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Abstract

In this paper we introduce the notion of Riesz homomorphism on Archimedean directed partially
ordered groups and use it to study the vector lattice cover of such groups.

1991 Mathematics subject classification (Amer. Math. Soc.): 46 A 40, 06 F 15.

There are close relations between the theories of Boolean algebras, distribu-
tive lattices, abelian lattice ordered groups and the like on one hand and
vector lattices (= Riesz spaces) on the other hand. In the case of Boolean
algebras such a relation is made explicit by considering the elements of a
Boolean algebra as so called place functions. The set of these place functions
generates a vector lattice and this vector lattice can then be used to study the
Boolean algebra (see Fremlin's book [8]).

In the other cases mentioned, one simply "forgets" some of the structure
of a Riesz space if one considers it as a lattice ordered group or a distribu-
tive lattice. Conrad in [6] introduced the notion of a vector lattice cover for
Archimedean lattice ordered groups and indeed, in categorical language, he
therefore studied "the adjoint of the forgetful functor". Shortly thereafter,
Bleier in [3] proved a somewhat more general result than Conrad's: For ev-
ery Archimedean lattice ordered group G there exists an (essentially) unique
Archimedean Riesz space E(G) that contains G as a lattice ordered sub-
group and which is minimal with that property; furthermore, such a G is
automatically large in E{G) (that is, for every 0 < g e E(G) there exists
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[2] The vector lattice cover 353

/ G G and n e N such that 0 < / < ng). There is, in various circum-
stances, a need to have such a vector lattice cover for Archimedean directed
partially ordered groups. There is an abundance of examples in the literature
where such a notion may be applied effectively. We mention the selfadjoint
operators on a real Hilbert space, the regular operators between two vector
lattices, the vector space tensor product of two vector lattices, a vector space
with the ordering induced by the free vector lattice that it generates [1], the
relatively central operators [11].

In this paper we develop the notion of a vector lattice cover for integrally
closed directed partially ordered groups. Most of the technical problems stem
from the fact that there is not readily available the notion of "morphism".
Nonetheless, we introduce such a notion and hasten to say that it does not act
in a categorical fashion (see 1.9 and 1.10). It therefore seems that our results
do not follow from that more abstract machine, called category theory. Our
results extend those of Conrad and Bleier [3], [6], [7]. Our paper is in ZF set
theory. For terminology we refer to [2].

1. Riesz homomorphisms

In this paper we intend to study a rather wide class of partially ordered
structures from the viewpoint of the much narrower class of Riesz spaces.
To make this study possible we need a substitute in the wider setting for the
morphisms in the class of Riesz spaces. Because we were not able to find
such a notion in the literature we introduce it here. For a subset A of a
partially ordered set we denote by A\ the set of upper bounds of A. Let G
and H be partially ordered groups. We call an additive map <j>: G —> H a
Riesz homomorphism [complete Riesz homomorphism] if for every nonempty
set A in G with not more than two elements [respectively every nonempty
set A in G which is bounded from above] <I>(A\) and (j>(A)1 have the same
lower bounds.

Thus an additive map <j>: G -* H is a Riesz homomorphism if for all a
and b in G the sets {y: y e H, y > <j>{a), y > <t>(b)} and {<f>(x): x e
G, x > a, x > b} have the same lower bounds. By taking a = b = 0
we see that this implies 0 (e H) is a lower bound of 4>(G+), that is, that
</> is increasing. We now discuss some particular cases. If H is a lattice,
then the set {y: y e H, y > 4>{a), y > <t>{b)} has a greatest lower bound,
(f>(a) V 4>{b). Thus, if H is a lattice, then an additive <f>: G -> H is a Riesz
homomorphism if and only if

xeG> x>a
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354 G. Buskes AND A. van Rooij [3]

If both G and H are lattices, then the Riesz homomorphisms G —> H are
just the group homomorphisms that are also lattice homomorphisms. In par-
ticular, if G and H are Riesz spaces our notion of "Riesz homomorphism"
coincides with the usual one. More generally, if G is an ordered vector
space and H is a Riesz space, our "Riesz homomorphisms" coincide with
the objects studied in [9, 1.8.1]. The " i?-homomorphisms' studied in [10] are
another class of examples for our "Riesz homomorphisms". Furthermore, if
G and H are Riesz spaces our "complete Riesz homomorphisms" coincide
with the order continuous Riesz homomorphisms. The reader is warned that
some operations that one is used to in dealing with Riesz homomorphisms
may no longer hold in this more general setting. In particular, one has to be
careful with restrictions and compositions of Riesz homomorphisms. That
is, these may no longer be Riesz homomorphisms.

