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BARNES' FIRST LEMMA AND ITS FINITE ANALOGUE 

ANNA HELVERSEN-PASOTTO AND PATRICK SOLE 

ABSTRACT. We give a parallel proof of Barnes' first lemma and of its finite ana­
logue. In both cases we use the Mellin transform. In the classical case, the proof avoids 
the residue theorem. In the finite case the Gamma function is replaced by the Gaussian 
sum function and the beta function by the Jacobi sum function. 

1. Introduction. In the study of the solutions of Gauss ' hypergeometric differential 
equation [17] E. W. Barnes discovered in 1910 the following theorem. 

THEOREM 1 (BARNES' FIRST LEMMA). Let ah ^ a3, a4 denote four complex num­
bers such that none ofa\ + ai, ai + «3, #3 + «4, a^ + ax is a pole of the Gamma function. 
Then 

1 r 
-— / F(a\ + s)T(a2 — s)T(a3 + s)T(a4 — s) ds 
2717 JC 

T(a\ + a2)T(a2 + a^Tia^ + a4)T(a4 + a\) 
T(a\ +a2+a$ + 04) 

where C is a contour going from —ioo to +/00 leaving the poles ofT(a\ + s)T(a^ + s) on 
the left and the poles ofT(a2 — s)T(a4 — s) on the right. 

Note that the hypothesis on a\, «2> «3, «4 is equivalent to the separation of the poles 
of T(a2 — s)T(a4 — s) from the poles of T(a\ + s)T(a3 + s); and that this hypothesis is 
necessary in view of the righthand side. The standard proofs of Theorem 1 [1, 16, 17] 
use the theorem of residues and Gauss' summation theorem. Here we present a proof 
based on the Mellin transform which reduces to computing certain convolution integrals 
avoiding both theorems. 

First, we prove the identity of Theorem 1 when C is a vertical line, which is possible 
when max(5R(ai), Kfe)) < min^O^X ^(04)). Then an analytic continuation argument 
completes the proof when C is bent. 

Our original motivation was to find a new proof of the finite analogue of this theorem 
(Theorem 2 below) discovered and proved by the first author [7, 8] in her study of the 
representations of the general linear group over a finite field. In this analogy the Gamma 
function is replaced by a Gauss sum, and contour integration by a summation on the 
multiplicative characters of a finite field F^ with q elements. A representation-theoretic 
proof is in [7, 13] and an extension to non-archimedean local fields is in [14]. 
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274 A. HELVERSEN-PASOTTO AND P. SOLE 

THEOREM 2. Let ot\, a% #3, oc4 denote four multiplicative characters of¥q. Then 

1 ^ , w _iw , f _K g(ocia2)g(a2a3)g(a3a4)g(a4ai) 
2^g(axa)g(a2a )g(a3a)g(a4a ) -

q-\ a g(axa2a3a4) 

+ q{q- \)è(axa2a3a4)(a\a3)(-\), 

where g((3) is the Gauss sum associated with the character (3 and 8(13) = 1 if/3 is trivial 
and zero otherwise. 

The well-known analogy between the Gamma function (resp. beta function) and the 
Gauss sum function (resp. the Jacobi sum function) which dates back to the times of 
Gauss and Jacobi [10] has enjoyed recently a surge of interest [4, 6, 11, 12]. 

2. Classical case. 
2.1 The beta and Gamma functions. We recall that the classical Gamma function T(s) 
can be defined for U(s) > 0 as an Eulerian integral of the second kind 

e~xf~x dt, 

and that it can be analytically continued to the complex plane minus the points 
0 , - 1 , —2,... . In the same fashion, the classical beta function can be defined as an Eu­
lerian integral of the first kind 

(2) B(x,y) = £f-\l-ty-ldt, 

for U(x) > 0 and U(y) > 0 and we have 

T(x)T(y) 
(3) B(x,y) = 

T(x+y) 

This relation can be used to derive an analytic continuation of B(x,y) to all the points 
(JC, v) of C2 such that none of x, y, x + y is a pole of T. 

2.2 The classical Mellin transform. This integral transform is best thought of as a 
Fourier transform on the multiplicative group of the positive reals. If f(t) is a complex-
valued function defined for t > 0, then its Mellin transform/* (s) is defined on a certain 
strip a < ?H(s) < b depending on / by the formula 

(4) f(s) = £°°f(t)f-ldt. 

Indeed the change of variable t — e~u yields the Laplace transform of/(e~"): 

r-00 
f(e-")e-us du. 

