
element size around the sphere is §/2, and the minimum element size is §/40 in the
converged configuration.
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(b ) Camera

Iy = Iysin(2tft)

Glass
tube

1= I cos(2Ttft) (= 0)
— = I,cos(2mft)

(@

Figure 4. (a) Close-up image of the magnetic sphere with Dy = 1 mm used in the experiments. (b) Schematic
drawing of the Helmholtz coil set-up, showing the currents applied to each pair. (¢) Experiment set-up for
rotating the magnetic spheres. (d) Schematic description of magnetic actuation of the spheres.

2.3. Experiments

In experiments, radially magnetized nickel-plated sintered neodymium (NdFeB) spheres
(SM Magnetics, Pelham, AL, USA) of diameters 1 mm and 1.9 mm are placed inside glass
channels of diameters 1.6 mm, 3 mm and 5.7 mm. The roughness of the spheres, which is
critical in their motility, is investigated using a Nanofocus 3-D surface metrology system.
The results of the measurements are provided in Appendix A. We present a close-up image
of the sphere with Dy = 1 mm in figure 4(a), which shows the roughness of the spherical
surface. Since the spheres are made of magnetic ceramics with nickel coating, it is very
difficult to clean them free from pieces of chipped coating and other magnetic debris that
accumulates at the surface.

The channels are filled with silicone oil mixtures with u© = 0.5Pas and u = 1Pas.
Removal of excessive air inside the liquid is critical in order to obtain matching results
with the simulations. The tubes are placed into a vacuum chamber (0 PSIA, measured with
Omega DPG5600B-30A PSIA) for degassing before experimentation. After the degassing
procedure, the tubes are sealed tightly to prevent air from leaking back into the liquid.
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The sealed tubes are placed horizontally inside the experiment set-up consisting of three
orthogonal Helmholtz coil pairs to induce sphere rotation. The coil system is controlled
with custom LabVIEW software via Maxon drivers connected to the computer controlling
the experiments. The experiment set-up is drawn in figure 4(b) and pictured in figure 4(c).

The spheres are rotated with a rotating magnetic field to observe sliding and rolling
trajectories. Two of the coil pairs, placed along the y and z directions, are excited with
sinusoidal out-of-phase currents with amplitude /j to create a magnetic field rotating about
the x direction in the global frame. The magnetic field applied by each coil is measured
using Phidgets 1108 Magnetic Field Sensors to assure equal magnetic field strength in both
directions. The magnetic spheres are actuated at different magnetic rotation frequencies
(f) ranging between 0.1 Hz and 20 Hz, and the trajectories are recorded using a digital
microscope from above (refer to figure 4c). Gravity, denoted g, is acting in the —y
direction.

As the rotating magnetic field is applied to the magnetic sphere, magnetic torque tends to
align the sphere’s magnetic dipole moment, m, with the direction of the applied magnetic
field, B, so that the sphere rotates around the B direction in the cylindrical frame as the
magnetic field rotates in the x direction in the global frame. The relationship to evaluate
the induced magnetic torque, 7,,, is given by the equation

T, = m X B, (2.8)

As implied by the cross-product, actual magnetic torque acting on the sphere at any
given instance depends on the sine of the angle, ¢, between the magnetic dipole moment
vector of the sphere and the magnetic field vector, when the two vectors are co-planar
as shown in figure 4(d). The angle depends on the viscous torque, which balances the
magnetic torque assuming that the sphere rotates at the same rate as the rotating magnetic
field. A schematic of the sphere motion due to the rotating magnetic field inside the
channel is given in figure 4(d). The spheres are not able to rotate indefinitely faster as
the magnetic torque rotating the sphere cannot overcome the viscous resistance beyond a
certain f. The sphere rotation stutters at larger f, which is called step-out in the literature
(Zhang et al. 2009).

A rotating sphere near the channel wall translates along the z axis of the cylindrical
channel. The translation velocity, u;, is extracted from the experiment recordings using the
image processing code reported in our previous work, which utilizes MATLAB’s Image
Processing Toolbox functions (Caldag, Acemoglu & Yesilyurt 2017).

3. Results
3.1. Validation of the finite-element model

The results from the FEM model are compared with two different datasets from the
literature for validation purposes. ps is varied from 0 to 0.99 in the FEM simulations.
Selected R, values are 1.6, 2 and 3, while Ry is fixed at 1. For the sake of brevity, the
verification results will be presented only for R.; = 2 in this section. The complete list of
the resistance coefficients and comparisons with the data from the literature for R, = 1.6
and R., = 3 are provided in Appendices B and C.

The resistance coefficients are normalized as in Bhattacharya et al. (2010):

1t
Flopaiopa (3.1

Fl‘l‘ =
R T -3
935 A9-9
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Figure 5. Comparison of the translational and rotational resistance coefficients obtained from the FEM
simulations and the data in the literature for Ren/Rs = 2. (@) Fjy,. (b) F Zﬂ’ (c) F, (d) Fl),, () F ,’3% and
) F’f The insets show the coefficients for p; > 0.9.
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Figures 5 and 6 show the parameters obtained via the FEM model and the results from
two studies in the literature. Translational and rotational resistance coefficients match quite
well with the reported data for 0 < p; < 0.9. When we compared our results with those
in Bhattacharya et al. (2010), we observed some discrepancies, especially as p; — 1. The
authors kindly provided their code for the re-evaluation of the resistance coefficients with
higher accuracy at Ay = 16, gy = 10, Lyax = 12 and §; = 0.02 (refer to Bhattacharya
et al. (2010) for the definitions of these parameters). Updated resistance coefficient values
are shown in red in figures 5 and 6, and agree much better with the FEM results than the
values reported in Bhattacharya et al. (2010), especially for near-wall values (p; > 0.9).