In this section we state and prove those facts about Riesz homomorphisms
which play a role in understanding the notion of an enveloping Riesz space.
We first show a very convenient reformulation of the concept. For nonempty
subsets A, B of G and we denote B - A = {b - a: b e B, a e A} . If
G is integrally closed and A c G is nonemtpy and bounded above then
inf(^T - A) = 0 (Proof: of course, Al - A c G+ . On the other hand, let
M G G be a lower bound of At - A. Then for every b e A\, b - u is an
upper bound of A, that is, b - u e A\ . From the fact that G is integrally
closed and the conditions on A it follows that u < 0). In the sequel G and
H are integrally closed directed partially ordered groups. We remark that by
[2, Theorem 24, p. 312] the Dedekind completion of G and H by nonvoid
cuts, G6 and H6 respectively, are groups.

LEMMA 1.1. Let (f>: G —> H be additive.

(i) <f> is a Riesz homomorphism if and only if for all a, b e G and A =

(ii) (j> is a complete Riesz homomorphism if and only if for all X cG with
= 0 we have inf<j>(X) = 0.

PROOF, (i) Suppose 4> is a Riesz homomorphism.
Let a, b e G, A = {a, b}, B = {(f>(a), <j){b)} . Take a lower bound u of
</>(̂ 4T — A) in H; we wish to prove that u < 0 . Now u + (j>{a) and u + c/)(b)
a r e l o w e r b o u n d s o f (friAl) — {<j)(x): xeG,x>a,x>b}, h e n c e a r e
lower bounds of {y e H: y > <j>{a), y > (f>(b)} = 5T . Thus, if y e B\, then
y — u € B\ . As B\ is bounded from below and H is integrally closed, we
have M < 0.

Conversely, suppose inf <̂ (̂ 4T — A) = 0 for every nonempty A c G with
not more than two elements. By taking A = {0} , we see that </> is increasing.
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Let a,b e G, A = {a, b}. We wish to prove that <£(J4)T and <t>{A^ have
the same lower bounds; then <f> will be a Riesz homomorphism. As 0 is
increasing, </>(y4T) c (j>{A)\, so that every lower bound of </>(̂ )T is one of
<j>{A\). Conversely, let u be a lower bound of <t>{A\). For all v e <t>{Ai),
u - v is a lower bound of <f>(Ai) - (j>{A) = <j>(Ai - A), so u - v < 0 and
M < v . Hence u is a lower bound of (j>{A)\.

(ii) In precisely the same way one proves that 0 is a complete Riesz ho-
momorphism if and only if

in

for every nonempty A c G that is bounded from above. Hence, the condi-
tion

XcG, inf X = 0 =• inf </>(*) = 0

implies that <j> is a complete Riesz homomorphism.
To prove the reverse implication, let X c G be such that inf X = 0 . Put

A = {-x: x eX}; then Al - A = G+ + X. Assuming that (/> is a complete
Riesz homomorphism, we see that </> is increasing, so that <j>(X) c /f+ and
inf <t>{G+ + X) = 0 . Consequently, inf <£(*) = 0 .

Lemma 1.1 has some interesting corollaries.

COROLLARY 1.2. The natural map of G into its Dedekind completion is a
complete Riesz homomorphism.

COROLLARY 1.3. Let <f>: G —• H be a Riesz homomorphism and let
QJ: H —> / be a complete Riesz homomorphism. Then w o (j> is a Riesz
homomorphism. If <f> is complete, then so is co o <j>.