OO 

We note, for future use, that H » is the Mellin transform of e~l\ by formula (1). 
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The function/^) can be recovered from/*0) by contour integration along the vertical 
line U(s) = 7 for a suitable 7 for the following inversion formula 

1 rl+ioo 

(6) f(t)=— . f(s)rsds, 
2m Jl-IOQ 

as proved in, e.g. [15, p. 39]. 
We now define the convolution product/ * h of two functions of the real variable t as 

dt r+oo at 
tf*h)(x) = JQ f(t)h(x/t)j. 

Note that the change of variable t = £ yields / * h = h * / . The motivation for this 
definition lies in the following lemma, which is Theorem 13 p. 39 of [15]. 

LEMMA 1. The Mellin transform of the convolution product of two functions f and 
h is the pointwise product of the respective Mellin transforms of the two functions. 

(f*h)* = (h*f)*=fh*. 

The starting point of our investigations was a variation on Parse val's theorem. 

LEMMA 2. Letf and h denote two functions with Mellin transforms f* and h*. Then 

r+oo dt 1 r7+/oo 

/ f(t)h(t)-=— . f*(s)h*(-s)ds. 
Jo t 2m Ji-ioo 

PROOF. Let k(t) = / ( ) ) so that k*(s) = f*(-s). Then by Lemma 1 and the inversion 
formula (6) applied to (k * h)(x) we get 

roo dt l /"7+Ï'OO 

h(t)k(xit)- = — / h(s)k(s)x~s ds. 
' t 27I7 h-ioo 

The result follows on letting k{s) — f(—s) and x = 1. • 

2.3 Barnes' first lemma for a line. Let//(0 = f[e~l. Then f*(s) = T(ai + s), for / = 
1,2,3,4 and these four functions can be analytically continued to all the complex plane 
except at, respectively, s = —at — jj = 0 ,1 , . . . . Assume, furthermore, that 

max 

and let 7 denote a real abscissa in the range 

(max (»(«!), »(fl3)), min(3?(a2), ftfa))). 

Then Barnes' integral can be expressed as 
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276 A. HELVERSEN-PASOTTO AND P. SOLE 

where D denotes the vertical line 5R(z) = 7. By Lemma 1 we see that/*(5)^3*(5) = 
(/i*/3)*Cs) and/2*(s)/4*(s) = (/i*/4)*(.s). ApplyingLemma 2 with/ = / * / 3 and/i = /2*/4, 
we obtain 

(7) h = jP°Vi */3)(0 (/2 */4) (Oy • 

Using Lemma 1 the convolution products are readily computed and we find 

and analogously 

ifi */4)(0 = /* ^ ° ° / 2 " f l 4 e x p ( - j - - ) ^ . 

These integrals are closely related to Bessel functions (cf. [3, Section 7.3.6, 
equation (34)]). Substituting these two expressions into formula (7), and summing first 
on t, we obtain 

r+00 M-00 dx dv 

where J(x9y) = Jj0 0 f^a* e x p ( - f ^ ) f . After the change of variables w = t^, a 
Gamma function appears: J(x,y) — T(a^ + «4)(JC +-y)_a3_a4(xy)a3+fl4. 

Let YB — rJ
B

+a ) • Then, we obtain 

r°o r+00 dx dv 
/ *"' +0*/*«3(x + y)-a>-a< exp(-JC -y) ^ . 

JO x )> 

The new change of variables v = x + y, dv — dy yields 

r oo . /"V , /7r 

V-fl3-«4-lg-V / (v_Jc)a2+fl3-ly«l«4_rfv> 

•A) X 

Letting x = vw, y = ~ entails 

r°° rl 1 du dv 

va[+a4 / uax+aAva2+a,,l_uy2+a,-\v-a,-aAe-v"_"^ 
Jo u v 

which factors out into 
rl 1 1 r+00 dv 

rB = / w«i+«4-i ( 1 _ ^ « 3 - 1 j w / v « i + « 2 é , - v _ 
Jo Jo v 

By the formulas of Section 2.1 we recognize the beta and Gamma functions in the 
righthand side. 

VB — B(a\ + #4, ^2 + a^)T(a\ + ai)> 
The result follows on expressing the beta function as a ratio of Gamma functions, i.e. 

T(a\ +a 4)1X^2 + a3) 
B(a\ + « 4 , ^ 2 + #3) 

T(a\ + d2+a?> +(24) 
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BARNES' FIRST LEMMA 277 

Note that the apparent lack of symmetry of the proof comes from the expression chosen 
for the convolution products. 