For the coupling resistances G and G/, shown in figure 6, the results show a good match
up to py = 0.98 with the re-evaluated coefficients from the Bhattacharya er al. (2010)
model. For G, the original results of Bhattacharya et al. (2010) predicted a decrease for
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Figure 6. Comparison of the coupling resistance coefficients obtained from the FEM simulations and the
data in the literature for Ry, /Rs = 2. (a) G, (b) G'. The insets show the coefficients for g; > 0.9.

ps > 0.95, whereas the updated results show that the decrease occurs only for p; > 0.98.
Our FEM results exhibit no such decrease at all. For G/, while we see a decrease in
magnitude in all cases, there is a great discrepancy between the FEM result and the
Bhattacharya et al. (2010) result for p; = 0.99. The discrepancies between the published
results in Bhattacharya et al. (2010) and the re-evaluated coefficients stem from the
selection of the model parameters that are critical for convergence. The output of the
Bhattacharya et al. (2010) model is a grand mobility matrix whose dimensions ideally go to
infinity. The matrix is truncated to a certain dimension, denoted by g = 3/,0x(lnax + 2),
for matrix inversion, which is a required step in obtaining the friction matrix that gives
out the resistance coefficients. Each term in the mobility matrix is also an approximation
in itself as each term includes a truncation of an infinite summation and an infinite
integration. The authors reported a convergence study over multiple model parameters,
including Ajuux, 84, Umax and Ly, for translational and rotational resistance coefficients,
which tend to converge fast for p; = 0.5 and p; = 0.9, with relatively low computational
requirements. The convergence of the coupling coefficients is omitted in that study; we find
that they do not converge as fast, especially as p; — 1. The results of a new convergence
study with the Bhattacharya et al. (2010) code over [, for p; = 0.99 (provided in the
figure in Appendix D) show that the coupling coefficients barely converge for the largest
Lnax tested. Increasing l,,,,, further had convergence issues in the model. The improvement
in the matching of the results with the re-evaluated data from Bhattacharya er al. (2010)
permits confidence in the high-resolution FEM results. One more point to note here is
that it takes up to 24 hours for the Bhattacharya et al. (2010) code to finish running for
Imax = 18, whereas our FEM model with the densest meshing takes up to 10 hours on

935 A9-11


https://doi.org/10.1017/jfm.2021.1144

https://doi.org/10.1017/jfm.2021.1144 Published online by Cambridge University Press

H.O. Caldag, E. Demir and S. Yesilyurt

the same workstation (a minimum of six separate simulations are required, with around
1.5 hours of runtime for each) and provides high accuracy for most of the parameters at
a much lower computational cost. Furthermore, one has to carry out a multi-parameter
convergence study for the Bhattacharya et al. (2010) model by covering other parameters
listed above, which would increase the overall computational cost even further. The FEM
model is very useful for single-particle systems but it may become costly for solving
systems involving multiple particles. In that case, BTSM can be utilized for a global
solution, and the FEM model can be used to resolve local fields involving fewer particles.
The convergence of BTSM in earlier work appears to be incomplete, especially in terms
of the coupling resistances and at close proximities. A multi-parameter convergence on
BTSM is necessary to fully benefit from this approach for spheres in close proximity to
the channel boundaries.

3.2. Rolling and sliding

Rolling and sliding are tied to the coupling and translational resistance coefficients. From
(2.2), one can write

G

up = i Wz, 3.5)
BB
Gl

U, = — wg, (3.6)
F

where ug and u; are the rolling/sliding velocities in the respective directions. Utilizing the
normalization in (3.3) and (3.4), we define a non-dimensional velocity u:

iy = G (3.7)

B = Cl)ﬂR 6TCF” ’ .
G/

i, = % (3.8)

C wRy 6mFL

Figure 7 depicts the non-dimensional velocities ug and u; for all Rc;/R; values tested
for ps > 0.9 with respect to 8. The rotation of the sphere around the z axis gives rise
to the sliding motion in the B direction, as shown in figure 7(a). As the sphere rotates,
a pressure gradient (with maximum p = py and minimum p = py) develops between the
fore and aft of the sphere that induces sliding motion. Previous experiments had shown the
sliding behaviour along the channel boundaries as the sphere rotates around the channel’s
long axis (z axis), resulting in circular trajectories around the long axis of the channel
without any translation in the z direction (Demir 2018). At sufficiently high rotation rates,
the radius of the circular trajectory decreases and the sphere settles at the centre of the
channel radially (Demir 2018). Here, ug is positive for the cases depicted in the figure;
however, it starts to decrease as § — 0, especially at high values of the curvature (shown
in figure 7b). Although G keeps increasing as § — 0, F’ ,tstﬂ exhibits a logarithmic increase
(also predicted by Higdon & Muldowney 1995) that leads to an overall decrease in the
ratio.

Rotation around the § axis results in axial sliding or rolling motion along the channel,
as shown in figure 7(c). As shown in figure 7(d), u, values are mostly negative, indicating
that the sphere slides. Also worth noting is the fact that i, varies logarithmically with §.

935 A9-12


https://doi.org/10.1017/jfm.2021.1144

https://doi.org/10.1017/jfm.2021.1144 Published online by Cambridge University Press

Rolling and sliding motion of rotating spheres

(a) (o) Channel \

Channel

ug> 0 Sliding u,> 0 Rolling
ug<0 Rolling u, < 0 Sliding
O
b) 0.08 () o R
0.07 ¢
—e— R,/R =16
ug 006 |~ Ry/R;=2 u, —0.05 y
—— R, /R =3 A
0.05 | g
~0.10 \S\N&%
0.04
102 107! 102 107!
5 s

Figure 7. (a) Coupling-induced velocity ug. (b) ug for all curvature ratios for near-wall swimming conditions.
(¢) Coupling-induced velocity u;. (d) u; for all curvature ratios for near-wall swimming conditions. The orange
line in (d) is where u#, = 0 and highlights the transition from negative to positive values. Colour bars in (a) and
(c) are taken for the configuration R.;, /Ry = 1.6 and p; = 0.9. The sphere and channel sizes are not to scale.

As § — 0, i1, decreases and changes sign at § = 0.02 for the largest curvature ratio
R /Rs = 3, which indicates that the force due to the pressure difference in the nip region
is not large enough to overcome the shear force for sliding.

Rolling and sliding phenomena are associated with the relative dominance of lubrication
(FV) and pressure forces (FP) acting on the sphere in the literature. Bhattacharya
et al. (2010) report that the rapid increase of shear forces compared to the increase in
pressure forces at close proximity (0 — 1) leads to decreases in the magnitudes of these
coefficients. However, the underlying mechanisms for G and G’ are not exactly the same. G
is the term that relates the axial torque with tangential motion or the tangential force with
axial rotation, while G’ relates the axial force with tangential rotation or the tangential
torque with axial motion. When the ratio of the magnitudes of the pressure and shearing
forces in coupling resistances is plotted as in figure 8(a) for G, and figure 8(b) for G/, it

is observed that the pressure-induced forces remain dominant in G ( |FZ /F/'§| > 1, where
the subscripts denote the direction) even as & — 0, meaning that the sphere tends to slide
along the boundary. On the other hand, for G’, dominance of the pressure contribution
lessens as 6 — 0. As the sphere moves closer to the boundaries, it tends to roll along the
channel boundary as dictated by the dominating shearing effects. The sphere slides as it
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Figure 8. The ratio of magnitudes of viscous and pressure forces contributing to (a) G (|F§ /F};l) and (b) G’

(|\F?/F Y[). The subscripts on the terms indicate the direction. The orange lines indicate the transition from
sliding to rolling.

rotates around the z axis in most of the configurations, because the pressure-induced forces
remain dominant.