COROLLARY 1.4. Let <f>: G -+ H be a [complete] Riesz homomorphism;
let HQ be a directed subgroup of H that contains <f>(G). Then (j>, considered
as a map G -^ Ho, is a [complete] Riesz homomorphism.

COROLLARY 1.5. Let <f>: G -> H be a group homomorphism, 4>6 the in-
duced group homomorphism G —> H6 . Then <j> is a [complete] Riesz homo-
morphism if and only if cf> is.

COROLLARY 1.6. For every p e N the map x —> px of G into G is a
complete Riesz homomorphism.

COROLLARY 1.7. Let <f>: G —> H be a Riesz homomorphism and suppose
G is a lattice. Then <f>{G) is a lattice: if a, be <t>(G) then aV^b = aV Hb.
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COROLLARY 1.8. Let </>: G —• H be a Riesz homomorphism. Then the
natural maps G —> <I>(G) and <p(G) —> H are Riesz homomorphisms.

The proofs of Corollary 1.2 through 1.5 are standard. We will prove Corol-
lary 1.6, which is somewhat more involved, below. For Corollary 1.7 remark
that <f>s: G —• H6 is a homomorphism of lattice groups. Corollary 1.8 is
proved similarly.

PROOF OF COROLLARY 1.6. Let X c G, infX = 0 and p e N . Let &
be the set of all finite subsets of X ordered by inclusion. Defining

where 8 is the natural map G —> G6 , we obtain a decreasing net (y a a & 9

in G5 . We have iniX = 0 , hence by Corollary 1.2 \rS.8{X) = 0, so that
ya I 0 . It follows from [2, Theorem 26, p. 314] that pya I 0. Consequently,
infpS(X) = 0 . Then infpX = 0 .

EXAMPLE 1.9. The restriction of a Riesz homomorphism may fail to be a
Riesz homomorphism.
Let G = C[0, 1]. The polynomial functions on [0, 1] of degree < 1 form
a linear subspace D of G. D is integrally closed since G is Archimedean
and D is directed, co: f -» /(1/2) is a Riesz homomorphism G —> E but
its restriction to Z) is not a Riesz homomorphism.

EXAMPLE 1.10. The composition of two Riesz homomorphisms may fail to
be a Riesz homomorphism.
Let G = C[-\, 1], D = {x G C [ - l , 1]: 2x(0) = x(l) + x ( - l ) } . Z> is
order dense in G. It follows that the natural map (/>: D —> G is a complete
Riesz homomorphism. co: G —> R defined by <y(/) = /(0) is a Riesz
homomorphism, but <oo0 is not. (Let x € C [ - l , 1] be the identity function
o f [ - 1 , 1 ] . T a k e a = \ + x , b = l - x . I f x e D , x > a a n d x > b t h e n
* ( l )>a( l ) = 2 and JC(-1) > ft(-l) = 2, so

x(0) > 1/2(JC(1) + x(-l)) = 2> a(0) V 6(0).)

Before continuing with some positive news, one more piece of bad be-
haviour.

EXAMPLE 1.11. Let

G = {xel°°(Z): lim *(#») = x(0), x(n)+x{-n) = 2x(0) for every «},
|JI|—>oo

H = c and <j>: G -» H defined by <f>(x) = x\N(x G G). Then <\> is a bijective
Riesz homomorphism G —> H but not an order isomorphism.
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PROOF. TO see that <f> is a Riesz homomorphism:
Take a e G; we wish to show (<£(a))+ = inf{<j)(x): x G G+, x > a} . For
iVeN define xN: Z -• R by

Then x^ G G+, x^ > a for every N, whereas in c we have i n f ^ x ^ =

« ) + •

However, if <j>: G —> H is bijective Riesz homomorphism and G is a lattice,
then 4> is an order isomorphism.

( I f x e G . x £ 0, then x+ ? 0 , so {(/>(x))+ = <f>(x+) / 0 and <j)(x) £0.)