2.4 Barnes' first lemma for a bent contour. Let a\,a^ be fixed once and for all. Let 
ir(a2, a4) denote the righthand side of Barnes' first lemma, that is 

T(a\ + a2)F(a2 + a3)T(a3 + a4)T(a4 + a\) 
7r(a2,a4) = —— — . 

i(a\ + a2 + a3 + a4) 
Let T[a2, a4\ s] denote the integrand of the lefthand side, namely 

T[a2,a4\s\ — T{a\ + s)T(a2 — s)T(a3 + s)F(a4 — s)(2iri)~ . 

Suppose that the condition max(5R(ai),5R(«3)) < min(§t(a2),?fc(a4)^ is not met. Let 
C denote the bent contour occuring in Theorem 1. Then consider b2 and b4 such that 
max(3?(tfi),!R(a3)) < m i n ^ ^ X ^ & O ) - Then, we know from the preceding section 
that there exists a vertical line D such that 

ir(b2,b4) — I T[b2,b4\s]ds. 

Since the integrand is analytic in s for s to the right of C we can distort the line D to fit 
the contour C and obtain 

it(b2,b4) = / T[b2,b4\ s] ds. 
JCa 

Both sides of the latter equality are analytic functions of (b2, b4). Indeed 7r(b2, b4) is a 
product of analytic functions and analycity for the righthand side follows from Theo­
rem 4.3 of [5, p. 39]. 

As (b2, b4) ranges over an open domain of C2 determined by a\ and #3, the principle 
of analytic continuation (cf. [2, p. 124] for a bivariate version) entails 

ix(a2,a4) = / T[a2,a4;s]ds. 

This completes our proof of Theorem 1. 

3. Finite case. 
3.1 Gauss sums and Jacobi sums. Let p denote a prime number, and F^ a finite field 
of characteristic p. Let F+ (resp. F* ) denote the additive (resp. multiplicative) group of 
F^ and X the character group of F*. We denote by è the Dirac function on X, namely 
6(a) — 1 if a = 1 and zero otherwise. Let ^ denote a non-trivial additive character of 
F^ fixed once and for all. The Gauss sum function g: X \—» C is defined by 

(8) Va G X, g(a) = £ i>(<*) a(a) 
a€F* 

Formula (8) is a finite analogue of formula (1); note that, in the latter formula, the func­
tion t 1—• e~l (resp. t 1—> f~l) plays the role of the additive character i>{a), (resp. the 
multiplicative character a(a)) in (8). 
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278 A. HELVERSEN-PASOTTO AND P. SOLE 

The Jacobi sum function b: X x X »—> C, is defined for cc\,a2 £ X by 

(9) b(au oc2) = £ a i ( a ) a2(l - a) 
a,l-flGFJ 

Formula (9) is a finite analogue of formula (2). The analogy, mentioned in the intro­
duction, between Gauss sums and Jacobi sums on the one hand, and Gamma and beta 
functions on the other hand is now obvious. In analogy with formula (3) we have the 
following identity [9, Chapter 8, Section 3, Theorem 1] 

(10) b(aua2) = giai)g(af + ( g - l)tt2(-l)g(« lQr2). 
g(ot\ot2) 

Whereas in formula (3) x + y ^ 0, in formula (10) ct\a2 = 1 is allowed, and this 
accounts for the term in 6(a\a2). We quote for future use one more property of Gauss 
sums [9, Proposition 8.2.2]: 

(11) g(cc)g(a-{) = qa(-l) - (q - l)6(a). 

We recall the orthogonality of characters: 

(12) £ a(ama) = (q-m<xl3). 

3.2 The finite Mellin transform. This transform is a Fourier transform on the group F^. 
For a detailed study see [11]. 

With every complex-valued function/ defined on F^, we associate a complex-valued 
function/* defined on X by the formula: 

/*(«)= £/(«)«(*)• 
aGFJ 

The following inversion formula can easily be verified. 

LEMMA 3. For allf: F J ^ C w ^ have 

VaGF^x, f(a)= —!— £ a-\a)f(a). 

Note, for future use, that g(a) is the Mellin transform of a \—> i^(a), just as T(s) is the 
Mellin transform of t\—> e~l. The convolution is defined as 

(13) (f*h)(a)= £ / (c) /z(ac- 1 ) . 
cGFJ 

It is easy to check, that, as in Lemma 1, we have 

(14) (f*/i)*(a)=/*(a)/i*(a). 
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BARNES' FIRST LEMMA 279 

The variation on Parseval's lemma that we shall employ is 

(15) —!-r £/*(<*) ^(oT1) = E f(a)h(a). 