The distributions of pressure and shear on the sphere help in understanding the dynamics
of rolling and sliding. As the sphere rotates around the B axis (azimuthal direction), a
pressure gradient develops between the fore and aft of the sphere (shown in figure 9a).
Regions with large pressure amplitude are quite small but significant. The pressure profile
along the bottom half of the sphere is drawn in figure 9(b). Note the dramatic change from
positive to negative pressure values through the nip region between the sphere and the
cylindrical channel. Negative pressure levels may be deemed an indicator for cavitation,
but it should be noted that the zero pressure level is with respect to a faraway point
inside the channel, meaning that the absolute values must be calculated with respect to
the reference pressure. A simple calculation, provided in Appendix E, shows that there
should be no cavitation. The difference between the maximum and minimum pressures,
Ap = py — pL, increases monotonically with respect to §. As plotted in figure 9(c), Ap
due to rotation of the sphere follows a monotonic trend with 8 for all confinement ratios
as § — 0, and the slope in the logarithmic scale is —0.5, which is consistent with the
lubrication theory (Higdon & Muldowney 1995).

Looking at the shear stress distribution along the bottom arc (the non-dimensional shear
stress is denoted as 7), plotted in figure 9(d), a striking dip is observed right at the bottom
of the sphere. This could be explained by the flow reversal in the back and front of the
sphere, as shown by the streamlines in figure 9(a). Shear rates go through a maximum at
the edges of the nip region due to the flow reversal. The dip in T disappears completely
when the sphere is sufficiently far from the wall, at p; = 0.2. The maximum shear 7,,,, at
low 8 (shown in figure 9¢) exhibits a trend similar to that of Ap, albeit that the magnitude

is an order of magnitude lower for a given §. Also note that the slope is smaller than the
value of —0.5 observed for the pressure gradient; it comes out as —0.833.

3.3. Experiment results

This subsection reports the velocities of the magnetically rotated spheres from our
experiments. The spheres are observed to be ‘rolling’, i.e. translating in the positive z
direction as they are rotated counter-clockwise about the § axis when R.,/Rs; = 3, as
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Figure 9. (a) Schematic depiction of the pressure gradient between the fore and aft of the sphere, the directions
of rolling and sliding motion, and the streamlines around the sphere for R.; /Ry = 1.6 and pg; = 0.9. (b) The
pressure distribution along the arc shown with the gold dashed line in (a) for R, /Ry = 1.6 at selected p;. The
inset shows the p distribution for p; < 0.9. (¢) The magnitude of the pressure gradient Ap with respect to the

non-dimensional proximity parameter 8. (d,¢) are similar to (b,c) but T and 7,4y are plotted instead. The dotted
lines in (c,e) depict a line with slope —0.5 at logarithmic scale.

sketched in figure 9(a). Translation in the opposite of the rolling direction, which is
referred to as ‘sliding’, occurs as a response to counter-clockwise rotation about the S
axis when R, /Ry = 1.6, also shown in figure 9(a).

Values of u, for the experiments with R.;/R; = 3 are plotted against the rotation
frequency, f, in figure 10(a,b). Fluids with two different viscosities, u = 0.5Pas
and u = 1Pas, and spheres with diameters Dy = 1 mm and Dy = 1.9 mm, are tested.
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Figure 10. Change in u, with respect to f for the magnetically rotated spheres in various configurations. The
configurations are: (a) Dy = 1 mm, Dy, = 3mm; (b) Dy = 1.9mm, Dy, = 5.7mm; (¢) Dy = 1mm, Dy, =
1.6 mm; and (d) Dy = 1.9 mm, D, = 3 mm. The red lines passing through u, = 0 are placed to highlight the
transition from rolling (#; > 0) to sliding (u; < 0). The error bars indicate the standard deviation values.

When Dy = 1 mm, D, = 3mm and i = 1 Pas, u; increases linearly with increasing f up
to 8 Hz (figure 10a). As the rotation frequency is increased beyond this value, the sphere
fails to rotate synchronously with the rotating magnetic field, thus the sphere velocity
decreases with increasing f up to 20 Hz. Step-out also causes large deviations in u,, as
shown by the error bars in the plots, which denote the standard deviation values. The
fluctuations in u, outside the step-out regime can be explained easily by the roughness of
the spheres, which leads to a time-varying § that alters the resistance coefficients (Smart
et al. 1993). The step-out frequency and translation velocities are higher overall for the
Dy = 1.9 mm and D, = 5.7 mm configuration (10b), owing to the stronger magnetization
and increased weight of the sphere that improves the traction. u, values for u = 1Pas
and p = 0.5 Pas are more or less similar up to f = 3 Hz at both geometric configurations
(shown in the insets), but they deviate at larger f.

Values of u; for the experiment configurations with sliding (R.,/Rs = 1.6) are displayed
in figure 10(c,d). The red lines passing through u, = 0 highlight the transition from rolling
(i.e. u; > 0) to sliding (i.e. u; < 0). The transition to sliding occurs at very low f (around
0.5Hz) for © = 0.5 Pas, as shown in the insets. At low frequencies, having a considerable
roughness at the surface, spheres establish contact with the wall and roll slowly due to
traction. Note that such a motion occurs in only a very small number of experiments.
Contact of the roughness elements with the channel boundary could induce a lift that
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would deter the traction and cause sliding, but the lift appears to be limited as the sphere
is able to maintain rolling motion, whereas at higher rotation frequencies the traction is
lost and the pressure difference leads to a sliding motion. The variations in u, with respect
to f are mostly linear at the sliding region. Note the overall increases in the magnitudes of
the maximum velocities attained before step-out in comparison to u, observed in rolling
spheres. The increase is particularly notable as the viscous effects at narrower channels are
expected to be more restraining against motion, as implied by the resistance coefficients
reported in § 3.2. The enhanced swimming speeds are due to the large Ap that contributes
to the sliding of the sphere as opposed to rolling, where Ap hinders the sphere motion.