2. The enveloping Riesz space

In this section we will develop the notion of enveloping Riesz space E(G)
for an integrally closed directed po-group G. It is not very complicated to
construct E(G) right away, but we have in mind to investigate primarily its
universal properties. For the latter reason we start with a study of extending
Riesz homomorphisms.

DEFINITION 2.1. </>: G -> H is a V-homomorphism if for all a, b eG the
s e t s {y G H : y > <j){a) a n d y > <p(b)} a n d { < £ ( x ) : x e G , x > a , x > b}
have the same lower bounds. Thus, a Riesz homomorphism is an additive
V-homomorphism. If G and H are Riesz spaces our definition coincides
with the one in [4]. The motivation for the next lemma is [4].

LEMMA 2.2. Let E be a vector space, F a a-Dedekind complete Riesz
space, p: E —» F a sublinear map and a an element of E.

(i) The formula

(1) pa{x) = mtp{x + na)-np{a) (x e E)
tie*

defines a sublinear pa: E —» F. We have

(2) -p(-x)<pa(x)<p{x) (xe£),
a((3) Pa(a) = a, pa(-a) = -p(a)

and even

(4) pa(x + Xa)=pa(x)+Xp(a) {x e E, AeE).
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(ii) If DQ is a linear subspace of D and p is linear on Do, then pa

coincides with p on DQ and is linear on DQ + Ra.
(iii) Let E be a directed vector space. If p is a V-homomorphism, then so

is p".

PROOF, (i) For every x € D the map fi —> p(x + fid) - np{a) of R into
F is decreasing and bounded from below by -p(-x). It follows that we
can define pa:E^F by (1) and that (2) holds. (4) and (3) follow from the
observation that for all x and X

pa(x + Xa) = inf/?(x + Xa + fia) - np{a)

= infp{x + va) - (v - X)a = pa(x) + Xa.

(ii) Apply (2) and then (4).
(iii) For every fi the map x -* p(x + fia) - fip(a) is a V-homomorphism.

The pointwise infimum of a decreasing net of V-homomorphisms is a V-
homomorphism.

LEMMA 2.3. Let E be an Archimedean, directed partially ordered vector
space, G a subgroup of E that generates E as a vector space. Let <p be
an order preserving group homomorphism of G into an Archimedean directed
partially ordered vector space F. Then (j> extends uniquely to an order pre-
serving linear map <f>: E —> F. If <f> is a Riesz homomorphism, then so is

!>•

PROOF. (I) We first show that QG is relatively uniformly dense in E in
the following sense:

Let x e E. Then there exists an a e G such that for every e > 0 there is
a y € G with y -ea <x <y + ea.

Indeed, x = 52?=l Xixi for certain Xx, ... , XN e E , x{, ... , xN 6 G.
Choose a e Q such that

a > xt a n d a > -xt (i= I,... , N).

(Then a > 0). Let e > 0 . Take /i{, ... ,/iN eQ for which

\Ht-kt\<e (i = l , . . . , A T ) .

Then for each i,

/iixi = Xtxt + e(-xt) + {nt - Xi + e)xi

< Xixi + ea + (nt - Xt + e)a < Xtx{ + 3ea

and similarly Xtxt < nixi + 3ea. Setting y = £ . fiixi we obtain y - 3Nea <
x < y + 3Nea.
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(II) Now the lemma. We have to show: If kx,... , XN e E , xt, ... , xN e
G and £ A,*, > 0 in E, then £ A.C^JC,) > 0 in F. This we do as follows.
Take a as in (I). Let e > 0 , e e Q . Choose fiy, ..., nN e Q with \/ij. - A J <
e/3N for each i. By (I),

53 Htxt -ea<J2 V ; ^ H ^*< + efl

and, similarly,

5>^(*,-) - ê (fl) < 51W*/) < 53 ^(*,0
Take p e N such that pfil, ... , pnN, pe are integers. Then

since

We now have £*,•#,• (*,•) > -2ea for all e > 0, e G Q. Hence,
> 0 .