3.3 The finite analogue. As in Section 2.3, define four auxiliary functions/ = a (if), for 
/ = 1,2,3,4. Then their Mellin transforms are/*(a) = g(ata). The Barnes sum S# can 
be written as 

SB = —!-7 Zfi(^f3(<x)J?(a-l)f:(a-l)9 
Q ~ A «ex 

or, equivalently by formula (14) 

(16) S* = — ! - E (/Ï */3)*(or) (fc * / 4 )*(^ 1 ) . 
^ - 1 aex 

Applying formula (15) with/ = / i */3, and h =f2 */*, we get 

(17) S* = 52(fi*f3)(a)(f2*f4)(a). 
aeF* 

Define for a G F J and (5 G X the Kloosterman sum 

*(#*) = £/?(*W*+-). 
xGFx v XJ 

The convolution products are easy to express with these sums. A direct application of 
formula (13) yields 

(f\ */3)(«) = a3(a)K(<XiaJl;a) 

as well as 

(f2 */4)(a) = a4(a)^(a2a:4 l\a). 

Substituting these two expressions into formula (17), we get 

SB= £ (^\OC3l)(x)(a2a^l)(y)xl)(x + y)Jq(x,yX 
x,yeF* 

where Jq(x,y) — EaeF j t eû^Xf lM"^) - The evaluation of Jq(x9y) is somewhat more 
complicated than the evaluation of its complex counterpart J(x, y) in Section 2.3 as the 
next lemma shows. 
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LEMMA 4. For JC, y e F* we have 

Jq(x,y) = (a3<*4)( )g(CC3(X4) 
\x + yJ 

ifx + y^ 0> and 
Jq(x, —x) — (q — l)5(c*3a4). 

PROOF. lfy = —x we get 

^ f e y ) = Yl (a3«4)(«) = (<? - l)5(a3a4), 

by formula (12). If x + y ^ 0, we can make the change of variable c = a^1, and the 
Gauss sum gia^a^) appears. • 

Substituting into the Barnes sum, and distinguishing again the cases x + y = 0 and 
x + y ^ 0, we get 

SB = (q- l)2(a2a4)(-l)6(aia2)6(a3a4) + g(a3a4)mB, 

where mB is the analogue of rB of Section 2.3 and is given by 

mB= J2 (aia4)(x)(a2a3)(y)(aïla4
l)(x + yi)(x + y)). 

Making the same change of variables as in Section 4, we get 

mB = g(a{a2) b(oc\a4, a2a3). 

Using the connection between Gauss sums and Jacobi sums of Section 2.5, formula (10), 
we get 

b(axa4,ot2oc3) = — — + (q- \) b(axa4a2a3) ( a 2 a 3 ) ( - l ) . 
g(axoc4a2a3) 

We now tidy up the correcting terms. Let 

g(a{a2)g(a2a3)g(a3a4)g(a4ai) 
&B = JB . 

g(ot\a2ot3a4) 
From the previous calculations we obtain 

àB = (q- l)2a2a4(-l)è(aia2)è(a3a4) 

+ (q- l)è(a\a4a2a3)g(aia2)g(a3a4)(a2a3)(-l). 

Note that 

g(axa2) g(a3a4)6(aia4a2a3) = g(axa2) g((a{a2)~
l) 6(aia4a2a3). 
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From formula (11) of Section 2.5 we see that 

g(ala2)g((ala2y
l) = q(ai<x2)(-l) - (q - l)S(a{a2). 

Altogether we obtain 

AB/(q- l) = (q- l)S(aia2)8(a3a4)(a2a4)(-l) 

+ q(a2a3){-\)è{cxvaAa2a3){axa2){-\) 

-(q- l)(a2a3)(-l)6(aia4a2a3)è(aia2). 

The first and the third terms cancel out and we obtain 

AB/(q~ 1) = q(ala3)(-l)6(a{a4a2a3), 

as promised in Theorem 2. 

4. Conclusion. We have developed in parallel the proof of Barnes' first lemma and 
of its finite analogue. However, the symmetry breaks down in two ways. 

Firstly, there are some unavoidable analytic topics which appear in the classical case 
as in Section 2.4. Such considerations are not necessary in the finite case where integrals 
are replaced by finite sums. The validity conditions on the ai have no finite equivalent. 

Secondly, the correcting terms which appear in the righthand side of the finite field 
analogue do not occur in the classical case. A recourse to distribution theory might be 
needed at this point. 

Altogether, it would be nice to have a common framework for both situations. 
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