The experiment results can also be compared with the velocities evaluated from the
resistance coefficients with (3.6). This simple calculation means that several types of
forces will be neglected. Unsteady forces, such as the history force and added mass forces,
are known to play an important role in the swimming of micro-organisms. Jakobsen (2001)
reports that Balonion comatum, a ciliate plankton, increases its velocity fivefold in a time
period shorter than the time needed to advance the organism more than one body length.
Such motions create unsteady disturbances in the flow field that can affect the velocity and
trajectory of the swimmers even after the motion causing the disturbance ceases. However,
in the scope of the study reported here, these unsteady forces can be neglected, as the
density of the particle used in this study is not comparable to the density of the fluid used in
the experiments (Van Aartrijk & Clercx 2010). Wang & Ardekani (2012) model a spherical
unsteady swimmer and show that the Boussinesq—Basset history term and the added mass
term can be neglected when the product of Strouhal (S/) and Reynolds numbers is smaller
compared to unity:

0.5mr + my)2m
FhiS[ +FmtlSS — 0’ SlRe — ( f S) f

671, < 1. (3.9a,b)
Here, my is the mass of the swimmer and my is the mass of the fluid displaced by
the swimmer. In this study, the highest S/ Re that occurs throughout the experiments is
0.1886, which is achieved when u = 1Pas, f = 20Hz and R; = 0.95 mm. However, as
this rotation frequency is above the step-out frequency, above which the sphere rotation
loses its synchronization with the rotating magnetic field, the rotation rate of the sphere
does not reach 20 Hz at all. Therefore, the actual S/ Re value for this configuration is below
0.1886. Thus the effects of history and added mass can be discarded safely.

A critical omission in this approach is the roughness of the sphere, which would bring
about a time-varying ¢ that would lead to time-varying resistance coefficients as reported
in Galvin et al. (2001). The roughness causes non-continuous traction of the sphere on
the surface of the channel, which is highly critical for rolling motion. Note § in the
experiments cannot be determined as accurately as needed due to the limitations in our
image processing capabilities. With § being unknown, the calculation in (3.6) is carried
out for multiple §.

Another consideration would be the effect of the lift force on the sphere. There exist an
extensive number of studies investigating the lift force on spheres at low Reynolds numbers
(Saffman 1965; Cox & Brenner 1968; Ho & Leal 1974; Vasseur & Cox 1976; Cox & Hsu
1977; Drew 1988; McLaughlin 1993; Cherukat & McLaughlin 1995), but these studies
either do not fit into our configuration or cannot be implemented due to their nonlinear
nature. Other models for spheres swimming in bulk or at higher Reynolds numbers point to
a strong correlation between an increase in lift force with increasing angular velocity. Lift
force is reported to affect §, and a relevant example would be the study by Bhattacharya,
Gurung & Navardi (2013), where the authors report equilibrium radial positions (where
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the inertial lift is balanced by the rest of the hydrodynamic forces) for the spheres inside
cylinders with respect to the curvature ratio. Nonetheless, the lift induced by the roughness
elements on the spheres appears to be more significant as the inertial lift force should be
very low considering the Reynolds number of the system.

Experiment results and calculated u, values for multiple § values are plotted in figure 11
with respect to f up to step-out frequencies for each case. Resistance coefficients for
d =0.002 and § = 0.0006 (where p; > 0.99) are evaluated with the FEM model (only
the necessary terms), while the coefficients for § = 0.01 and § = 0.003 are interpolated
using piecewise cubic spline interpolation. The results for the Dy = 1 mm and D, = 3 mm
configuration (figure 11a) show that § is between 0.01 and 0.002 in experiments, whereas
in Dy = 1.9mm and D.;, = 5.7 mm configuration (figure 115) the experiment values fall
between the u, values for § = 0.02 and § = 0.01, which indicates that the gap for the
larger sphere in the larger channel is higher. Either way, the sphere appears to be very
close to the boundaries and rolls along with the help of the traction. For both of the sliding
configurations (figure 11c,d), u; in experiments are between the results for 6 = 0.006 and

8 = 0.003. The sphere is still close enough to get traction, but Ap is so great that it results
in sliding motion. Galvin et al. (2001) state that the average § between the sphere and
the boundary should be between the smaller and larger roughness sizes, so these fits give
an estimate for the average roughness element sizes, giving 1-5 pwm for the sphere with
Dg = 1 mm, and 9.5-19 wm for the sphere with Dy = 1.9 mm, in dimensional terms. The
scale of the values with respect to sphere radii is in agreement with what Smart ez al. (1993)
report. Also worth noting is that the values of u; fit to different § values at low and high f
values, meaning that § is higher at larger f. This is consistent with the Galvin et al. (2001)
report where the authors state that a faster rotating sphere would have its large roughness
elements making contact with the boundaries more frequently, which results in a larger §
in average. Finally, note that the estimated sizes of average roughness elements are of the
order of the gap sizes reported for cavitation in Appendix E, therefore it is possible that
cavitation might have occurred but we do not expect it to be significant compared to the
effects caused by the roughness elements.

Sliding and rolling velocities of the sphere are higher in magnitude in the higher
viscosity fluid than the ones in the lower viscosity fluid. This indicates that the sphere’s
distance to the wall, &, is larger during sliding at the more viscous fluid, but also that §
is smaller during rolling at the more viscous fluid. It is not clear why such a dichotomy
occurs in the results. Furthermore, the competing effects, pressure and viscous forces,
scale linearly with p at the Stokes regime, thus there should be no difference with respect
to u in sphere motion. For sliding, the roughness elements appear to deter the traction.
As reported by Galvin ef al. (2001), when a large roughness element on the sphere makes
contact with the boundary, the sphere is temporarily lifted off from the surface. In a more
viscous fluid, it would take more time for the gravitational forces to pull the sphere down
to lower §. That is why u; is higher in magnitude with the more viscous fluid and also why
u, data for large f from the experiments fit better to the velocity profile for the larger §. For
rolling, the roughness elements appear to improve the traction of the sphere with increasing
viscosity, thereby decreasing 6. A second possibility would be that in the high viscosity
case, pressure may drop to a level that causes evaporation in the silicon oil, limiting the
minimum pressure to vaporization pressure, which is very small for silicon oil. On the
other hand, the high pressure in the nip region is not bounded, thus pressure forces may
not cancel and a net pressure force may lead to the levitation of the sphere. However, the
analysis in Appendix E indicates that no cavitation should occur. In our numerical analysis,
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Figure 11. Comparison of u; from experiments with the velocities obtained from the resistance coefficients
for (a) Dy = 1 mm, Dy, = 3mm; (b) Dy = 1.9mm, Dy, = 5.7mm; (¢) Dy = 1 mm, D, = 1.6 mm; and (d)
Dy = 1.9 mm, D, = 3 mm. Insets show u, for small f.

we could not confirm the presence of a lift force on the rotating sphere with or without the
inertial forces. Therefore, the trend appears to be related to the roughness elements on the
sphere.