(Ill) Finally, assume that </> is a Riesz homomorphism. We may assume
that F is a vector lattice.
Let x e £ ; let u & F be a lower bound of {<£()>): y e E+, y > x}; we
wish to show that u < ((j)(x))+. Take a as in (I). Let e > 0: we prove
« < {l>(x))+ + 2e~4>{a). By (I) there exist m € N and s e G such that
s/m-ea <x< s/m + ea. For all t € G+ with ( > j w e have t/m + ea e IT1"
and */m + ea > x , so (by the given property of «,) u < (j)(t/m + ea). It
follows that m(u - e<j>(a)) is a lower bound of {^(f): t e G+, t > s} . But
0 is a Riesz homomorphism, so m(u - e(t>(a)) < ((f>(s))+ . This implies

)+ + e^(fl) < ($(s/m - ea))+2elj)(a)

COROLLARY 2.4. For i = 1, 2 let Et be an Archimedean, directed partially
ordered vector space and Gt a subgroup of Et that generates Et as a vector
space. If Gl and G2 are isomorphic as partially ordered groups, then Ex and
E2 are isomorphic as partially ordered vector spaces.

THEOREM 2.5. Let E be a Riesz space, D a cofinal linear subspace of E
that generates E as a Riesz space. Let <j> be a Riesz homomorphism of D
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into a Riesz space F. Then <j> extends uniquely to a Riesz homomorphism

PROOF. AS D generates E, uniqueness is no problem. For the same
reason we may assume F to be Dedekind complete.

D is cofinal in E. thus, we can define p: E -> F by

p(a) = inf{<j)(x): xeD, x>a} (a 6 E).

Clearly

Furthermore, p is a sublinear v-homomorphism. Indeed, the sublinearity
is clear. For a, b e E we have

p(a)Vp(b) = inf 0(x) V <j>{y) = inf inf <f>(z)
x,y€D x,y€D z€D

x>a, y>b x>a, y>b *>*> z>y
= inf 4>(z) = inf inf 4>(z)

z€D ceE z€D
z>a, z>b c>a, c>b z>c

= M p{c)-
c>a, c>b

Actually, p is linear (and therefore a Riesz homomorphism). To see this we
consider

H = {xeE:p{-x)=p(x)}.

H is a linear subspace of E containing D, and p is linear on H. Let
a € H; if we can prove \a\ € H, then H is a Riesz subspace of E, so
H = E and we are done.

Following the construction of 2.2 we make the V-homomorphism q =
p~W . Then q{\a\) = -p{-\a\) but also (as q = p on H)

q{\a\) = q(a V (-a)) = q(a) V q{-a)

= p(a)vp(-a)=p(av(-a))=p(\a\).

Hence, \a\ e H.

Let £ be a po-group and D c E be a subset. We say that D c E is
order dense if for each e e E we have e = inf{d: d > e and d € D} . In
particular if D c £ is order dense then D is majorizing in E. (In fact,
our definition of order dense is the common one if we assume that D is
majorizing).

There is an addendum to Theorem 2.5 which says that <f> is complete if (f>
is a complete Riesz homomorphism and D c E is order dense. The order
denseness of D c E is necessary in that addendum. Indeed, let E be the
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Riesz space of all piecewise linear functions on [0, 1], D the linear span of
the constant function 1 and the identity function, F = E and <j){x) = x(0)
(x e D). 4> extends to a Riesz homomorphism E -» R, that is not complete.
Our addendum follows from the next lemma.

LEMMA 2.6. Let 4>: G —• H be an order preserving group homomorphism.
Suppose Go is an order dense subgroup of G such that the restriction of <f> to
Go is a complete Riesz homomorphism. Then so is <f> itself.

PROOF. Let X c G, MX = 0. Let Y = {y e Go: there is an x e X
with y > x} . If u e Go is a lower bound of Y, then (by order denseness)
M is a lower bound of X. Hence, inf Y = 0 in(70. Then M(j>(Y) = 0 in
H, and a fortiori inf 4>{X) = 0 in H.

ADDENDUM 2.7. Let D in Theorem 2.5 be order dense in E. If 4> is a
complete Riesz space homomorphism then so is <fi.