4. Conclusion

Motion of rotating spherical particles in cylindrical conduits is investigated here
numerically and experimentally. For the first time, a unique experiment set-up is used
to demonstrate the rolling and sliding behaviour of magnetically rotated spheres inside
cylindrical channels filled with a viscous fluid. Elements of the resistance matrix are
calculated using a validated finite-element model with a lower computational cost than
analytical models, especially for the case when the motion of a single sphere very close
to the channel wall is considered. The resistance coefficients are reported for different
confinement ratios and a range of radial positions, with a special focus on the motion in
close proximity to the channel boundaries.

Resistance and coupling coefficients in the resistance matrix are used to study the rolling
and sliding phenomena. A near-wall rotating sphere slides along the channel for small
confinement ratios due to the very high pressure gradient in the nip region between the
channel and the sphere, whereas the shearing forces are dominant in rolling observed for
larger confinement ratios. Another interesting finding is that a flow reversal causes a dip
in the shear stress in the nip region.
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In the experiments, radially magnetized spherical magnets are placed in viscous
fluid-filled horizontal cylindrical channels. Due to their weight, spheres are observed to
be resting on the channel wall. When the spheres are rotated in the azimuthal direction
with the help of a rotating magnetic field, sliding motion is observed along the channel
in the opposite direction to the rolling direction at high confinement ratios owing to the
pressure buildup near the nip region between the sphere and the channel. It is shown
that the pressure gradient has similar magnitudes in different confinement ratios for a
given non-dimensional gap size between the sphere and the channel. This would imply
that sliding should be possible at all confinement ratios, but the differences in resistance
coefficients at different confinement ratios prevent this from happening.

In the experiments, sliding is observed for the confinement ratio 1.6, whereas rolling
is observed for the confinement ratio 3 for both viscosity values. Sliding velocities are
larger in magnitude than the rolling velocities for a given magnetic rotation frequency as
the sphere has to overcome the pressure gradient in the rolling motion whereas the sphere
is pushed by the pressure gradient in the sliding regime. Translation velocities evaluated
from the resistance coefficients for the experiment configurations indicate that the sphere
is very close to the channel boundaries in both swimming modes. The proximity to the wall
cannot be predicted accurately due to both image processing limitations and the roughness
of the spherical surface. In small confinement ratios, rolling can take place at very low
rotation rates, but as the rotation rate increases, a transition from rolling to sliding occurs.
Surface roughness of the sphere causes a lift-off from the channel boundaries that affects
the average gap size between the channel wall and the sphere, leading to fluctuations
in the axial velocity and loss of traction that is critical for rolling, and also larger axial
velocities at more viscous fluids. Faster rotation rates of the sphere amplify the effects
of the surface roughness, increasing the gap size as evidenced by the evaluated velocities
from the resistance coefficients. Overall, the findings of this study are expected to improve
understanding on the motion of spherical particles in cylindrical channels, which is of
interest from different perspectives in fluid mechanics. For a specific example, results
could prove useful to study magnetic spherical particles as micro robots in cylindrical
conduits in microfluidic applications.
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Appendix A. Measurements on the roughness of the spheres used in the experiments

We report the roughness measurements for the spheres used in the experiments here. A
Nanofocus 3-D surface metrology system is used for the measurements. Figure 12(a)
shows a close-up image of the sphere with Dy = 1 mm, while figure 12(b) shows the
roughness surface plot for the same sphere. The surface height distribution for the same
sphere is provided in figure 12(c). According to the measurements carried out at ISO 4287
standards, the Rt parameter comes out as 8.56 um, while Ra = 1.16 wm. A large Rt/Ra
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Figure 12. (a) Close-up image of the magnetic sphere with Dy = 1 mm used in the experiments. (b) Surface
height distribution measurement results for the sphere with Dy = 1 mm. (¢) Surface profile measurement of a
part of the same sphere.

ratio indicates that the surface has significant dips or peaks along the measured profile,
and for this sphere the ratio comes out as 7.37. The sphere with Dy = 1.9 mm exhibits
lower roughness, with an Rt/Ra ratio of 3.68. A ratio of 1 would indicate that there are no
significant dips and peaks that go further beyond the average roughness on the surface.

Appendix B. Complete list of resistance coefficients

The complete list of the resistance coefficients in normalized form is provided here. Table 2
lists the coefficients for R.,/Rs = 1.6, table 3 lists the coefficients for R.; /Ry = 2, and
table 4 lists the coefficients for R.,/R; = 3. Refer to (2.5) for the definition of p;, and to
(3.1)—(3.4) for the normalization equations.

Appendix C. Comparison of the resistive coefficients with the results from the
literature

This section contains figures comparing the resistance coefficients obtained from the FEM
model and the Bhattacharya et al. (2010) code. Figures 13 and 14 show the plots for
R /Rs = 1.6, and figures 15 and 16 show the comparisons for R, /Rs = 3.
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Figure 13. Comparison of the translational and rotational resistance coefficients obtained from the FEM

simulations and the data in the literature for Re,/Rs = 1.6. (a) F"

(f) F I7. The insets show the coefficients for p; > 0.9.

op°

(b)

Fiig, (©) FLL, () F,

op°

(e) Fg;, and

Ps Ftptp Fgﬂ

0 7.0069 7.0066
0.1 7.0792 7.0283
0.2 7.3053 7.0952
0.3 7.7165 7.2131
0.4 8.3762 7.3939
0.5 9.4106 7.6589
0.6 11.0818 8.0462
0.7 14.0143 8.6339
0.8 20.1114 9.6061
0.9 39.0319 11.5869
0.91 43.2940 11.9170
0.92 48.6263 12.2943
0.93 55.5157 12.7323
0.94 64.7428 13.2508
0.95 77.7030 13.8780
0.96 97.3510 14.6690
0.97 129.8689 15.7188
0.98 195.3429 17.2449
0.99 392.9893 19.9601

B
13.2850
13.2033
12.9674
12.6005
12.1383
11.6227
11.0986
10.6172
10.2502
10.1705
10.1983
10.2378
10.2927
10.3675
10.4696
10.6114
10.8153
11.1338
11.7327

7,
1.2337
1.2350
1.2392
1.2465
1.2574
1.2728
1.2942
1.3240
1.3674
1.4368
1.4464
1.4566
1.4677
1.4798
1.4932
1.5081
1.5251
1.5449
1.5696

Fip
1.2337
1.2401
1.2593
1.2916
1.3377
1.3998
1.4831
1.5994
1.7786
2.1256
2.1827
2.2477
2.3229
2.4118
2.5194
2.6550
2.8348
3.0970
3.5645

Fz
1.2424
1.2458
1.2560
1.2740
1.3015
1.3415
1.3995
1.4866
1.6286
1.9117
1.9583
2.0113
2.0726
2.1447
2.2317
2.3406
2.4842
2.6915
3.0563

Table 2. The resistance coefficients for R., /Ry = 1.6.

G

0
1.1277
2.2768
3.4718
4.7440
6.1388
7.7287
9.6497
12.2047
16.3589
16.9750
17.6629
18.4418
19.3411
20.3948
21.6913
23.3590
25.6958
29.7064

G/

0
—4.1017
—8.0183

—11.5920
—14.7077
—17.2998
—19.3464
—20.8490
—21.7907
—21.9758
—21.9242
—21.8458
—21.7378
—21.5925
—21.3938
—21.1253
—20.7277
—20.1102
—18.9414
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Figure 14. Comparison of the coupling resistance coefficients obtained from the FEM simulations and the
data in the literature for R, /Rs = 1.6. (@) G and (b) G'. The insets show the coefficients for p; > 0.9.

F,
4.0070
4.0432
4.1562
4.3611
4.6892
5.2017
6.0254
7.4623
10.4282
19.5414
21.5848
24.1666
27.4898
31.9057
38.1096
47.4311
63.0519
94.3160
188.4593

Fip
4.0069
4.0177
4.0511
4.1101
4.2012
4.3356
4.5339
4.8377
5.3460
6.3950
6.5715
6.7734
7.0088
7.2871
7.6244
8.0484
8.6134
9.4357

10.9018

.
5.9487
5.9205
5.8393
5.7141
5.5588
5.3911
5.2322
5.1107
5.0752
5.2631
5.3104
5.3676
5.4376
5.5239
5.6328
5.7742
5.9679
6.2572
6.7815

Fop
1.1047
1.1056
1.1085
1.1135
11211
1.1322
1.1480
1.1711
1.2063
1.2664
1.2750
1.2843
1.2944
1.3056
1.3181
1.3322
1.3484
1.3677
1.3921

P
1.1047
1.1084
1.1193
1.1380
1.1654
1.2035
1.2566
1.3341
1.4600
1.7191
1.7630
1.8136
1.8726
1.9428
2.0283
2.1367
2.2819
2.4956
2.8805

Pz
1.1107
1.1129
1.1198
1.1319
1.1507
1.1787
1.2203
1.2849
1.3944
1.6239
1.6627
1.7072
1.7591
1.8205
1.8950
1.9890
2.1141
2.2964
2.6209

Table 3. The resistance coefficients for R., /Ry = 2.

G

0
0.6456
1.3031
1.9862
2.7119
3.5045
4.4025
5.4748
6.8730
9.0633
9.3810
9.7327
10.1318
10.5849
11.1097
11.7397
12.5454
13.6509
15.5173

G/

0
—1.8004
—3.5249
—5.1069
—6.4953
—7.6570
—8.5720
—9.2220
—9.5572
—9.3387
—9.2527
—9.1465
—9.0135
—8.8420
—8.6156
—8.3069
—7.8723
—7.1993
—5.9294
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poo B, F, R F, B G G
0 2.2324 2.2324 2.6994 1.0284 1.0284 1.0305 0 0
0.1 2.2476 2.2371 2.6917 1.0288 1.0297 1.0314 0.2542 —0.5633
0.2 2.2953 2.2516 2.6696 1.0300 1.0338 1.0343 0.5140 —1.1053
0.3 2.3815 2.2777 2.6366 1.0323 1.0409 1.0397 0.7855 —1.6069
0.4 2.5189 2.3184 2.5979 1.0360 1.0519 1.0483 1.0765 —2.0518
0.5 2.7323 2.3793 2.5610 1.0416 1.0681 1.0618 1.3971 —2.4271
0.6 3.0729 2.4709 2.5366 1.0503 1.0925 1.0832 1.7623 —2.7204
0.7 3.6618 2.6144 2.5419 1.0642 1.1316 1.1192 2.1967 —2.9120
0.8 4.8634 2.8609 2.6114 1.0882 1.2026 1.1865 2.7456 —2.9489
0.9 8.5062 3.3881 2.8546 1.1360 1.3694 1.3462 3.5235 —2.6083
0.91 9.3176 3.4780 2.9014 1.1435 1.3997 1.3750 3.6228 —2.5196
0.92 10.3329 3.5813 2.9562 1.1518 1.4349 1.4085 3.7283 —2.4107
0.93 11.6391 3.7017 3.0212 1.1610 1.4767 1.4481 3.8411 —2.2753
0.94 13.3826 3.8451 3.0996 1.1715 1.5273 1.4958 3.9633 —2.1043
0.95 15.8219 4.0198 3.1965 1.1835 1.5901 1.5549 4.0955 —1.8815
0.96 19.5239 4.2412 3.3206 1.1973 1.6713 1.6308 4.2436 —1.5850
0.97 25.6464 4.5376 3.4879 1.2138 1.7822 1.7338 4.4145 —1.1629
0.98 37.9332 4.9700 3.7341 1.2340 1.9487 1.8872 4.5985 —0.4942
0.99 75.5703 5.7439 4.1775 1.2607 2.2566 2.1669 4.8180 0.7712
Table 4. The resistance coefficients for R.,/Rs = 3.
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Figure 15. Comparison of the translational and rotational resistance coefficients obtained from the FEM
simulations and the data in the literature for R.;,/Rs = 3. (a)
The insets show the coefficients for o5 > 0.9.
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Figure 16. Comparison of the coupling resistance coefficients obtained from the FEM simulations and the
data in the literature for R, /Rs = 3. (a) G and (b) G'. The insets show the coefficients for g5 > 0.9.

Appendix D. Convergence study on the Bhattacharya ef al. (2010) model

A convergence study over [,,, for the Bhattacharya er al. (2010) model is presented in
figure 17. For reference, the FEM results are given by dashed lines in the same figure. The
rotational coefficients exhibit reasonable accuracy at all /4, while ng, Gand G require
large 4y to converge. Note that the Bhattacharya et al. (2010) BTSM model results are
also dependent on the parameters f;,qy, Amax and &,, and a multi-parameter convergence
study is required to achieve complete convergence. The BTSM results are expected to
fully match our FEM results once multi-parameter convergence is achieved. In this study,
we limit ourselves to a set of parameters that exhibit sufficient convergence (parameters
given in § 3.1). Multi-parameter convergence of BTSM in close proximity is outside the
scope of this study, and it is noted for future work.