By combining 2.3 and 2.5 we obtain

THEOREM 2.8. Let E be an Archimedean Riesz space, G a directed sub-
group of E that generates E as a Riesz space. Then every Riesz homomor-
phism (j>ofG into an Archimedean Riesz space F extends uniquely to a Riesz
homomorphism 4>: E —• F. In particular: If E is an Archimedean Riesz
space, generated by a linear subspace F that is in its own right a Riesz space,
then the identity map of F extends to a Riesz homomorphism <j>: E —> F.

We remark that there is an alternative way of formulating Theorem 2.8.
From [9, 2.2.11] one sees that every element in E can be represented as
A/ V/ xij where / and J are finite and x(j e G (where G and E are as
in Theorem 2.8). Alternatively, it thus follows from our Theorem 2.8 that <f>
can be extended by defining A/ Vy <£(*,;) to be the image of A/ Vy xij •

We now introduce the enveloping Riesz space.

THEOREM 2.9. There exists an {essentially) unique Archimedean Riesz
space E containing G as a partially ordered subgroup such that

(i) E is, as a Riesz space, generated by G ;
(ii) The set {kx: X e Q, x e G) is order dense in E.

PROOF. (I) By [2, Theorem 26, p. 312], G can be embedded in a Dedekind
complete /-group. It follows from Iwasawa's theorem [2, p. 317] that G is
commutative, and from [2, p. 294], that

/ i e N = { l , 2, 3, . . . } , aeG, na>0=>a>0.
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(II) G generates a divisible partially ordered group Gx as follows. In
G x N* we define the equivalence relation (x, n) ~ (y, m) if and only if
mx = ny. We denote the equivalence class of {x, n) by [x, n] (and think
of it as x/n). Define Gx = GxN*/ ~ . G, is a commutative, integrally closed
and directed /?o-group. Moreover, G{ is divisible and the correspondence
X H [ X , 1 ] (X € G) is a po-group isomorphism of (7 onto a subgroup of
Gl. (It also is a complete Riesz homomorphism). By identifying x with
[JC , 1] we obtain the inclusion G c G , .

(III) Let G\ be the completion by nonvoid cuts; G\ is an /-group. For
X € Q, A > 0 the multiplication by A is an automorphism of (7,, extending
uniquely to an automorphism of G\. Thus, G\ becomes a vector space
over Q. With the aid of the order completeness it is perfectly easy to define
multiplication with irrational elements of R and to turn G\ into a (Dedekind
complete) Riesz space.

(IV) Let E be the Riesz subspace of G\ generated by Gl. The set
{kx: A e Q, x € G} is just Gx. The properties (i), (ii) follow. The Riesz
space E in Theorem 2.9, being unique, is denoted by E{G) and we call it
the enveloping Riesz space of G. It follows that the natural map G —• G{ is
a complete Riesz homomorphism (indeed, suppose X c G with inf X = 0.
Let [y, n] in Gx be such that \y, n] < x for all x € X. Then y eG and
y < nx for all x e X and hence (by Corollary 1.6) y < 0. Thus inf X = 0
in G). Also, the natural map G —• £ ( ( J ) is a complete Riesz homomorphism
(apply Corollaries 1.2 and 1.4). Thus, by Corollary 1.3 we have

PROPOSITION 2.10. The natural map G —> E(G) is a complete Riesz ho-
momorphism.

As an immediate consequence of our extension theorems we have

THEOREM 2.11. Let <f>: G —• H be a Riesz homomorphism. Then there
exists a unique Riesz homomorphism 4>E: E(G) -> E(H) making the diagram

G —

4
H —

— E{G)

[*•
— E(H)

commutative.
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PROOF. Let jG and j H be the natural maps G -+ E(G) and H —> E(H).
By Corollary 1.3, j H o <j> is a Riesz homomorphism. By Theorem 2.8, y'w o <f>
extends to a Riesz homomorphism <t>E: E(G) —> £ ( / / ) .

3. Riesz hulls

We remark here that for Archimedean lattice ordered groups our results
are known and contained in [6]. Bleier's main improvement [3] of Conrad's
result in the lattice ordered case, is a special case of our Theorem 3.8.

DEFINITION 3.1. An Archimedean Riesz space E is called a Riesz hull of
G if

(i) G is a partially ordered subgroup of E and the identity map G —• E
is a complete Riesz homomorphism.

(ii) If F is an Archimedean Riesz space and if <fi: G —> F is a com-
plete Riesz homomorphism, then <f> extends uniquely to a complete Riesz
homomorphism <j>: E —• F .

The Riesz hull (if it exists) is unique:

PROPOSITION 3.2. If E{, E2 are Riesz hulls of G, then there is a Riesz
isomorphism of E{ onto E2 that extends the identity map of G.

PROOF. The embeddings (j>x: G —> El and <f>2: G —> E2 induce complete
Riesz homomorphism <f>x: E2 -> Ex and (f>2: E{ -+ E2 . By the uniqueness
part of (ii), above, we have </>, = ^ o ^ 2 o <j>l and <f>2 = <j>2 o </>, o (f>2 . Then
</>, and <f>2 are each other's inverses.

If the Riesz hull of G exists we denote it by R[G].

LEMMA 3.3. E(G) is a Riesz hull of G.

PROOF. By Proposition 2.10 the embedding G -> E{G) is a complete
Riesz homomorphism. In the rest of this proof we write E = E(G).

(I) We regard G as a subgroup of its Dedekind completion G6 . Let F
be an Archimedean Riesz space and <p: G —• F a complete Riesz homomor-
phism. We may assume F is Dedekind complete (by Corollary 1.5). For
a e G* we have

0 = inf{x -y: x, y eG, x>a>y} in G,

so that 0 = inf{0(jt) - cj>(y): x, y e G, x >a>y} in F and sup{<f>(y): y e
G, y < a} = inf{<j)(x): x e G, x > a} in F. It follows that ^ extends
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uniquely to an increasing 4>6': G6 —» F. This 4>s is a complete Riesz homo-
morphism.

(II) <j> extends naturally to an increasing linear map co: G3 -> F. We
proceed to show that co is again a complete Riesz homomorphism.

Let X cG*, inf X = 0. Let u = inf co(X) e F and suppose M > 0. We
may assume that X n G6 contains an element e. Choose JVgN such that
{Nu-<t>s{e))+ > 0 .

For every x e X there is a smallest (we put 'smallest' to avoid AC) n e N
with nx e G3; take x < e in X and put x' = [n(x - (l/N)e)+ Ae]eGs.
Then

<p {x ) = <p \ n \ x - —ej A e I

>l[Nu.-9'(e)]+Au.

As (n/N)[Nu - <ps{e)]+ A u > 0 we obtain inff/Ox'): x e I } > 0 in F .
On the other hand, 0 < x < Nx and inf{N;c: x e X} = 0 inG^, so
\ni{x: x € X} = 0 in G^ . Contradiction.

(Ill) The rest is simple G is order dense in G5 , so that QG is order dense
in QGr . Then the restriction of co to QG" is a complete Riesz homomor-
phism. QG is order dense in E, so <u|QG extends to an increasing map
<f>: E —* F. Then <̂> is a complete Riesz homomorphism.

We now collect some consequences.

THEOREM 3.4. G has a Riesz hull R[G]. Considered as a subset of R[G],
G generates R[G] as a Riesz space.

COROLLARY 3.5. Let E be an Archimedean Riesz space containing G as
a partially ordered subgroup. Then E is a Riesz hull of G if and only if E
is generated by G as a Riesz space and QG is order dense in E.

COROLLARY 3.6. Let <t>: G —• H be a complete Riesz homomorphism.
Then there exists a unique Riesz homomorphism <j>R: R[G] -» R[H] such
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that the diagram

H

is commutative. This <f>R is complete.

PROOF. Existence and uniqueness of 4>R follow from Theorem 2.8; the
completeness is a consequence of Corollary 1.6 (G -» R[H] is complete)
and Theorem 3.4 (R[G] is a Riesz hull of G).