Appendix E. On cavitation in the flow

This appendix provides estimations on the cavitation conditions in the flow. The vapour
pressure of silicone oil at 25°C is reported to be 5 mmHg, which converts to 666.61 Pa
at maximum for a kinematic viscosity level of 1000 cSt that corresponds to a dynamic
viscosity of 0.97 Pas (Merck KGaA 2021). In our simulation model, we apply a pressure
point constraint at the end of the tube, with reference pressure 0. Figure 9(b) shows that
the non-dimensional pressure level goes down to —1578 at the tightest configuration tested
in the scope of this work for 8 < 0.006. Dimensionalizing this value requires & and f.
The largest © = 1 Pas and f = 20 Hz give p = puf = —31 560 Pa. Considering that our
reference is atmospheric pressure, 10° Pa, we observe a minimum absolute pressure of
68 440 Pa, much bigger than the vapour pressure for the silicone oil. However, cavitation
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Figure 17. Convergence of the resistance coefficients in the Bhattacharya et al. (2010) model for R, /Ry = 2
and pg = 0.99. (a—c) The translational resistances; (d—f) the rotational resistances; (g,k) the coupling
resistances. Finite-element results are shown with dashed lines.

may occur at closer distances under those conditions (1 = 1Pas, f = 20), at § < 0.0027,
or § < 2.7 pm. For a smaller frequency, f = 10 Hz, for which we assume a synchronous
rotation of the sphere with the magnetic field, the gap thickness for which cavitation is

expected would be smaller, i.e. 5 < 0.0019,0r 6 < 1.9 pum.

REFERENCES

ARIGO, M. T., RAJAGOPALAN, D., SHAPLEY, N. & MCKINLEY, G.H. 1995 The sedimentation of a sphere
through an elastic fluid. Part 1. Steady motion. J. Non-Newtonian Fluid Mech. 60 (2-3), 225-257.

AUTON, T.R., HUNT, J.C.R. & PRUD’"HOMME, M. 1988 The force exerted on a body in inviscid unsteady
non-uniform rotational flow. J. Fluid Mech. 197, 241-257.

AVRON, J.E., KENNETH, O. & OAKNIN, D.H. 2005 Pushmepullyou: an efficient micro-swimmer. New J.
Phys. 7 (1), 234.

BARNOCKY, G. & DAvis, R.H. 1989 The lubrication force between spherical drops, bubbles and rigid
particles in a viscous fluid. Intl J. Multiphase Flow 15 (4), 627-638.

BASSET, A.B. 1888 A Treatise on Hydrodynamics: With Numerous Examples, vol. 2. Deighton, Bell and
Company.

BATCHELOR, G.K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (2), 245-268.

BHAGAT, A.A.S., KUNTAEGOWDANAHALLI, S.S. & PAPAUTSKY, I. 2009 Inertial microfluidics for
continuous particle filtration and extraction. Microfluid. Nanofluidics 7 (2), 217-226.

BHATTACHARYA, S., MISHRA, C. & BHATTACHARYA, S. 2010 Analysis of general creeping motion of a
sphere inside a cylinder. J. Fluid Mech. 642, 295-328.

BHATTACHARYA, S., GURUNG, D.K. & NAVARDI, S. 2013 Radial lift on a suspended finite-sized sphere due
to fluid inertia for low-Reynolds-number flow through a cylinder. J. Fluid Mech. 722, 159-186.

Bico, J., ASHMORE-CHAKRABARTY, J., MCKINLEY, G.H. & STONE, H.A. 2009 Rolling stones: the
motion of a sphere down an inclined plane coated with a thin liquid film. Phys. Fluids 21 (8), 082103.
BOUSSINESQ, J. 1903 Théorie analytique de la chaleur mise en harmonic avec la thermodynamique et avec la

théorie mécanique de la lumiére: Tome I-[1I].. ., vol. 2. Gauthier-Villars.

935 A9-26


https://doi.org/10.1017/jfm.2021.1144

https://doi.org/10.1017/jfm.2021.1144 Published online by Cambridge University Press

Rolling and sliding motion of rotating spheres

BRENNER, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng
Sci. 16 (3-4), 242-251.

BRENNER, H. & HAPPEL, J. 1958 Slow viscous flow past a sphere in a cylindrical tube. J. Fluid Mech. 4 (2),
195-213.

BRENNER, H. & SONSHINE, R.M. 1964 Slow viscous rotation of a sphere in a circular cylinder. Q. J. Mech.
Appl. Maths 17 (1), 55-63.

BUEVICH, Y.A. 1970 Motion resistance of a particle suspended in a turbulent medium. Fluid Dyn. 1 (6),
119-119.

BUNGAY, P.M. & BRENNER, H. 1973 The motion of a closely-fitting sphere in a fluid-filled tube. Intl J.
Multiphase Flow 1 (1), 25-56.

CALDAG, H.O., ACEMOGLU, A. & YESILYURT, S. 2017 Experimental characterization of helical swimming
trajectories in circular channels. Microfluid. Nanofluidics 21 (8), 136.

CHERUKAT, P. & MCLAUGHLIN, J.B. 1995 The inertial lift on a rigid sphere in a linear shear flow field near
a flat wall. J. Fluid Mech. 285, 407-407.

CORRSIN, S.E. & LUMLEY, J. 1956 On the equation of motion for a particle in turbulent fluid. Appl. Sci. Res.
A 6 (2-3), 114-116.

Cox, R.G. & BRENNER, H. 1968 The lateral migration of solid particles in Poiseuille flow—I. Theory. Chem.
Engng Sci. 23 (2), 147-173.

Cox, R.G. & Hsu, S.K. 1977 The lateral migration of solid particles in a laminar flow near a plane. Int/ J.
Multiphase Flow 3 (3), 201-222.

DEMIR, E. 2018 Low Reynolds number swimming of helical structures and rigid spheres. PhD thesis, Sabanci
University.

DIJELLOULI, A., MARMOTTANT, P., DJIERIDI, H., QUILLIET, C. & COUPIER, G. 2017 Buckling instability
causes inertial thrust for spherical swimmers at all scales. Phys. Rev. Lett. 119 (22), 224501.

DREW, D.A. 1988 The lift force on a small sphere in the presence of a wall. Chem. Engng Sci. 43 (4), 769-773.

DREYFUS, R., BAUDRY, J., ROPER, M.L., FERMIGIER, M., STONE, H.A. & BIBETTE, J. 2005 Microscopic
artificial swimmers. Nature 437 (7060), 862—865.

GALVIN, K.P., ZHAO, Y. & DAvIs, R.H. 2001 Time-averaged hydrodynamic roughness of a noncolloidal
sphere in low Reynolds number motion down an inclined plane. Phys. Fluids 13 (11), 3108-3119.

GITTERMAN, M. & STEINBERG, V. 1980 Memory effects in the motion of a suspended particle in a turbulent
fluid. Phys. Fluids 23 (11), 2154-2160.