COROLLARY 3.7. R[G] is a "smallest" Riesz space extension of G: Let E
be an Archimedean Riesz space, G a {directed) subgroup of E that generates
E as a Riesz space. Then the identity map of G extends to a surjective Riesz
homomorphism E -» R[G].

PROOF. The natural map G —> R[G] extends to a Riesz homomorphism
(j>: E -+ R[G] according to Theorem 2.8.

We have the following generalization of Theorem 3.4.

THEOREM 3.8. Let G be a directed subgroup of an Archimedean Riesz
space E. Then the following are equivalent.

(i) The natural map a: G -* E(G) extends to a Riesz isomorphism, E —>
E(G).

(ii) E is generated by G as a Riesz space and QG is order dense in E.
(iii) E is generated by G and G —> E is a complete Riesz homomorphism.
(iv) E is generated by G and G —> E is a Riesz homomorphism.
If G is lattice ordered as well then each o/(i)-(iv) is equivalent to:
(v) E is generated by G and G is large in E.
(vi) E is generated by G.

PROOF, (i) =>• (ii) follows from the construction of E(G).
(ii) =» (iii). By Corollary 3.7, E is isomorphic with E(G) and thus

G -> E is a complete Riesz homomorphism.
(iii) => (iv) is trivial.
(iv) =* (i). By Corollary 3.7 there is a surjective Riesz homomorphism

a: E -* E(G) extending the natural inclusion G -» E{G). By Lemma 2.3
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there exists a Riesz homomorphism 5: E{G) -> E extending the inclusion
G c E. Then S o a: E —* E is a Riesz homomorphism (E(G) and £ are
Riesz spaces!) which is the identity on G. It follows that a is injective and
thus a Riesz isomorphism.

Now assume G is lattice ordered as well.
(ii) => (v). If h > 0 in E then h = sup{#: q < h, q eG} - sup{q+: q <

h, q e G} and thus some q+ G G must be nonzero and less than or equal
to h.

(vi) => (iv) is trivial.

4. Examples

EXAMPLE 4.1. Let H be a Hilbert space, A the ordered vector space of
all hermitian operators in H, Ao the linear subspace of A generated by /
and the hermitian operators of finite rank.

LetS = {t G H: \\t\\ = 1} and let Ce(S) be the Riesz space of all continu-
ous functions / : 5 - > I for which f(-t) = f(t) (t e S). To a e A assign
a e Ce(S): a(t) — {a{t), t) (t e S). The assignment a -» a is a bipositive
linear map A —• Ce(S).

It follows that E(A) and E(A0) are the Riesz subspaces of Ce{S) gener-
ated by A and ^ 0 respectively. The order denseness of Ao in E(A0) follows
easily from the observation that Ao is a linear subspace of Ce(S) contain-
ing the constants and containing, for each s e S, the function t -* (t, s}2

(t G S) that peaks at ±5 and nowhere else. (This function is a where
a(t) = (t, s)s).

E X A M P L E 4 . 2 . L e t A b e t h e o r d e r e d v e c t o r s p a c e o f al l h e r m i t i a n 2 x 2 -
matrices. Let S = {x, y) e R2| x2 + y2 = 1} To a = (^) e A assign
a G C(S), defined by a(x, y) = (a + d) + (a - S)x + 20y((x ,y)eS). Then
a>0<$a + S>0 and /?2 < ad •» a > 0, so a •-» a is bipositive. It
follows that E(A) is the Riesz subspace of C(S) spanned by 1̂  and the
two coordinate functions.

EXAMPLE 4.3. Though actually we can use (see [5]) the results of this paper
for (yet) another construction of the Riesz space tensor product of two Riesz
spaces E and F, what we do here is just indicate one aspect. Let E, F be
Archimedean Riesz spaces. Of course the vector tensor product E ® F is an
ordered vector subspace of the Riesz space tensor product EMF. It follows
from [5] that E ® F is order dense in E®F. Therefore E(E ®F) = E®F.
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