GOLDMAN, A.J., Cox, R.G. & BRENNER, H. 1967 Slow viscous motion of a sphere parallel to a plane
wall-II. Couette flow. Chem. Engng Sci. 22 (4), 653—-660.

GOLESTANIAN, R. & AJDARI, A. 2008 Analytic results for the three-sphere swimmer at low Reynolds
number. Phys. Rev. E 77 (3), 036308.

GOPINATH, A., CHEN, S.B. & KocH, D.L. 1997 Lubrication flows between spherical particles colliding in
a compressible non-continuum gas. J. Fluid Mech. 344, 245-269.

HERRON, [.H., DAvISs, S.H. & BRETHERTON, F.P. 1975 On the sedimentation of a sphere in a centrifuge.
J. Fluid Mech. 68 (2), 209-234.

HIGDON, J.J.L. & MULDOWNEY, G.P. 1995 Resistance functions for spherical particles, droplets and bubbles
in cylindrical tubes. J. Fluid Mech. 298, 193-210.

Ho, B.P. & LEAL, L.G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows.
J. Fluid Mech. 65 (2), 365-400.

HUMPHREY, J.A.C. & MURATA, H. 1992 On the motion of solid spheres falling through viscous fluids in
vertical and inclined tubes. J. Fluids Engng 114 (1), 2—11.

JAKOBSEN, H.H. 2001 Escape response of planktonic protists to fluid mechanical signals. Mar. Ecol. Prog.
Ser. 214, 67-78.

JAYAWEERA, K.O.L.F., MASON, B.J. & SLACK, G.W. 1964 The behaviour of clusters of spheres falling in
a viscous fluid. Part 1. Experiment. J. Fluid Mech. 20 (1), 121-128.

KokLu, M., SABUNCU, A.C. & BESKOK, A. 2010 Acoustophoresis in shallow microchannels. J. Colloid
Interface Sci. 351 (2), 407-414.

Liu, Y.J., NELSON, J., FENG, J. & JOSEPH, D.D. 1993 Anomalous rolling of spheres down an inclined plane.
J. Non-Newtonian Fluid Mech. 50 (2-3), 305-329.

MARSTON, J.O., YONG, W. & THORODDSEN, S.T. 2010 Direct verification of the lubrication force on a
sphere travelling through a viscous film upon approach to a solid wall. J. Fluid Mech. 655, 515-526.

MAXEY, M.R. & RILEY, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys.
Fluids 26 (4), 883-889.

MCLAUGHLIN, J.B. 1993 The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech.
246, 249-265.

935 A9-27


https://doi.org/10.1017/jfm.2021.1144

https://doi.org/10.1017/jfm.2021.1144 Published online by Cambridge University Press

H.O. Caldag, E. Demir and S. Yesilyurt

MERCK KGAA, DARMSTADT, GERMANY 2021 Silicone oil viscosity 1000 cSt (25 °C) | 63148-62-9. https://
www.sigmaaldrich.com/tr/en/product/aldrich/378399?context=product (Accessed: 01.09.2021).

O’NEILL, M.E. & STEWARTSON, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall.
J. Fluid Mech. 27 (4), 705-724.

OSEEN, C.W. 1927 Neuere methoden und ergebnisse in der hydrodynamik. Akademische Verlagsgesellschaft
mb H.

SAFFMAN, P.G.T. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385-400.

SILVERBERG, O., DEMIR, E., MISHLER, G., HOSOUME, B., TRIVEDI, N., TISCH, C., PLASCENCIA, D.,
PAk, O.S. & ARACI, 1.E. 2020 Realization of a push-me-pull-you swimmer at low Reynolds numbers.
Bioinspir. Biomim. 15 (6), 064001.

SMART, J.R., BEIMFOHR, S. & LEIGHTON, D.T. JR. 1993 Measurement of the translational and rotational
velocities of a noncolloidal sphere rolling down a smooth inclined plane at low Reynolds number. Phys.
Fluids A'5 (1), 13-24.

S00, S.L. 1975 Equation of motion of a solid particle suspended in a fluid. Phys. Fluids 18 (2), 263-264.

TAKAGI, D., PALACCI, J., BRAUNSCHWEIG, A.B., SHELLEY, M.J. & ZHANG, J. 2014 Hydrodynamic
capture of microswimmers into sphere-bound orbits. Soft Matt. 10 (11), 1784—1789.

TCHEN, C.-M. 1947 Mean value and correlation problems connected with the motion of small particles
suspended in a turbulent fluid. PhD thesis, Technische Universiteit Delft.

VAN AARTRIK, M. & CLERCX, H.J.H. 2010 Vertical dispersion of light inertial particles in stably stratified
turbulence: the influence of the Basset force. Phys. fluids 22 (1), 013301.

VASSEUR, P. & CoX, R.G. 1976 The lateral migration of a spherical particle in two-dimensional shear flows.
J. Fluid Mech. 78 (2), 385-413.

WANG, S. & ARDEKANI, A.M. 2012 Unsteady swimming of small organisms. J. Fluid Mech. 702, 286-297.

ZHANG, L., ABBOTT, J.J., DONG, L., PEYER, K.E., KRATOCHVIL, B.E., ZHANG, H., BERGELES, C.
& NELSON, B.J. 2009 Characterizing the swimming properties of artificial bacterial flagella. Nano Lett.
9 (10), 3663-3667.

ZHANG, Y. & MULLER, S.J. 2018 Unsteady sedimentation of a sphere in wormlike micellar fluids. Phys. Rev.
Fluids 3 (4), 043301.

ZHAO, Y., GALVIN, K.P. & DAvis, R.H. 2002 Motion of a sphere down a rough plane in a viscous fluid. In#/
J. Multiphase Flow 28 (11), 1787-1800.

935 A9-28


https://www.sigmaaldrich.com/tr/en/product/aldrich/378399?context=product
https://www.sigmaaldrich.com/tr/en/product/aldrich/378399?context=product
https://doi.org/10.1017/jfm.2021.1144

	1 Introduction
	2 Methodology
	2.1 Resistance coefficients
	2.2 The finite-element model
	2.3 Experiments

	3 Results
	3.1 Validation of the finite-element model
	3.2 Rolling and sliding
	3.3 Experiment results

	4 Conclusion
	A Appendix A. Measurements on the roughness of the spheres used in the experiments
	B Appendix B. Complete list of resistance coefficients
	C Appendix C. Comparison of the resistive coefficients with the results from the literature
	D Appendix D. Convergence study on the Bhattacharya <italic>et al.</italic> (2010) model
	E Appendix E. On cavitation in the flow
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


